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While memory effects have been reported for dense enough disordered systems such as glasses, we show
here by a combination of analytical and simulation techniques that they are also intrinsic to the dynamics of
dilute granular gases. By means of a certain driving protocol, we prepare the gas in a state where the
granular temperature T coincides with its long time limit. However, T does not subsequently remain
constant but exhibits a nonmonotonic evolution before reaching its nonequilibrium steady value. The
corresponding so-called Kovacs hump displays a normal behavior for weak dissipation (as observed in
molecular systems) but is reversed under strong dissipation, where it, thus, becomes anomalous.
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At equilibrium, the response of a system to an external
sudden perturbation, like a temperature jump, depends only
on the macroscopic variables characterizing the state under
study. On the other hand, in nonequilibrium situations, the
observed response depends not only on the instantaneous
value of the macroscopic variables but also on the previous
history. Memory effects are, consequently, ubiquitous out
of equilibrium. A classic experiment in this context bears
the name of Kovacs [1,2]. A polymer sample, initially at
equilibrium at a high temperature T0, is rapidly quenched to
a low temperature T1, at which it evolves for a given
waiting time tw. Afterwards, the bath temperature is
suddenly increased to T, with T0 > T > T1, such that
the instantaneous polymer volume V equals its equilibrium
value at T. The sample volume then does not remain
constant for t > tw: it first increases, displays a maximum,
and returns to equilibrium for longer times only. This
simple experiment shows that the macroscopic variables
ðP;V; TÞ (the pressure P being kept constant throughout
the whole procedure) do not completely characterize the
macroscopic state of the system: Its response depends also
on the previous thermal history.
This kind of crossover, or Kovacs memory effect, has

been extensively investigated in glassy and other complex
systems starting from the phenomenological theory pre-
sented by Kovacs himself [2]. It is displayed by polymers,
structural and spin glasses, compacting dense granular
media, kinetically constrained models, classical and quan-
tum spin models, distributions of two-level systems, etc.
[1–17]. The quantity displaying the hump may be different
from the volume: In several of the previous studies, the
energy is the relevant quantity. Interestingly, most of the
observed behavior can be understood within a linear
response theory approach, although the temperature jumps
are usually not small in the experiments [14,16,17].
Whereas the Kovacs effect has previously been reported

for dense media or systems exhibiting complex energy

landscape, we focus here on a low density granular gas
[18,19] where the effect is a priori less expected. Because of
inelastic collisions, a gas of grains is an intrinsically out-of-
equilibrium system, arguably one of the simplest. Without
external driving, its granular temperature—a measure of
velocity fluctuations—monotonically decreases, and the
granular gas may end up in the homogeneous cooling state
(HCS), provided a small enough system is considered to
prevent the development of long-wavelength instabilities
[20–22]. In order to reach a nonequilibrium steady state, one
needs a mechanism that inputs energy into the setup. With
the stochastic thermostat [22,23], additional white noise
forces act over each grain independently. This simple forcing
mechanism is relevant for some two-dimensional experi-
mental configurations with a rough vibrating piston [24] and
also appears as a limiting case of a granular system heated
by elastic collisions [25]. Although these thermostatted or
heated granular fluids have been extensively investigated
[22,23,26–35], no attention has been paid to memory effects.
On the other hand, in compaction processes of dense
granular systems, the relevance of history has been assessed,
both experimentally and theoretically: Its evolution under a
given driving depends not only on the instantaneous value
of its packing fraction but also on the previous driving
protocol [11,36–42].
A valid question in granular gases is the type and number

of variables that completely characterize a macroscopic state
[43]. In the nondriven case, the HCS is the reference state
for developing the hydrodynamics, and it suffices to give
the granular temperature. The same holds for the Gaussian
thermostatted case [27,44,45], which can be mapped onto
the HCS. On the other hand, there is some evidence that
additional variables are necessary for other drivings like the
stochastic thermostat. This uniformly heated granular gas
evolves to a hydrodynamic solution of the Boltzmann
equation [32,33], the so-called β state where β is a parameter
that keeps track of the distance to stationarity (see below).
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Therein, the granular temperature is a monotonic function of
time and, together with the driving intensity, completely
characterizes the β state. One may, thus, naively conclude
that no Kovacs hump should be expected. We show below
that such a surmise is incorrect: Not only is the Kovacs effect
present, but it also changes sign depending on dissipation.
An anomalous Kovacs effect is thereby brought to bear for
strongly dissipative systems.
In short, our motivation is twofold. First, adapting the

celebrated Kovacs protocol, we wish to study if memory
can be encoded in a seemingly plain system with a trivial
energy landscape, which is all kinetic. Second, the goal is to
illustrate for the fact that, for a given driving amplitude, a
single index (temperature) is insufficient to describe the
nonequilibrium behavior of our homogeneous gas. One
must keep track also of the non-Gaussianities of the
velocity fluctuations, through the excess kurtosis. It appears
that these non-Gaussianities are necessary, although not
sufficient in general, for the occurrence of the hump.
The system at hand comprises N inelastic smooth hard

particles of mass m and diameter σ. When particles i and j
collide, momentum is conserved but kinetic energy is not.
The inelasticity is characterized by the coefficient of
normal restitution α (taken independently of the relative
velocity): σ̂ · v0ij ¼ −α σ̂ · vij, in which v0ij is the postcolli-
sional relative velocity, vij the precollisional one, and σ̂
the unit vector joining the centers of particles j and i.
Moreover, grains are submitted to independent white noise
forces, and we assume that the system remains spatially
homogeneous, as backed up by molecular dynamics
simulations [23]. Then, the velocity probability distribution
is a sole function of velocity and time and obeys [22,23,25]

∂tfðv1; tÞ ¼ σd−1
Z

dv2

Z
dσ̂Θðv12 · σ̂Þðv12 · σ̂Þ

× ðα−2b−1σ − 1Þfðv1; tÞfðv2; tÞ þ
ξ2

2
∇2

v1fðv1; tÞ:
(1)

In the Boltzmann-Fokker-Planck equation above, ξ is
the noise strength, d is the dimension of space, Θ is the
Heaviside function, and the operator b−1σ replaces the
velocities v1 and v2 by the precollisional ones.
The granular temperature TðtÞ is defined as the second

moment of the distribution,

n

�
1

2
mv2ðtÞ

�
≡

Z
dv

1

2
mv2fðv; tÞ ¼ d

2
nTðtÞ; (2)

where n ¼ R
dvfðv; tÞ is the particle density. In the theory

developed here, a central role is played by the excess
kurtosis a2 of the velocity fluctuations,

a2 ¼
d

dþ 2

hv4i
hv2i2 − 1; (3)

which vanishes for a Gaussian distribution. The general nth
moment is given by hvni≡ n−1

R
dvvnfðv; tÞ. In the long

time limit, the granular gas reaches a steady state in which
the energy loss due to collisions is balanced on average
by the energy input from the stochastic thermostat. The
stationary values of the granular temperature Ts and excess
kurtosis as2 are [22]

Ts ¼
�

mξ2

ζ0ð1þ 3
16
as2Þ

�
2=3

; ζ0 ¼
2nσd−1ð1 − α2Þπd−1

2ffiffiffiffi
m

p
dΓðd=2Þ ;

(4a)

as2 ¼
16ð1 − αÞð1 − 2α2Þ

73þ 56d − 24dα − 105αþ 30ð1 − αÞα2 : (4b)

The main assumptions in deriving these steady values are
(i) the first Sonine approximation, and (ii) the smallness
of nonlinear terms in the excess kurtosis, which are, thus,
neglected (see, e.g., Ref. [22]). For our purposes, it is
convenient to introduce rescaled order of unity variables,

β ¼
ffiffiffiffi
Ts
T

r
; A2 ¼

a2
as2

; τ ¼ ζ0
ffiffiffiffi
Ts

p
2

t: (5)

Starting from the Boltzmann-Fokker-Planck equation (1),
one can derive the evolution equations for the granular
temperature and the excess kurtosis [22,32,46],

dβ
dτ

¼ 1 − β3 þ 3

16
as2ðA2 − β3Þ; (6a)

β
dA2

dτ
¼ 4½ð1 − β3ÞA2 þ Bð1 − A2Þ�; (6b)

which are nonlinear in β but linear in the excess kurtosis,
consistent with our approach. Obviously, β ¼ 1 and A2 ¼ 1
is a stationary solution. The parameter B is a given function
of the restitution coefficient and of the dimension of space.
We find it from a self-consistency argument: When the
driving is so small that β → 0, a2 evolves to its value aHCS2

for the HCS [28],

aHCS2 ¼ 16ð1 − αÞð1 − 2α2Þ
25þ 2αðα − 1Þ þ 24dþ αð8d − 57Þ : (7)

Thus, A2 ¼ aHCS2 =as2 should be a root of the right-hand side
of Eq. (6b), and B ¼ aHCS2 =ðaHCS2 − as2Þ, that is,

B ¼ 73þ 8dð7 − 3αÞ þ 15α½2αð1 − αÞ − 7�
16ð1 − αÞð3þ 2dþ 2α2Þ : (8)

Let us address the Kovacs-like experiment depicted in
Fig. 1. We would like to investigate the behavior of the
granular temperature T for t > tw. If the pair ðξ; TÞ does not
completely characterize the state of the system and other
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variables should be taken into account, T will not remain
constant but separate from its steady (initial) value and have
either a maximum or a minimum. In molecular systems,
there always appears a maximum in the Kovacs hump. This
does not have to be the case for the granular temperature,
because the granular gas is an intrinsically dissipative,
out-of-equilibrium system.
Defining the shifted time variable τ ¼ ζ0

ffiffiffiffi
Ts

p ðt − twÞ=2,
we have to solve Eqs. (6) with the initial conditions
βðτ ¼ 0Þ ¼ 1 and A2ðτ ¼ 0Þ ¼ aini2 =as2, where aini2 is the
value of the excess kurtosis in the final state of the waiting
time window. Since as2 is small (jas2j ≤ 0.07) across the
whole range of restitution coefficients, while β and A2 are
of the order of unity, we expand both β and A2 in powers of
as2 to obtain an approximate solution of Eqs. (6) [46],

a2ðτÞ − as2 ∼ ðaini2 − as2Þe−4Bτ; (9a)

βðτÞ − 1 ∼
3ðaini2 − as2Þ
16ð4B − 3Þ ðe

−3τ − e−4BτÞ: (9b)

The relaxation of the excess kurtosis to its steady value is
exponential, while that of the rescaled temperature β is the
sum of two exponentials with different relaxation times.
The sign of β − 1 is the same as that of as2 because

(i) 4B > 3 and (ii) ðaini2 − as2Þ and as2 have the same sign
as a function of the restitution coefficient for the arbitrary
“cooling” (ξ0 > ξ > ξ1) protocol in Fig. 1. In fact, Eq. (6b)
predicts that dA2=dτ is initially positive and, thus,
ja2j > jas2j in the whole waiting time window [46]. In
addition, the steady excess kurtosis as2 changes sign at
αc ¼ 1=

ffiffiffi
2

p ≃ 0.707: as2 > 0 for α < αc while as2 < 0 for
α > αc [47]. Thus, for small inelasticity (α > αc),
β − 1 < 0, and β has a minimum, while the granular
temperature T ¼ Ts=β2 has a maximum. This behavior
is completely similar to that of glassy systems, so we may
speak of a normal Kovacs hump in the weakly dissipative
case. On the contrary, for high inelasticity, α < αc,
β − 1 > 0, and β displays a maximum, which corresponds
to a minimum of T; an anomalous Kovacs hump appears.
In Fig. 2, the above theoretical prediction for the Kovacs

hump is tested against numerical computations. The latter are
obtained by means of direct Monte Carlo simulations [48] of
the Boltzmann-Fokker-Planck equation (1). Two values of

FIG. 1 (color online). Top: Sketch of the drive time depend-
ence. Bottom: Ensuing temperature evolution. At t ¼ 0, the gas is
at temperature Tsðξ0Þ, in the nonequilibrium steady state corre-
sponding to a value of the driving ξ0. At t ¼ 0, the drive is
suddenly decreased to ξ1 ≪ ξ0, which is kept for a waiting time
tw. At t ¼ tw, the granular temperature is measured, and the
driving is cranked up to a new value ξ, such that TsðξÞ ¼ TðtwÞ.
The question mark is for the two possible scenarios: a positive
hump with a T maximum (normal behavior, solid line) or a
negative anomalous hump (dot-dashed line). At long times, T
reaches its steady value TsðξÞ.

0.0 0.5 1.0 1.5 2.0
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

1

0.0 0.5 1.0 1.5 2.0
0.00015

0.00010

0.00005

0.00000

1

FIG. 2 (color online). Plot of the Kovacs hump for α ¼ 0.3 (top)
and α ¼ 0.8 (bottom). Monte Carlo simulation curves (points) for
a system of 104 hard disks (d ¼ 2) averaged over 105 (top) and
1.5 × 106 trajectories (bottom). They are compared to the
theoretical curve (9b): The dashed line corresponds to the
predicted values of as2, aini2 , and B, while the solid line is
obtained by taking these three parameters from the simulation
(see, e.g., Fig. 3, from which B is directly measured). The sign of
β − 1 changes from the highly inelastic (top) to the weakly
inelastic (bottom) case. Note that a maximum of β corresponds to
a minimum of T ¼ Ts=β2 (and vice versa) so that the Kovacs
hump is anomalous in the highly inelastic region.
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the restitution coefficient are considered: (i) α ¼ 0.3 < αc
(top, high inelasticity) and (ii) α ¼ 0.8 > αc (bottom, low
inelasticity). For the sake of concreteness, we take the
limiting case (i) ξ1 ¼ 0 (the granular gas freely cools in
the time window 0 < t < tw) and (ii) a long enough tw, so
that aini2 ¼ aHCS2 . This choice of (i) and (ii) is somewhat
immaterial for what follows, because the whole dependence
of the Kovacs hump on ξ1 and tw is encoded in the initial
value of the excess kurtosis difference aini2 − as2, which, in
turn, only changes the scale of the hump but does not alter its
shape [49]. In both cases, the dashed line corresponds to the
theoretical prediction, Eq. (9b), in which the values of as2,
aHCS2 , and B are given by Eqs. (4b), (7), and (8), respectively.
The agreement is reasonable; in particular, the sign of the
hump is correctly predicted, but there are quantitative
discrepancies. The latter stems from errors (of up to 10%)
in the theoretical estimates of a2 and B [32]. The quantitative
agreement can be improved by inserting into Eq. (9b) their
simulation values [46], which yields the solid line. In
particular, B is extracted from Fig. 3, which, furthermore,
corroborates the prediction of Eq. (9a).
In order to understand the physical mechanism respon-

sible for the observed behavior, a central idea is that the
energy dissipation rate d (“cooling rate” in the granular
gas literature) increases with the excess kurtosis [22].
Moreover, the unforced system has stronger non-
Gaussanities than the driven one, jaHCS2 j > jas2j [50],
because the latter is randomized from stochastic “kicks”
due to the forcing. For small inelasticities (α > αc), aHCS2

and as2 are both negative so that aHCS2 < as2 and at t ¼ tw,
the system has the steady value of the granular temperature
but a dissipation rate smaller than that at stationarity ds,
d=ds < 1. Therefore, the granular temperature T first
increases and passes through a maximum (β minimum)
before returning to its steady value. For high inelasticities
(α < αc), aHCS2 and as2 are both positive, so that a

HCS
2 > as2.

Then, the system is at t ¼ tw transiently in a state with
d=ds > 1, so that T initially decreases and passes through a
minimum (β maximum), see Table I.
The existence of the Kovacs hump, as given by Eq. (9b),

is a crisp proof that the granular temperature does not
suffice for characterizing the state of uniformly heated
granular gases. Moreover, it links granular gases and other
complex nonequilibrium systems. Nevertheless, this cross-
over effect is not a direct extension of the similar phe-
nomenon observed in the latter: Here we are dealing with
an intrinsically out-of-equilibrium system relaxing to a
far-from-equilibrium steady state. Furthermore, for the
protocol considered, the intrinsically dissipative dynamics
makes the Kovacs hump anomalous for high inelasticity.
The hump is normal for the weakly dissipative case and
disappears in the elastic limit α → 1, in which both aHCS2

and as2 vanish. If we considered a “heating” protocol, that
is, ξ0 < ξ < ξ1, Eq. (6b) would give that dA2=dτ is initially
negative: ja2j < jas2j in the waiting time window. Then,
aini2 − as2 would have the sign opposite to that of a

s
2, and the

sign of the hump would be reversed as compared to the
behavior shown in Table I. Here again, the normal behavior
appears for low inelasticity, since in molecular systems,
the energy displays a minimum for such “heating”
protocols [16].
Provided that the first Sonine approximation to the

Boltzmann equation remains valid, some of our main
results are expected to hold for almost any uniformly
heated granular gas: (i) the proportionality of the hump to
the difference of excess kurtosis ðaini2 − as2Þ, (ii) the expo-
nential relaxation of the excess kurtosis, and (iii) the
two-exponential structure of the granular temperature
relaxation. A singular case would be that of the
Gaussian-thermostatted system, which can be mapped onto
the HCS; in particular, its excess kurtosis equals aHCS2 and
no hump would be observed. This is consistent, since the
granular temperature completely specifies the HCS.
Moreover, this clearly shows that the generic non-
Maxwellian (a2 ≠ 0) character of the velocity distribution
function of granular gases is not a sufficient condition for
the existence of the crossover effect.
The formalism developed here is, thus, quite general and

may open the door to further general results in nonequili-
brium statistical physics. In particular, the anomalous
Kovacs hump for high inelasticity deserves further inves-
tigation. Linear response results [14,16,17] closely related
to the fluctuation-dissipation theorem assure that the
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FIG. 3 (color online). Decay of the excess kurtosis from its
initial to its steady state value as2. Plotted is the simulation curve
obtained by the direct Monte Carlo scheme for α ¼ 0.3. In the
inset, the same decay but on a logarithmic scale. The linear slope
is directly related to the parameter B, see Eq. (9a).

TABLE I. Summary of the Kovacs hump phenomenology and
the underlying physical mechanism for the driving protocol in
Fig. 1, with ξ1 ≪ ξ0.

Inelasticity α aHCS2 − as2 d=ds T hump (Kovacs)

“Low” > αc < 0 < 1 Maximum (normal)
“High” < αc > 0 > 1 Minimum (anomalous)
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Kovacs hump is normal in molecular systems. In this
regard, it would be interesting to analyze the possible
connection between this anomaly and the validity of
fluctuation-dissipation-like relations in dissipative systems
[29,51–54].
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