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Abstract. – A model for the dynamical evolution of a granular binary mixture is analyzed.
This system is submitted to a tapping procedure, similarly to what is done in real experiments.
In the weak vibration limit, an effective dynamics for the tapping process is derived, and the
steady-state probability distribution is analytically found. The steady probability does not
depend on the details of the configuration, but only on the number of particles of each of the
two species. Depending on the values of their fugacities, the system can be either almost full
of small or big particles, i.e., segregation effects are present.

Granular systems have attracted the attention of physicists in recent years. A review of
some of the basic phenomenological features of granular matter can be found in refs. [1, 2].
Many of these behaviours, like compaction [3] or segregation [4, 5], are far from being well
understood. In statistical physics, simple models are often used as a first approximation to
many different, complex, problems. Thus, recently, several Ising or particle-hole models [6–11]
have been used to analyze compaction processes in dense granular media. Also, the parking
lot model has been employed in the same context [12].
One of the most interesting physical questions in the physics of dense granular media

is the description of the steady state eventually reached by a system, when it is externally
perturbed. Thermodynamics is not directly applicable to powders. Nevertheless, some years
ago, Edwards and coworkers [13] made the hypothesis that the steady state of an externally
perturbed granular system can be described by an extension of the usual statistical-mechanics
concepts. The central point is the ergodic hypothesis for externally perturbed powders: in the
steady state, all the mechanically stable (metastable) configurations of a granular assembly
occupying the same volume have the same probability.
When a granular mixture is shaken, their components often tend to separate, leading to

the well-known phenomenon of segregation [1,2]. Usually, when a bidisperse granular system
is vibrated, larger particles go to the top, the so-called Brazil Nut effect (BNE) [4,5,14]. Very
recently, it has been found that, as the mass density of the big grains is increased as compared
with that of the small grains, this phenomenon can be inverted: small grains go to the top
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while large grains move to the bottom of the container [15, 16]. This is known as the reverse
Brazil Nut effect (RBNE).

One of the main purposes of this paper is trying to understand some aspects of the dynam-
ical behaviour of binary granular mixtures by means of the analysis of a simple, analytically
tractable, model. In particular, we will be interested in the study of the steady state reached
by the system in the long-time limit. Its relationship with Edwards’ theory will be discussed,
and also the appearance of both the BNE and RBNE behaviours.

Let us consider a horizontal section of a real granular binary mixture, near the bottom of
its container. During the free evolution of the system, i.e., only under the action of gravity,
particles can only go down, as long as there is enough empty space in their surroundings.
The total density of particles in the layer grows until the hard-core interaction prevents more
movements of particles, and a metastable (mechanically stable) configuration is reached. On
the other hand, when the system is submitted to vertical vibration, particles can go up,
decreasing the density in the layer. In both processes, big particles will need more free space
in their surroundings than small particles to be adsorbed on or desorbed from the layer.

We introduce a one-dimensional lattice of N sites, which can be either empty (occupied
by a hole), occupied by a small particle A, or occupied by a big particle B. Variables ni and
mi are defined as follows. If site i is occupied by a particle A, ni = 0, otherwise ni = 1.
If site i is occupied by a particle B, then mi = 0, if not, mi = 1. Then, an empty site
is given by ni = mi = 1. The numbers 1 − ni and 1 − mi are the occupation numbers of
particles A and B, respectively. The specification of n = {ni} and m = {mi} characterizes a
configuration of the lattice. The dynamics of the system is assumed to be a Markov process
defined by the following master equation for the probability p(n,m, t) for finding the system
in the configuration {n,m} at time t:

∂tp(n,m, t) =
∑

i

[
Wi(n,m | Rin,m)p(Rin,m, t)−Wi(Rin,m | n,m)p(n,m, t)

]
+

+
∑

i

[
Wi(n,m | n, Rim)p(n, Rim, t)−Wi(n, Rim | n,m)p(n,m, t)

]
. (1)

Here, Rim = {. . . ,mi−1, 1−mi,mi+1, . . .} and Rin = {. . . , ni−1, 1−ni, ni+1, . . .}. Thus, the
possible events are the adsorption of an A or B particle on an empty site, and their desorption
from an occupied site. In order to model the hard-core interactions, a facilitated dynamics [17]
is considered. Small particles A need, to be adsorbed on or desorbed from a site of the lattice,
at least one of its two nearest-neighbour sites being empty. Namely,

Wi(Rin,m | n,m) =
[
αa

2
nimi +

αd

2
(1− ni)mi

]
(ni−1mi−1 + ni+1mi+1), (2)

where αa and αd are the characteristic rates for the attempts of adsorption and desorption
of particles A, respectively. On the other hand, big particles B need both of its nearest
neighbours empty when adsorbing on a site or desorbing from it,

Wi(n, Rim | n,m) = [βanimi + βdni(1− mi)]ni−1mi−1ni+1mi+1, (3)

βa and βd being the rates for the attempts of particles B to adsorb on and desorb from the
lattice, respectively. If particles B are eliminated, i.e., mi = 1 for all i and βa = 0, our system
reduces to a model for a single type of particles [6, 18].

We are interested in the particularization of the above general dynamics for the tapping
process used in the laboratory to vibrate real granular systems [3]. It will be modelled as
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Fig. 1 – Desorption of a particle between two empty sites, followed by the events during the free
relaxation necessary to get into a metastable configuration.

Fig. 2 – Second-order processes being the inverse of those first-order trajectories increasing the density
of the system. Two desorption events during the pulse of duration t0 are needed.

follows, analogously to the procedure introduced for a monodisperse system [6, 8]. Starting
from an empty lattice, the system is allowed to relax with αd = βd = 0, i.e., only adsorption
events are allowed. The system evolves until it reaches a metastable configuration, in which
no more adsorptions are possible. The metastable configuration so obtained will be the initial
state for the tapping process and will be referred to as state r = 0. Next, we describe the
vibration process by making αa = βa = 0, particles can only desorb from the lattice, for
a given time interval t0. This pulse takes, in general, the system out from the metastable
configuration. Afterwards, the system relaxes again with αd = βd = 0 until it gets stuck
in a new metastable configuration r = 1. By repeating this sequence, a series of metastable
states r = 2, 3, 4, . . . is generated. The index r indicates the number of taps made before that
metastable configuration has been reached. Notice that the non-conservation of the number
of particles in the lattice tries to mimic what actually occurs in a deep layer of a vibrated
granular system.
The metastable configurations are characterized as follows: i) all the holes are isolated,

ii) two big particles are separated by a domain of sites of length l ≥ 1 and, moreover, that
domain cannot be completely full of particles A. Thus, the number of holes verifies NH =
N −NA−NB > NB. The number of metastable configurations Ω

(N)
NA,NB

for a lattice of N sites
with NA particles A and NB particles B is [19]

Ω(N)
NA,NB

=
(N − NA − NB − 1)!(NA + 2NB + 1)!

NB!(N − NA − 2NB − 1)!(2NA + 2NB − N + 1)!(N − NA)!
. (4)

In the large-N limit, there will be well-defined densities of particles A and B, ρA ≡ NA/N and
ρB ≡ NB/N , and the number of states Ω(N)

NANB
is exponentially large. Thus, lnΩ(N)

NANB
/N is

only a function of ρA and ρB and, therefore, independent of N itself, i.e., the “microcanonical”
entropy S ≡ lnΩ(N)

NANB
is an extensive property.

The chain of metastable configurations obtained by the tapping procedure defines a Markov
process: no information is needed from the metastable state r − 1 in order to compute the
probability of going from configuration r to r+1. This is due to the free relaxation occurring
between every two vibration pulses. Therefore, it is tempting to try to identify the transition
probabilities Wef(n′,m′ | n,m) from the initial metastable configuration {n,m} to the final
one {n′,m′} in a single tap. This can be done if αdt0 � 1, βdt0 � 1, i.e., the probability
for the desorption events during the vibration is very small. Then, an expansion in powers of
αdt0 and βdt0 is expected to be useful.
The lowest order is equivalent to consider that each site is affected by only one rearrange-

ment in a single tap. Due to the facilitated dynamics, only particles A next to at least one
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Table I – Transitions between metastable states, in a single tap, with their corresponding rates.

First order Initial state Final state Wef

one-site diffusion XAoX XoAX αdt0/4
XoAX XAoX αdt0/4

change B into A XoBoX XoAoX βdt0χ
change A into B XoAoX XoBoX αdt0ξ
change B into 2A XoBoX XAoAX βdt0χ/2

XoBoX XAAoX or XoAAX βdt0χ/4
change A into 2A XoAoX XAoAX αdt0χ/2

XoAoX XAAoX or XoAAX αdt0χ/4

Second order Initial state Final state Wef

change 2A into B XAAoX or XoAAX XoBoX (αdt0)
2ξ/8

XAoAX XoBoX (αdt0)
2ξ/4

change 2A into A XAAoX or XoAAX XoAoX (αdt0)
2χ/8

XAoAX XoAoX (αdt0)
2χ/4

empty site or particles B between two empty sites can desorb, leading the system to an unsta-
ble configuration. Afterwards, the free relaxation will take the system back to a metastable
configuration. Let us consider a small particle A next to only one hole. It desorbs during the
vibration with probability αdt0/2. Afterwards, in the free relaxation, a small particle A is
adsorbed in any of the two neighbouring empty sites with the same probability 1/2. There-
fore, the probability for a one-site diffusion process of small particles A is αdt0/4, as shown in
table I. There, the symbol o represents an empty site, and X stands for an occupied site, either
by a particle A or a particle B. On the other hand, there are no diffusive processes for particles
B up to this order, since they need both of their nearest neighbours empty in order to desorb.
The other lowest-order processes start with the desorption of a particle between two empty
sites. The possible trajectories are shown in fig. 1, in which the probability for each step is
given. We have introduced the parameters χ = αa/(2αa + βa) and ξ = βa/(2αa + βa). The
transition probabilities for each rearrangement connecting metastable states is obtained as the
product of the probabilities for each of the steps composing it, and they are summarized in
table I. We do not compute the probabilities for the transitions leading to a final state identi-
cal to the initial one, since they are not needed when using a master equation description [20].
To the lowest order, only compaction events take place, since the total number of particles
NA +NB always increases. In order to have processes decreasing the total density, we are led
to consider second-order terms, similarly to what happened in the monodisperse case [6, 10].
In particular, we will analyze whether the inverse processes of those increasing the density to
the lowest order are possible, and which are their transition probabilities. These are depicted
in fig. 2, together with the probability of each elementary step. The corresponding effective
transition probabilities between metastable configurations are also included in table I. The
Markov process defined by the effective transition rates of table I is irreducible, i.e., all the
metastable configurations are connected by a chain of transitions with non-zero probability.
This assures the existence of a unique stationary solution of the master equation.

In order to derive the steady-state distribution, we will bet a priori on a stationary solution
P (s)(n,m) of the master equation having the detailed balance property,

Wef

(
n,m | n′,m′)P (s)

(
n′,m′) = Wef

(
n′,m′ | n,m

)
P (s)(n,m). (5)

Let us consider, first, metastable states without particles B, i.e., NB = 0. All the states with
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the same number of particles A must have the same probability in the steady state, since
they are connected through (isotropic) diffusive processes. This means that any metastable
state has a steady probability which only depends on the values of NA and NB, because any
metastable configuration can be obtained from a configuration with NB = 0 through a chain
of diffusive processes and NB substitutions of particles A by particles B. Then, application of
detailed balance to the processes in table I yields, for the steady probability of any metastable
state with NA particles A and NB particles B,

P
(s)
NANB

=
1
Z

γ−NA
A γ−NB

B , γA =
1
2
αdt0, γB =

αa

2βa
βdt0, (6)

and Z is a generalized “partition function”,

Z =
∑
NA

∑
NB

Ω(N)
NANB

γ−NA
A γ−NB

B . (7)

All the states with the same numbers NA and NB have the same probability; this is consistent
with Edwards’ thermodynamic description of the steady state of externally perturbed pow-
ders [13]. As we are dealing with an open system having two different kinds of particles, the
steady state is described by two thermodynamic parameters, the “fugacities” γ−1

A and γ−1
B

corresponding to particles A and B, respectively.
In the large-N limit, the partition function is readily obtained by means of the saddle

point method, with the result [19]

ln ζ ≡ 1
N
lnZ = ln

2ρB + ρA

(2ρA + 2ρB − 1)γA
, (8)

where ρA and ρB are the steady densities of particles A and B, respectively, being 0 ≤ ρA ≤ 1
while 0 ≤ ρB ≤ 1/2, since there must be at least one hole between every two particles B.
Moreover, ρH = 1− ρA − ρB ≥ ρB. The particle densities are determined by the saddle point
condition

γA =
(ρA + 2ρB)(1− ρA − 2ρB)(1− ρA)
(1− ρA − ρB)(2ρA + 2ρB − 1)2 , γB =

(ρA + 2ρB)2(1− ρA − 2ρB)2

ρB(1− ρA − ρB)(2ρA + 2ρB − 1)2 , (9)

which give ρA and ρB in terms of the fugacities. The situation is, in this sense, analogous to
the one found in a recent analysis of a hard-sphere mixture, where an extension of Edwards’
theory with two different values of the compactivity for each of the species was introduced [21].
As explained above, in our model two thermodynamic parameters are present because we are
dealing with an open system. Thus, as in molecular systems, two “fugacities” are needed, one
for each kind of particles.
In the weak vibration limit γA � 1, γB � 1 we are considering, an asymptotic analysis,

up to order γA, gives

ρA =
1

1 + η
− 1
2
1− η

(1 + η)3
γA, ρB =

1
2

η

1 + η
− 1
2

η

(1 + η)3
γA, (10)

uniformly valid for γB � 1 [19]. In eq. (10), it is η = γA/
√

γB. Figure 3 compares the
asymptotic values of the densities, as given by eq. (10), and the numerics, obtained by Monte
Carlo simulation, for γA = γB. The agreement is quite good up to γA

∼= 0.1. Also, in fig. 4,
the asymptotics for the densities is compared with the numerical values, for γA = 0.01, as a
function of η. In this figure, one can clearly see the crossover from BNE to BNE of the model.
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Fig. 3 – Comparison between the numerical values of the steady densities, for particles A (circles)
and particles B (squares), obtained by Monte Carlo simulation, and their corresponding analytical
expression (solid line), eq. (10), for γA = γB. The agreement is quite good for γA ≤ 0.1.

Fig. 4 – Steady values of the densities of particles A (circles) and particles B (squares), for γA = 0.01,
as a function of η. In the small η region, ρA � ρB, while ρB � ρA when η is large.

In the region η � 1, we obtain ρA → 1 and ρB → 0, our system is full of small particles A
(BNE). As the size effect is taken into account by means of the different facilitation rule, if
both species are identical except for their size, it would be αa = βa and αd = βd, i.e., γA = γB

and η =
√

γA � 1. This is why no RBNE is observed with particles of the same material [4,5].
On the other hand, when η � 1, it is ρA → 0 and ρB → 1/2. Now, the layer is full of big

particles B. The line separating these opposite behaviours can be determined by the condition
ρA = ρB. To the lowest order, this occurs for η = 2, i.e., γA = 2

√
γB. In order to understand

why the parameter η governs the transition from BNE to RBNE, let us consider the transitions
consisting in the substitution of two particles A by one particle B. In table I, it is seen that
the ratio of their effective rate Wef to those of their inverse transitions is η2. In a low layer
of a real granular system, the desorption rates of the grains should decrease with their mass
density. In fact, a comparison with refs. [15, 16] indicates that η plays in the model a role
analogous to the ratio of the mass density of the big grains to the small ones in real granular
systems and hydrodynamic models. Therefore, the region η ≥ 2, for which the RBNE is
expected, would correspond to large values of the mass density of the big grains, as compared
with the mass density of the small ones. Then, the picture emerging from the model agrees
with both numerical and experimental results [15,16]. Interestingly, in the model, the RBNE
is accompanied by a non-trivial behaviour of the time evolution of the total density of particles
ρA+ ρB, which presents a maximum at a certain time tc. Roughly speaking, the total density
increases until the time tc for which ρA = ρB; for greater times ρB < ρA and the total density
decreases [19]. We are not aware of experimental data allowing to check this prediction.

In summary, a simple one-dimensional lattice model for a horizontal section of a granular
binary mixture, near the bottom of its container, has been presented. The number of particles
of this section of the system is not conserved, when it is externally perturbed. This is a main
difference with other models for segregation, in which the number of particles is constant [21,
22]. In our model, small (big) particles need one (both) of its nearest-neighbour sites to
be empty in order to adsorb on or desorb from the lattice. The system is submitted to
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a tapping process, so that in each free relaxation the system evolves until it gets stuck in
a metastable state. For weak vibration, an effective dynamics connecting the metastable
states has been derived. The steady-state distribution is consistent with Edwards’ theory of
powders, and approximate analytical expressions for the steady densities have been obtained.
The steady distribution is characterized by the fugacities of both species, which are related to
their adsorption and desorption dynamical rates. There are two well-defined limit behaviours.
Depending on the relative values of the fugacities, the layer exhibits dominance of small
particles (BNE) or big particles (RBNE).
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