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Activation volumes are reported for peroxodisulphate oxidation of

the four complexes of the Fe2+-2,2'-bipyridyl–cyanide sequence, viz.

�Fe(bipy)3�2+, �Fe(bipy)2(CN)2�, �Fe(bipy)(CN)4�2– and �Fe(CN)6�4–

(abbr. bipy for 2,2'-bipyridyl), in aqueous solutions of a selection of

nitrate, sulphate, and perchlorate salts of Li+, Na+, K+, and Mg2+

containing up to 6 mol dm–3 of added salt. The dependences of acti-

vation volumes on the nature and concentration of the added salt,

and on the nature of the iron(II) complex, are established and dis-

cussed. Ancillary information relevant to hydration of the sub-

strate complexes in the initial state for peroxodisulphate oxidation

has been obtained from solvatochromism (halochromism) of

�Fe(bipy)2(CN)2� and of �Fe(bipy)(CN)4�2–, and from the solubility

of �Fe(bipy)2(CN)2�, in some of the electrolyte solutions used in the

high pressure kinetic studies.
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INTRODUCTION

Effects of added salts on rate constants for reactions of inorganic com-

plexes and ions have been studied intensively for several decades.1,2 How-

ever there has been much less activity in determining salt effects on

enthalpies and entropies of activation,2 and there have been almost no stud-

ies of pressure effects to determine the effects of added electrolytes on vol-

umes of activation for such reactions. Indeed there have been rather few ac-

tivation volumes reported for inorganic redox reactions.3 Following the

determination of activation volumes for peroxodisulphate oxidations of sev-

eral cobalt(III), iron(II), and nickel(II) complexes,4,5 we now report the re-

sults of a study of the effects of several nitrates and perchlorates on activa-

tion volumes for peroxodisulphate oxidation of a series of low-spin (and thus

substitution-inert) iron(II) complexes. This series comprises the four binary

and ternary complexes of the Fe2+–2,2'-bipyridyl–cyanide sequence, viz.

�Fe(bipy)3�2+, �Fe(bipy)2(CN)2�, �Fe(bipy)(CN)4�2–, and �Fe(CN)6�4– (bipy: 2,2'-

bipyridyl). Rate constants determined in the course of the present investiga-

tion complement results obtained earlier on salt effects on reactivity for

peroxodisulphate oxidations of complexes in this series.6

EXPERIMENTAL

Materials

The iron(II) complexes �Fe(bipy)3�(ClO4)2
7 and �Fe(bipy)2(CN)2� � 3H2O,8 and the

salt K2�Fe(bipy)(CN)4� � 3H2O
8 were prepared by published methods. LiNO3 � H2O and

Li2SO4 � H2O were obtained from Merck, NaNO3 from Fisher, LiClO4, NaClO4 and
Na2S2O8 from Aldrich, and KNO3 and Mg(NO3)2 � 6H2O from May and Baker. All
these commercial materials were used as received. Solutions were prepared using
deionised water. Their pH was measured with a CD 620 pH meter – values ranged
from 5.8 (LiNO3) to 7.0 (KNO3, Li2SO4).

Methods

All kinetic measurements were determined using the apparatus described previ-
ously;9 conditions are detailed in the Tables. Activation volumes were evaluated from the
dependence ln(kp/k0) = f(P); their uncertainties are �1.0 cm3 mol–1. Rate constants k0 were
measured at a pressure of 25 bar, an »atmospheric« pressure slightly above 1 bar being
necessary to prevent leakage from the high pressure cell. EDTA was added to reaction
mixtures in order to avoid any catalysis of the reaction by any traces of metal ions.

RESULTS

Rate constants for peroxodisulphate oxidation of the iron complexes are

reported in Tables I to IV. Activation volumes derived from these rate con-
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stants are summarised and compared in Table V. It is difficult to compare

the effects of the various electrolytes directly, since their concentrations are

widely different – we chose to use the highest practical concentration in

each case to maximise their effects.

Wavenumbers for the lowest energy charge-transfer band of the strongly

solvatochromic ternary iron-diimine-cyanide complexes in a selection of

aqueous electrolyte solutions are listed in Table VI. Solubilities of the un-

charged complex in a similar range of media are reported in Table VII.

DISCUSSION

The negative values found for the activation volumes for the peroxodi-

sulphate oxidations of the (2+), uncharged, and (2–) complexes are in agree-

ment with the established bimolecular mechanism for such oxidations, with

the activated complexes having an intrinsically smaller volume than the re-

spective reactants. However the large differences between these values, and

between them and the expected value of approximately 10 cm3 mol–1 for a

simple bimolecular reaction,3 indicates significant contributions from solva-

tion changes to these observed activation volumes. For the peroxodisulphate

oxidations of the (4–) complex hexacyanoferrate(II) the observed activation

volumes of zero, within experimental uncertainty, for all added electrolytes

indicate that the intrinsic contribution is compensated by an equal and op-

posite volume increase due to the release of electrostricted solvating water
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TABLE V

Summary of activation volumes for peroxodisulphate oxidation of iron(II)

complexes, in water and in aqueous salt solutions, at 298.2 K

Added

electrolyte

�salt� �V‡ / cm3 mol–1

mol dm–3 �Fe(bipy)3�2+ �Fe(bipy)2(CN)2� �Fe(bipy)(CN)4�2– �Fe(CN)6�4–

none –21.9 –7.7 –3.7 0

none –20.8 –8.3, –8.5 0

LiNO3 6.0 –14.9 –12.5, –12.0 –5.0 0

LiClO4 4.0 –12.9 –4.2 0

Li2SO4 2.5 –16.3 –1.7 0

NaNO3 6.0 –15.5 0 0

NaClO4 6.0 –7.9 –1.7 0

KNO3 2.5 –8.7 –1.8

Mg(NO3)2 3.0 –16.8 –9.3 –3.9



to bulk solvent on transition state formation.4 We have discussed these in-

trinsic and solvation contributions earlier,10 concluding that the size and

specific geometry of the diimine ligands play a more important role than

simple electrostriction effects. High pressure cyclic voltammetric studies11,12

of electron transfer for this iron-diimine-cyanide series of complexes12,13 has

given valuable information about volume changes on going from iron(II) to

iron(III), and about electrolyte effects thereon. However it should be borne
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TABLE VII

Solubilities of �Fe(bipy)2(CN)2� in concentrated electrolyte solutions

Electrolyte 10
4

Solubility / mol dm
–3

water 1.82 a

2M LiNO3 4.07

3M LiNO3 7.30

4M LiNO3 10.2

4M LiClO4 6.30

4M NaClO4 3.19

2.5M KNO3 1.38

3M Mg(NO3)2 1.97

a
From Ref. 25.

TABLE VI

Wavenumbers of maximum absorption (�max) for the lowest energy charge-transfer

band of �Fe(bipy)2(CN)2� and �Fe(bipy)(CN)4�2– in aqueous electrolyte solutions

Electrolyte �
max

/ cm
–1

�Fe(bipy)
2
(CN)

2
� �Fe(bipy)(CN)

4
�
2–

water 19194 20661

2M LiCl 19220 20877

4M LiCl 19268 21053

6M LiCl 19320 21218

8M LiCl 19440 21340

9M LiCl 19460

10M LiCl 21501

4M LiClO4 19421 21218

4M NaClO4 19301 20921

6M NaClO4 19339 21053

4M NaNO3 19238 20921

4M Li2SO4 19260 20960



in mind that precise values and interpretation are, for the three charged

members of the series, at the mercy of the need for a single ion assumption.

Unfortunately this solvation information is of limited value in discussing our

activation volumes, since there is no analogous information on peroxodi-

sulphate reduction. Even were such information available there would still

be the difficulty of estimating a contribution from solvating water extruded

from the space between the reactants as they approach to the proximity re-

quired for electron transfer to take place.

There is a marked trend for the activation volumes for peroxodisulphate

oxidation of the iron(II)–diimine–cyanide series of complexes in water from

large negative values for hydrophobic �Fe(bipy)3�2+ through intermediate

values for ternary complexes to zero for �Fe(CN)6�4–. This trend may be con-

nected with the fact that if electron transfer takes place from the central

iron atom the peroxodisulphate anion will be in the limited space between

bipyridyl ligands,14 whereas in oxidation of hexacyanoferrate approach to the

iron atom is much less restricted – with intermediate situations for the ter-

nary complexes. In concentrated electrolyte solutions there will be ion-pair-

ing between constituent ions of the added electrolyte and charged reactants.

Electrolyte effects on activation volumes can be related to the varying hydro-

phobicity of the iron complexes. The structural effects of hydrophobic hydra-

tion could be reduced by the proximity of ions from the added electrolyte, es-

pecially for the hydrophobic �Fe(bipy)3�2+ cation. The change in activation

volume on going from hydrophobic �Fe(bipy)3�2+ to hydrophilic �Fe(CN)6�4– is

smaller in the concentrated electrolyte solutions than in water (Tables I to

V), with �V‡ most affected by the nature of the added electrolyte for the

(2+)/(2–) reaction. There is a striking contrast between our activation vol-

ume pattern of electrolyte effects decreasing from �Fe(bipy)3�2+ to

�Fe(CN)6�4– and the high pressure cyclic voltammetry results13 which show

the biggest effects for �Fe(CN)6�4–/3–, the smallest for �Fe(bipy)3�2+/3+. Clearly

the peroxodisulphate is playing a major role in our redox reactions.

The markedly negative �V‡ values for the �Fe(bipy)3�2+/S2O8
2– reaction

presumably arise from the resultant of the decrease of intrinsic volume and

in electrostriction on going from the initial to the transition state – in this

reaction there is charge cancellation on forming the transition state. The

hydration of the constituent ions of the electrolytes introduced into the sys-

tem causes a decrease in water activity15 and thus could lead to solvation

changes, particularly of the initial state. Gibbs solvation energies are in the

order �G(Li+) > �G(Na+) > �G(K+);16 the extent of hydration depends on the

charge/radius ratio. Solvation of S2O8
2– is probably reduced in the presence

of added electrolyte, to an extent depending on its nature and concentration.

The decreasingly negative �V‡ on going from water to concentrated electro-

lyte solution presumably arises from the fact that in the presence of added

electrolyte the S2O8
2– will need to lose less electrostricted water on entering
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the transition state than when the reaction takes place in water alone. This

is probably the reason why the (2+)/(2–) reaction has a rather smaller nega-

tive �V‡ in the presence of added electrolyte than in its absence. In contrast,

addition of lithium salts to the (0)/(2–) reaction leads to increasingly nega-

tive �V‡ values. Table II shows that even for the uncharged complex

�Fe(bipy)2(CN)2� �V‡ values depend significantly on the nature and concen-

tration of the added electrolyte, particularly on its cation. The study of elec-

trolyte effects on band energies of electronic transitions could help in ration-

alising the specific electrolyte effects on reactivity, with solvatochromic

shifts (so-called halochromism),17 indicating the possibility of the existence

of specific interactions in the vicinity of the solute. For symmetric complexes

such as �Fe(bipy)3�2+ or �Fe(CN)6�4– it appears that the electrolyte affects the

ground and excited states to a similar extent, so that the positions of the

charge-transfer absorption bands remain essentially constant – a similar

observation has been made for the symmetrical �Cr(NCS)6�3– anion in con-

centrated electrolyte solutions.18 Ternary complexes such as �Fe(bipy)2(CN)2�

and �Fe(bipy)(CN)4�2– do show marked solvatochromic behaviour19 and can

be used as probes in our present investigation. The wavenumbers of maxi-

mum absorption for their charge-transfer bands are given in Table VI. The

first and second bands for �Fe(bipy)(CN)4�2–, at around 20660 and 27500 cm–1

respectively, may be assigned to electron excitation from the two highest oc-

cupied �-m.o.s of coordinated 2,2'-bipyridyl to a vacant antibonding m.o. in-

volving an eg* orbital mainly localised on the central iron atom. The third

band (� 	 33500 cm–1) may be assigned to �-�* excitation in the 2,2'-bipyridyl

ligands; it corresponds to the first band for free 2,2'-bipyridyl. The spectrum

of �Fe(bipy)2(CN)2� is similar, but the first band is split into a peak at 19194

cm–1 and a shoulder at 25590 cm–1. This split (Davydov split) is caused by

delocalization of excitation �-HOMO-eg* on both bipy ligands; there is also a

hint of a Davydov split in the second band.20 Table VI shows that the maxi-

mum of the first absorption band depends significantly on the nature and

concentration of the electrolyte, especially of its cation. When the complex is

dissolved in the electrolyte solution, the lone pair of the terminal nitrogen of

the cyanide ligand can interact with the cation of the electrolyte. The elec-

tronic shift resulting from this interaction affects the �-bonding between the

iron and the cyanide, but weakens that between iron and bipy. The hypso-

chromic shift produced in the electrolyte solution for the cyano-complexes

(Table VI) can be explained as a consequence of electrolyte cation interac-

tion at the cyanide nitrogen. The positive charge introduced by the cation to

the cyanide nitrogen atom would be expected to increase the energy required

for the excitation of electrons into participation with the �-electron system

of the aromatic ligands. Similar solvatochromic behaviour was observed for

�Fe(phen)2(CN)2� as a consequence of protonation at the cyanide nitrogen at-

oms both in water21 and in organic solvents;22 complexation by Hg2+ at the
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cyanide-nitrogen has an analogous effect.23 The shift of the band position in-

creases for 4M electrolytes NaClO4 < LiClO4 both for the dicyano and the

tetracyano complexes (Table VI). It corresponds to solubility trends for

�Fe(bipy)2(CN)2�, where soly.(NaClO4) << soly.(LiClO4) (Table VII). These ob-

servations indicate stronger interaction of Li+ than of Na+ with the lone pair

of the terminal nitrogen of the coordinated cyanide. These cations are proba-

bly partly or fully desolvated. Besides the S2O8
2– (positive) contribution to

�V‡, the negative contribution to �V‡ values in LiClO4 (4M) and LiNO3 (6M)

(Table II) presumably arises from the fact that the �Fe(bipy)2(CN)2�,Li+ asso-

ciated species needs to lose Li+ (or rather partly hydrated Li+) on entering

the transition state. This is probably why in the presence of lithium salts

the (0)/(2–) reaction has a higher �V‡ than the corresponding reaction in water.

The assumption that the function of the added electrolyte's cation is simply to

lower the coulombic repulsion in the transition state for (2–)/(2–) and (4–)/(2–)

reactions cannot be the explanation since the same effect should be observed

in the (0)/(2–) reaction of the uncharged complex, for which the Debye-Hückel

and electrostatic work should in principle be non-existent. According to

Swaddle �V‡ is determined in large part by solvent compressibility. Solvent

in the solvation shell of ions is compressed by electrostriction and thus less

compressible than bulk solvent. There is thus local loss of solvent compressi-

bility near the solute.24 The effect of pressure on reaction rate constants de-

creases with increasing number of cyanide ligands. For the (4–)/(2–) reaction,

i.e. oxidation of �Fe(CN)6�4–, no significant effect of pressure on rate constant

was detected, either in water or in concentratred electrolyte solutions. De-

creasingly negative �V‡ values are observed in the series of cyano-complexes

as the number of cyanide ligands increases, with concomitant increase in lo-

cal loss of solvent compressibility adjacent to the iron complex. The results

show that the �V‡ values depend significantly on the nature and concentra-

tion of the electrolyte, particularly on the cation involved.

To digress briefly from kinetics and activation volumes, the solubilities

reported in Table VII considerably extend knowledge of salt effects on the

solubility of �Fe(bipy)2(CN)2�.* Earlier work25 established the pattern of ef-

fects of several alkali metal and tetraalkylammonium bromides and chlo-

rides on the solubility of this uncharged complex; the Table VII results are

complementary in that they provide information on the effects of salts of
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* It is not worthwhile at the moment to extend this study to the other complexes in the

iron(II)–2,2'-bipyridyl–cyanide series since the other three members are charged – there is cur-

rently no satisfactory method of dissecting salt solubilities into single ion contributions. More-

over such salts of �Fe(bipy)3�
2+

as the perchlorate, nitroprusside, and hexachlororhenate are too

sparingly soluble, the sulphate, nitrate, and halides too freely soluble, for convenient measurement

and satisfactory thermodynamic analysis, respectively; alkali metal salts of �Fe(bipy)(CN)4�
2–

are also too freely soluble.



two oxoanions. However it is not a straightforward matter to compare the

two sets of results, since the Table VII values refer to much higher electro-

lyte concentrations than the earlier work. A qualitative comparison is pro-

vided in Figure 1, where the bold symbols and lines indicate experimental

results and ranges, the thin lines are simply to aid comparisons. The

oxoanions clearly have a markedly different effect from the halides, just as

the alkali metal cations have a markedly different effect from the organic

cations. Both for anions and cations increasing hydrophilicity leads to a gen-

eral anti-clockwise rotation. The earlier report discussed the solubility pat-

tern in terms of Setchenow coefficients,26 permitting comparisons with other

inorganic and several organic solutes.27 We do not feel that such a treatment

can be justified here, as it is exceedingly unlikely that the linear depend-

ence of logarithms of solubilities on concentration assumed in the derivation

of Setchenow coefficients will be obeyed at such high electrolyte concentra-

tions as those of Table VII – indeed the curvature of the tetraalkyl-

ammonium bromide plots in Figure 1 provides due warning.

618 J. BENKO ET AL.

Figure 1. Dependence of logarithms of ratios of Fe(bipy)2(CN)2 solubility in water to

solubilities in salt solutions, log10(S0/S), on salt concentration. The thick lines in the

region of low salt concentration in each case represent the best smooth curve

through a number of points (see Ref. 25).



To return to kinetics, we summarise our conclusions regarding the ob-

served patterns of electrolyte effects on �V‡ values, suggesting that there

are three contributing factors:

– High concentrations of added electrolyte lead to relative desolvation of

reactants and transition states.

– Interaction of cyanide ligands with partially or wholly desolvated cat-

ions from the added electrolyte.

– Differences in solvent compressibility between bulk and solvating water.

If information on electrostriction effects on solvation changes consequent

on reduction of peroxodisulphate become available, then it may prove possi-

ble to combine this with the data on the series of iron(II)/(III)-diimine-cyanide

complexes and our results on activation volumes to provide a detailed and

revealing picture of intrinsic and solvation contributions to this series of re-

dox reactions.
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Aktivacijski volumeni u reakciji oksidacije niskospinskog `eljeza(II)
s peroksodisulfatom u vodenim otopinama soli

Ján Benko, John Burgess, Pilar López Cornejo i Olga Vollárová

Dani su aktivacijski volumeni za oksidaciju peroksodisulfatom za ~etiri kompleksa

Fe
2+

-2,2'-bipiridincianidnog niza tj. �Fe(bpy)3�
2+

, �Fe(bpy)2(CN)2�, �Fe(bpy)(CN)4�
2–

, i

�Fe(CN)6�
4–

, u vodenim otopinama nitrata, sulfata i perklorata Li
+
, Na

+
, K

+
odnosno

Mg
2+

, koje su sadr`avale sve do 6 mol dm
–3

dodane soli. Ustanovljena je i prodis-

kutirana ovisnost aktivacijskih volumena o prirodi i koncentraciji dodane soli kao i o

prirodi kompleksa `eljeza(II). Dodatne informacije relevantne za hidrataciju kom-

pleksnih substrata na po~etku oksidacije peroksodisulfatom dobivene su iz solvatokro-

mije (halokromije) �Fe(bpy)2(CN)2� i �Fe(bpy)(CN)4�
2–

i iz topljivosti �Fe(bpy)2(CN)2� u

nekima od elektrolitnih otopina koje su upotrijebljene u kineti~kim studijama pod

visokim tlakom.
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