REDUCED BASIS METHOD FOR THE SMAGORINSKY MODEL

T. Chacón Rebollo, <u>E. Delgado -Ávila</u>, M. Gómez Mármol

(chacon@us.es, edelgado1@us.es, macarena@us.es)

Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla

INTRODUCTION

We present a reduced basis Smagorinsky model. This model includes a non-linear eddy diffusion term that we have to treat in order to solve efficiently our reduced basis model. We approximate this non-linear term using the Empirical Interpolation Method, in order to obtain a linearised decomposition of the reduced basis Smagorinsky model. The reduced basis Smagorinsky model is decoupled in a Online/Offline procedure. First, in the Offline stage, we construct hierarchical bases in each iteration of the Greedy algorithm, by selecting the snapshots which have the maximum *a posteriori* error estimation value. To assure the Brezzi inf-sup condition on our reduced basis space, we have to define a *supremizer* operator on the pressure solution, and enrich the reduced velocity space. Then, in the Online stage, we are able to compute a speedup solution of our problem, with a good accuracy.

(1)

(2)

THE REDUCED BASIS MODEL

We define the steady reduced basis Smagorinsky model as follows:

$$\begin{cases} \mathbf{w}_{N} \cdot \nabla \mathbf{w}_{N} - \frac{1}{\mu} \Delta \mathbf{w}_{N} + \nabla p_{N} - \nabla \cdot (\nu_{T}(\mathbf{w}_{N}) \nabla \mathbf{w}_{N}) = \mathbf{f} & \text{in } \Omega \\ \nabla \cdot \mathbf{w}_{N} = 0 & \text{in } \Omega \\ \mathbf{w}_{N} = \mathbf{g}_{D} & \text{on } \Gamma_{D_{in}} \\ \mathbf{w}_{N} = 0 & \text{on } \Gamma_{D_{w}} \\ -p_{N}\mathbf{n} + \left(\frac{1}{\mu} + \nu_{T}(\mathbf{w}_{N})\right) \frac{\partial \mathbf{w}_{N}}{\partial \mathbf{n}} = 0 & \text{on } \Gamma_{out} \end{cases}$$

EMPRICAL INTERPOLATION METHOD

We denote $g(\mu) := g(x; \mathbf{w}_h(\mu)) = |\nabla \mathbf{w}_h(\mu)|(x)$. The finality of using the EIM is decoupling the μ -dependence of the spatial dependence of the function $g(\mu)$, i.e.,

$$g(\mu) \approx \sum_{j=1}^{M} \sigma_j(\mu) q_j(x)$$

where we are denoting $\nu_T(\mathbf{w}_N)_{|_K} = (C_S h_K)^2 |\nabla \mathbf{w}_{N|_K}(x)|$. Defining the reduced space $X_N = Y_N \times M_N$, where Y_N is the reduced velocity space and M_N the reduced pressure space, we obtain the reduced variational problem

> Given $\mu \in \mathcal{D}$, find $U_N(\mu) \in X_N$ such that $A(U_N(\mu), V_N; \mu) = F(V_N; \mu) \quad \forall V_N \in X_N$

We define a reduced EIM-space $W_M = \text{span}\{q_1, \ldots, q_M\}$ by a Greedy procedure. We also define a set of interpolation points $T_M = \{x_1, \ldots, x_M\}$ that allows us, for each $\mu \in \mathcal{D}$, solve the linear system

j=1

$$\sum_{j=1}^{M} \sigma_j(\mu) q_j(x_i) = g(x_i; \mathbf{w}_h(\mu)) \quad i = 1, \dots, M$$
(4)

Thanks to the Empirical Interpolation Method, we are able to approximate the nonlinear Smagorinsky term in the following form

$$\sum_{K \in T} \int_{K} (C_{S}h_{K})^{2} |\nabla \mathbf{w}| \nabla \mathbf{w} : \nabla \mathbf{v} \, d\Omega \approx \sum_{j=1}^{M} \sigma_{j}(\mu) \sum_{K \in T} \int_{K} (C_{S}h_{K})^{2} q_{j} \nabla \mathbf{w} : \nabla \mathbf{v} \, d\Omega$$

GREEDY ALGORITHM

For the startup of the Greedy algorithm, we choose an arbitrary parameter value $\mu_1 \in \mathcal{D}$, and we compute the corresponding snapshot $(\mathbf{u}(\mu_1), p(\mu_1))$. We choose the (k+1)-th value of $\mu \in \overline{\mathcal{D}}$ as

$$\mu_{k+1} = \arg\max_{\mu\in\overline{\mathcal{D}}}\Delta_k(\mu), \quad k = 1, \dots, N.$$

where $\Delta_k(\mu)$ is the *a posteriori* error estimator, which bounds the error between the FE solution and the RB solution.

The reduced velocity-pressure spaces are defined by

 $M_N = \operatorname{span}\{\xi_k^p := p(\mu_k), \quad k = 1, \dots, N\}$

By denoting as $\partial_1 A(U_h, V_h; \mu)(Z_h)$ the directional derivative with respect the first variable, in the direction $Z_h \in X_h$, we define the positive constants ρ_T and β_N for the *a posteriori* error bound as

 $|\partial_1 A(U_h^1, V_h; \mu)(Z_h) - \partial_1 A(U_h^2, V_h; \mu)(Z_h)| \le \rho_T \|U_h^1 - U_h^2\|_X \|V_h\|_X \|Z_h\|_X$

$$\beta_N(\mu) = \inf_{Z_h \in X_h} \sup_{V_h \in X_h} \frac{\partial_1 A(U_N, V_h; \mu)(Z_h)}{\|Z_h\|_X \|V_h\|_X}$$

The *a posteriori* error bound estimator is defined as

$$Y_N = \operatorname{span}\{\zeta_k^{\mathbf{v}} := \mathbf{u}(\mu_k), \ T_p^{\mu}\xi_k^{p}, \quad k = 1, \dots, N\}$$

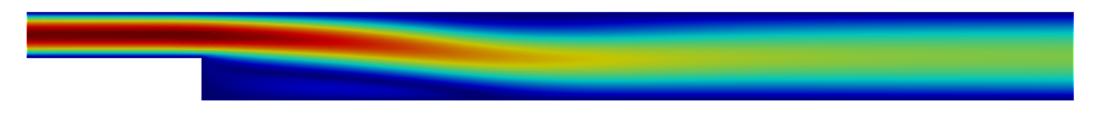
where $T_p^{\mu} : M_h \to Y_h$ is the inner pressure *supremizer* operator defined as
 $\left(T_p^{\mu}, \mathbf{w}_h\right) = -\int_{\Omega} (\nabla \cdot \mathbf{w}_h) q \, d\Omega, \quad \forall \mathbf{w} \in Y_h$

$$\Delta_N(\mu) = \frac{\beta_N(\mu)}{2\rho_T} \left[1 - \sqrt{1 - \tau_N(\mu)} \right]$$

(5) where
$$\tau_N(\mu) = \frac{4\epsilon_N(\mu)\rho_T}{\beta_N(\mu)^2}$$
, and $\epsilon_N(\mu)$ is the dual norm of the residual

NUMERICAL RESULTS

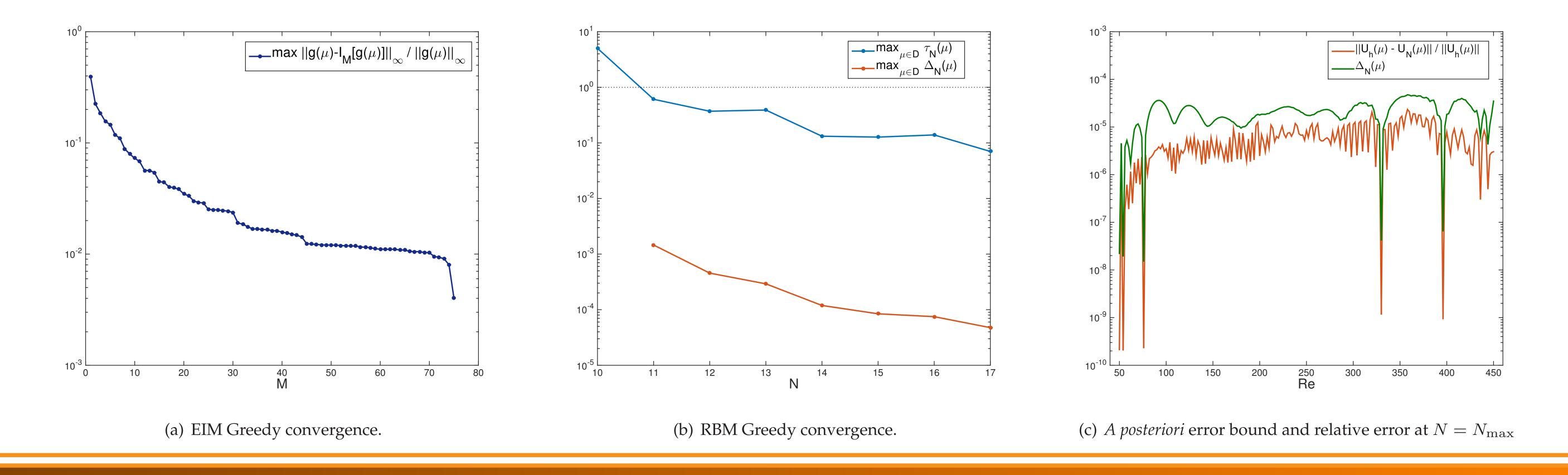
We solve the Smagorinsky RBM in a backward-facing step. We select $M_{\text{max}} = 73$ basis for EIM, and $N_{\text{max}} = 17$ basis for RBM.



Data	$\mu = 56$	$\mu = 132$	$\mu = 236$	$\mu = 320$
T_{FE}	152.7s	508.7s	991.9s	1929.1s
T_{online}	1.37s	1.55s	1.60s	1.60s
speedup	111	326	626	1204
$\ \mathbf{u}_h - \mathbf{u}_N\ _1 / \ \mathbf{u}_h\ _1$	$1.67 \cdot 10^{-7}$	$2.30 \cdot 10^{-6}$	$2.76 \cdot 10^{-6}$	$5.60 \cdot 10^{-6}$
$ p_h - p_N _1 / p_h _1$	$7.92 \cdot 10^{-8}$	$8.57 \cdot 10^{-7}$	$7.13 \cdot 10^{-6}$	$1.98 \cdot 10^{-5}$

Figure 1: RB solution for $\mu = 320$

Table 1: Computational time for FE and RB solutions, with the speedup and the error.



REFERENCES

- M. Barrault, Y. Maday, N.C. Nguyen, A.T. Patera, An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations C.R. Acad. Sci. Paris Ser. I Math., 339:667-672 (2004)
- [2] S. Deparis, Reduced basis error bound computation of parameter-dependent Navier-Stokes equation by the natural norm approach. SIAM J. Numer. Anal. **46**(4): 2039-2067 (2008)

[3] F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012), no. 3-4, 251–265, 65Y15.
[4] A. Manzoni, An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier-Stokes flows. ESAIM Mathematical Modelling and Numerical Analysis 48(4):1199-1226 (2014)