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Summary. Melatonin is an indoleamine with a wide
spectrum of biological activities other than transmitting
photoperiod information, including antioxidant,
oncostatic, anti-aging and immunomodulatory
properties. Although melatonin is synthesized mainly in
the pineal gland, other tissues have the same capacity. In
the present study, we examined whether two key
enzymes in melatonin biosynthesis, arylalkylamine
Nacetyltransferase (AANAT) and hydroxyindole-O-
methyltransferase (HIOMT) and its receptor MT, are
expressed in the two endocrine thyroid cells of the rat,
follicular cells and C cells. Reverse transcriptase
polymerase chain reaction analyses demonstrated that
both AANAT and HIOMT mRNAs are expressed in the
rat thyroid C-cells, and MT, expression has been
detected in C cells and follicular cells. Immuno-
fluorescence revealed that AANAT protein is localized
in C-cell cytoplasm, and MT, protein in both cell
populations. These findings demonstrate that the rat
thyroid expresses AANAT, HIOMT, and its receptor
MT,, showing that C cells are the main melatonin-
synthesizing sites in the thyroid. This local C-cell-
secreted melatonin may protect follicular cells from the
oxidative stress inherent to the thyroid gland, and could
also have paracrine and autocrine functions.
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Introduction

Melatonin, an important indoleamine secreted by the
pineal gland during the night, is mainly implicated in
circadian rhythm control of mammalian and other
vertebrates. Besides playing an important role as a
transmitter of photoperiodic information, this
indoleamine has antioxidant (Martinez-Cruz et al., 2002;
Reiter et al., 2005, 2009; Mogulkoc et al., 2006), anti-
aging (Reiter et al., 2002; Tajes et al., 2009)
antiproliferative, and, potentially, anticancerogenic
activities, including suppressing effects on secretory and
growth processes of the thyroid gland (Lewinski and
Karbownik, 2002). Melatonin production is catalyzed by
two well-characterized enzymatic reactions from
tryptophan. First, serotonin is converted to N-
acetylserotonin (NAS) by the enzyme arylalkylamine N-
acetyltransferase (AANAT) (Voisin et al., 1984). NAS is
subsequently methylated by hydroxyindole-O-
methyltransferase (HIOMT) to form melatonin (Axelrod
and Weissbach, 1960). Although the pineal gland is
considered the main site of melatonin synthesis, many
extrapineal tissues have been identified as melatonin
synthesizers, such as retina (Mennenga et al., 1991;
Tuvone et al., 2002; Tosini et al., 2007), Harderian gland
(Djeridane et al., 1998), gut (Raikhlin et al., 1975;
Konturek et al., 2007), ovary (Itoh et al., 1997, 1999;
Nakamura et al., 2003), immune system (Guerrero and
Reiter, 2002; Carrillo-Vico et al., 2004, 2005; Naranjo et
al., 2007), skin (Slominski et al., 2002; Fischer et al.,
2008), and testes (Tijmes et al., 1996). Moreover,
melatonin has been found in the rat thyroid gland
(Kvetnoy, 1999).

Considering the great production of melatonin in
many organs and its wide spectrum of biological
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activities, one can hypothesise that extrapineal melatonin
may play key autocrine and paracrine roles for the local
coordination of intercellular relationships. In fact, many
neighbouring cells in different organs have melatonin
membrane receptors (Barrett et al., 1994; Sallinen et al.,
2005).

It is well known that melatonin has inhibitory effects
on the pituitary gland. This substance inhibits TSH
expression and accumulation in rat pars tuberalis-TSH
cells (Aizawa et al., 2007), regulating diurnal changes in
TSH concentration. Many effects of melatonin on the
thyroid gland have also been described. In rodents, high
doses of melatonin inhibit basal and TSH-stimulated
mitotic activity of thyroid follicular cells in vivo and in
primary culture (Lewinski and Sewerynek, 1986).
Besides, melatonin has a direct inhibitory effect on T
secretion and, also, depresses the response of the thyroi
to TSH (Wright et al., 1997, 2000). Furthermore,
melatonin has a protective role against oxidative stress in
the rat thyroid gland (Karbownik and Lewinski, 2003;
Makay et al., 2009; Rao and Chhunchha, 2010).

The thyroid gland has two different endocrine cell
populations, namely, follicular cells, the most abundant
cells in the gland and responsible for secreting T, and
T,, and C cells or parafollicular cells, which produce
calcitonin. Apart from their role in calcium homeostasis,
C cells are probably also involved in the intrathyroidal
regulation of follicular cells. This hypothesis is
supported by different features, such as their
characteristic ‘parafollicular’ position, their
predominance in the central region of the thyroid lobe -
the so-called C-cell region (McMillan et al., 1985) - the
expression of thyrotropin receptors by C cells (Morillo-
Bernal et al. 2009), the parallel evolution of C cells and
follicular cells in different thyroid status (Martin-Lacave
et al., 2009) and their implication in the secretion of
many different regulatory peptides (Scopsi et al., 1990;
Ahrén, 1991; Sawicki, 1995), some of them with an
inhibiting action on thyroid hormone secretion, whereas
others act as local stimulators of thyroid hormone
synthesis. In fact, the presence of certain receptors for
some of these regulatory peptides has been demonstrated
in follicular cells, receptors that could be implicated in
local fine-tuning of follicular-cell activity (De Miguel et
al., 2005; Morillo-Bernal et al. 2011). Although
melatonin has been detected previously in thyroid C-
cells by immunohistochemistry (Kvetnoy, 1999),
nothing is known about melatonin-synthesizing-enzyme
expression in rat thyroid gland.

In order to demonstrate the biosynthesis of
melatonin by C cells in the rat thyroid gland, in the
present work, we have analyzed the mRNA expression
pattern of the key enzymes implicated in melatonin
synthesis: AANAT and HIOMT (Wurtman and Axelrod,
1968). Moreover, we have studied mRNA expression of
melatonin receptor (MT,), and AANAT and melatonin
receptor (MT)) protein localization by immuno-
fluorescence, in both follicular and C-cell lines and rat
thyroid tissue.

Materials and methods
Cells and culture requirements

The following cell lines were used: PC-C13 (rat
follicular cells, generously provided by Dr. Massimo
Santoro, Centro di Endocrinologia e Oncologia
Sperimentale di C.N.R Naples) and CA77 (rat C-cells,
generously provided by Dr. T. Ragot, Institut Gustave
Roussy, Paris, France). PC-C13 were grown in Coon’s
modified Ham’s F12 medium suplemented with 5% FBS
and a mixture of six growth factors (1 nM TSH, 10
pg/ml insulin, 10 ng/ml somatostatin, 5 pxg/ml
transferrin, 10 nM hydrocortisone, and 10 ng/ml glycyl-
L-histidyl-L-lysine acetate). CA77 were grown in
Dulbecco’s Modified Eagle’s medium (DMEM) with
15% fetal bovine serum. Cell cultures were maintained
at 37°C in a humidified atmosphere with 5% CO,. Cell
cultures were always used at 70-80% confluence.

Total RNA extraction and reverse transcription

Total RNA from cultured cells was extracted by
using TriPure Isolation Reagent (Roche, Mannheim,
Germany) according to the manufacturer’s instructions.
After cell lysis and RNA extraction, RNA was
precipitated with isopropanol, and the pellet was washed
in 75% ethanol. RNA samples were recovered by
centrifuging at 14,000 g for 5 min and then dried. Each
RNA pellet was dissolved in 50 u1 RNase-free water and
quantified spectrophotometrically. In order to discard
DNA contamination before cDNA synthesis, RNA
samples were incubated in gDNA wipeout buffer
(Quantitect Reverse Transcription Kit, Qiagen. Hilden,
Germany) at 42°C for 2 min and then used directly for
reverse transcription. cDNA synthesis was carried out
using the Quantitech Reverse Transcription Kit (Qiagen.
Hilden, Germany) in a reaction containing 14 ul of 1 ug
RNA in 6 gl of a mixture formed by 1X reverse
transcription master mix containing 1 ul reverse
transcriptase, 4 pl RT buffer and 1 yl RT primer mix.
The mix was incubated for 15 min at 42°C and then
inactivated at 95°C for 3 min.

PCR

For the detection of transcripts, non quantitative
PCRs were carried out in a reaction containing 5 uL of
RT product as template DNA, 1X PCR buffer, MgCl, in
an appropriate concentration, 0.4 mM each
deoxynucleotide, 2.5 U ECOTAQ DNA polymerase
(Ecogen, Barcelona, Spain), 0.2 M sense and antisense
primers of housekeeping gene (b-actin) and 0.2 yuM
sense and antisense primers of the gene under study, in a
final volume of 25 ul. The PCR reaction was started by a
10 min activation of hotstart DNA polymerase at 94°C
followed by a 40 cycles of target cDNA amplification.
The template was initially denatured at 94°C for 1min
followed by 40-cycle program with 1 min annealing and
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1 min elongation at 72°C. Beta-actin gene was used as
internal control. Reaction mixture, without the cDNA,
was used as negative control in each run. cDNA from rat
pineal and brain were used as positive controls. The
primers sequences and annealing temperatures are
shown in Table 1.

Immunofluorescent AANAT and MT, detection in cell
cultures

Immunofluorescent analyses were performed to
localize MT, and AANAT, in cultured CA77 cells, and
MT1 in PC—él3 cells. Before the experiments, cells were
cultivated in serum and factor free medium for 24 h and
then cells were fixed in 4% paraformaldehyde at room
temperature for 20 min. For AANAT immunodetection,
cells were permeabilized with 0.3% triton X-100 for 5
min. After this, slides were washed with PBS and
blocked by incubation with donkey normal serum for 1h
at room temperature. Anti-MT, (1/50, goat, Santa Cruz
sc-13186, CA, USA), anti-AANAT (1/100, goat, Santa
Cruz sc-55612, CA, USA), anti-calcitonin (1/1000,
rabbit, DAKO, Glostrup, Denmark) and anti-
thyroglobulin (1/1000, rabbit, DAKO, Glostrup,
Denmark) antibodies were applied overnight at 4°C in a
humidity chamber. DAPI was added to the primary
antibody solution for nuclei counterstaining. Afterwards,
slides were washed in PBS and incubated for 30 min at
RT with secondary antibodies raised in different species,
labelled either with Cy-2 or Cy-3 (1/100, Jackson
Immunoresearch Laboratories, Suffolk, UK) for single
or simultaneous double immunofluorescence. Controls
for immunoreaction specificity were performed by
omitting the primary antibody step.

Finally, after PBS washing, slides were mounted in
90% glycerol, 2% n-propylgallate (Sigma, St. Louis,
MO, USA) and observed under a confocal laser scanning
microscope (TCS SP2, Leica Microsystems, Heidelberg
GmbH, Germany) or a fluorescence microscope (BX50,
Olympus, Japan).

Immunolocalization of AANAT and MT, in thyroid
samples

Immunofluorescent analyses were performed in
sections of formalin-fixed paraffin-embedded thyroid
glands obtained from normal rats (n=3). The same
antibodies previously used were applied overnight at
4°C to the 5 pm thick-thyroid sections at the following
dilutions: anti-calcitonin, 1/2000; anti-thyroglobulin,
1/4000; anti-MT, 1/100; anti-AANAT, 1/200. An
antigen-retrieval method (10 mM citric acid buffer pH 6)
was employed. DAPI was added to the primary antibody
solution for nuclei counterstaining. Antigen-antibody
binding was detected by using Cy-2 or Cy-3 labelled
secondary antibodies (Jackson Immunoresearch
Laboratories. Suffolk, UK). Controls for specificity of
immunoreactions were performed by omitting the
primary antibody or any essential step of the technique.

Melatonin determination

Supernatants obtained from 80%-confluence cultures
of CA77 and PC-C13 cells were collected for melatonin
determination. Culture media with and without FBS
were used as controls to eliminate any contribution to
the melatonin content from the culture medium itself.
Melatonin content in the culture medium was assayed by
ELISA kit (DRG Diagnostics, Marburg, Germany) as
already reported (Naranjo et al., 2007). Melatonin from
500 pl of the samples, standards and controls was
extracted (90-100% yield recovery) using C18 reversed-
phase columns (IBL-Hamburg, Germany) and methanol
elution. The dried extracts (after evaporating methanol)
were stored at -20°C for up to 48 h. Melatonin levels
were measured in duplicate using 96-well microtiter
plates coated with captured goat antirabbit antibodies.
Each microtiter plate was filled either with 50 ul blank
reagent, extracted calibrators, extracted samples or
extracted standard solutions (containing 0, 3, 10, 30, 100
or 300 pg/ml melatonin). Then, 50 pl melatonin biotin

Table 1. Sequences of MT,, MT2, HIOMT, AANAT and B-actin primers used in RT-PCR study.

Primer 5’-sequence-3° Annealing Temperature PCR fragment
MT, Forward CAGTACGACCCCCGGATCTA 58°C 65 bp
MT, Reverse GGCAATCGTGTACGCCG

HIOMT Forward AGTGACATCATGGGTGGGAATTTATGACTT 60°C 105 bp
HIOMT Reverse CCCTACCCCACCATTACTGTGACATC

AANAT Forward GAGATCCGGCACTTCCTCACCCTGTGTCCAGA 68°C 94 bp
AANAT Reverse CCCAAAGTGAACCGATGATGAAGGCCACAAGA

B-actin Forward CAGATGTGGATCAGCAAGCAGGAGTACGAT 62°C 126 bp

B-actin Reverse

GCGCAAGTTAGGTTTTGTCAAAGAA

MT,: melatonin receptors type 1; HIOMT: hydroxiindol-O-methyltransferase; AANAT: arylalkyl-N-acetyltransferase.
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and 50 pl rabbit antiserum were added into each well,
shaken carefully, sealed with adhesive foil and incubated
overnight at 2-8°C.

After washing three times with 250 pI diluted assay
buffer, 150 ul anti-biotin conjugate to alkaline
phosphatase was added into each well and incubated for
2 h at room temperature. The reaction was developed
using p-nitrophenyl phosphate and optical densities were
determined at 450 nm in an automatic microplate reader.
The sensitivity of the melatonin assay was 3.0 pg/ml.

Statistics

All experiments for melatonin determination were
performed in triplicate. Melatonin data were represented
as mean + SD. Data were compared using Student’s test,
p values of less than 0.05 were accepted as significant.
Results
Non-quantitative PCR

PCR analyses demonstrated that both AANAT and

HIOMT mRNAs are expressed in CA77 cells, but not in
PC-C13 cell line. Moreover, both cell lines were also

>
N
o

S &
& F £ B

AANAT 94 bp
HIOMT 105 bp
MT1 65 bp
B-actin

126 bp

Fig. 1. mRNA expression of AANAT, HIOMT and MT, by RT-PCR from
rat thyroid gland, CA77 and PC-C13 cell lines. Control refers to pineal
gland for AANAT and HIOMT mRNA expression and brain for MT,
mRNA expression.The right lane (B) represents the negative control in
which cDNA is replaced with distilled water.

positive for the expression of MT),. Expression for these
three genes was also positive in rat thyroid-gland tissue
(Fig. 1). All these fragments were parallely amplified
from rat pineal gland and brain mRNAs, which were
used as positive controls for AANAT/HIOMT and MT |,
respectively.

Melatonin production by thyroid cells

Melatonin content in CA77 and PC-C13 culture
media and controls without cells was measured by
ELISA and expressed as pg melatonin/ml. Our results
showed a significant amount of melatonin in CA77
culture, although some melatonin was derived from the
medium’s FBS (Fig. 2). Melatonin found in PC-C13
culture was not significant because it represented similar
values as those detected in control medium with FBS.
Melatonin was not detected in PC-C13 or CA77 culture
media without FBS. Three experiments were carried out
to confirm these results.

Immunofluorescence microscopy

We have studied the cellular localization of AANAT
in rat C-cell cultures (CA77) and thyroid tissue by
immunofluorescence. AANAT immunoreactivity was
found in the cytoplasm of CA77 cells - colocalized with
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Fig. 2. Melatonin determination in culture medium. Melatonin was
measured by ELISA in supernatants of cell cultures that reached 80%
confluence. In order to eliminate any contribution to the melatonin
content from the culture medium itself, melatonin was also measured in
culture medium (without cells) with and without FBS. Graph shows
significant amounts of melatonin in the CA77 cell line. The melatonin
content observed in the PC-C13 cultures came from melatonin present
in the FBS of culture medium (Coon’s). *p<0.05 vs. CA77-culture
medium (DMEM) without cells.
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Fig. 3. Immunolocalization of AANAT and MT, in CA77 C-cell line (A-E) and rat thyroid tissue (F, G) by immunofluorescence. Immunopositivities for
AANAT and MT, were detected in C cells of both origins according to a cytoplasmatic, and heterogeneous immunostaining patterns, respectively.
Calcitonin (A), AANAT (B, F), merge (C), MT, (D, G) and negative control (E). Bar: 25 ym.
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calcitonin - and in thyroid C cells (Fig. 3A,F).
Additionally, the cellular localization of MT1 was
examined in the same samples. A heterogeneous
immunostaining pattern was observed in both C-cell line
and thyroid sections, detecting MT; immunopositivity
according to a cytoplasmic and membrane pattern (Fig.
3D.G).

Immunocolocalization for MT, and TGB in
follicular cell cultures (PC-C13 ) and thyroid samples
was also examined, detecting coexpression of both
markers in the cytoplasm of some follicular cells (Fig. 4).

Discussion

C cells are mainly known for secreting calcitonin, a
serum calcium decreasing hormone. Nevertheless,
besides their theoretical role in calcium homeostasis, C
cells may be involved in the intrathyroidal regulation of
follicular cells, suggesting a possible interrelationship
between the two endocrine populations in the thyroid
gland. In this sense, C cells also synthesize and release a
number of different regulatory peptides. Specifically,
calcitonin-producing C-cells coexpress neuroendocrine

Fig. 4. Immunocolocalization of MT, and TGB in PC-C13 follicular cells (A-C) and rat thyroid tissue (D-E) by immunofluorescence. MT, was
coexpressed with thyroglobulin in some follicular cells at cytoplasmatic level in cell cultures as well as in the follicular epithelium of thyroid sections.
Thyroglobulin (A, D), MT, (B, E), merge (C, F). Bars: A-C, 20 ym; D-F, 25 ym
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peptides, such as somatostatin, serotonin, calcitonin
gene-related peptide (CGRP), helodermin, pancreatic
polypeptide and C-terminal gastrin/CCK (Van Noorden
et al., 1977; Kameda et al., 1982; Cohn et al., 1984;
Zabel, 1984; Nitta et al., 1986; Kameda, 1987; Zabel et
al., 1987; Arias et al., 1989; Grunditz et al., 1989).
Despite the fact that receptors for some of them, like
somatostatin or serotonin, are expressed by follicular
cells (Tamir et al., 1992, 1996; Ain et al., 1997), there is
not a clear role assigned for these C-cell-secreted
regulatory peptides yet. Recently, a few new regulatory
peptides have been added to the list of markers
expressed by C cells; however, in contrast to those listed
above, these ones have well known roles on the
hypothalamus—pituitary thyroid axis. Thus, Wierup et al.
(2007) demonstrated that C cells express the cocaine and
amphetamine regulated transcript (CART), a peptide
expressed by neurons in the arcuate nucleus and
involved in the inhibition of food intake, stimulation of
energy expenditure and regulation of the hypothalamic-
pituitary axis (Fekete et al., 2006; Fekete and Lechan,
2006). Furthermore, ghrelin and TRH, the two additional
regulatory peptides which orchestrate the hypothalamic
control of the thyroid function through thyrotropin, are
also expressed in C cells (Gkonos et al., 1989; Howard
et al., 1996; Skinner et al., 1998; Korbonits et al., 2001;
De Miguel et al., 2005; Fekete and Lechan, 2006;
Raghay et al., 2006). Although, the role of most of these
molecules secreted by C cells within the thyroid gland
remains unclear, our group has recently demonstrated a
potentiating effect of ghrelin, on the TSH-induced
hormone synthesis and proliferative activities, in rat
thyrocytes (Morillo-Bernal et al., 2011).

It is well known that melatonin is not a pineal
exclusive hormone. In the thyroid gland, immuno-
positive C-cells using antibody to MT have been
detected (Kvetnoy, 1999). However, this research does
not implicate an endogenous synthesis due to the fact
that melatonin can cross the biological membranes. In
the present study, an endogenous melatonin biosynthesis
in rat thyroid C-cell has been demonstrated. First, we
have detected significant levels of melatonin in the
CA77 culture medium. Second, the mRNA expression of
two key melatonin biosynthetic enzymes, AANAT and
HIOMT, has been confirmed in a rat C-cell line.
Moreover, AANAT protein has been detected by
immunofluorescense in rat C-cells. On the other hand,
RT-PCR studies have shown that AANAT and HIOMT
expression was either negative in thyroid follicular cells
or too low to be detected by PCR. These results are in
accordance with those of melatonin determination in
culture media, which were also negative for PC-C13 cell
line.

The presence of melatonin receptor in CA77, PC-
C13 cell lines and thyroid tissue was also analyzed. If
the hypothesis of melatonin having an additional role as
local regulator synthesized by C cells is true, thyroid
follicular cells must contain receptors for this hormone.

The present study shows, for the first time, the presence
of MT, at both mRNA and protein levels in the rat
thyroid1 follicular cells in both cell line and thyroid
tissue. Furthermore, immunopositive staining for MT,
seemed to be higher in PC-C13 than in CA77, which
could be related to differences in expression levels.
Additional gene expression quantitative analyses are
necessary to confirm this finding. Moreover, in vivo and
in vitro experiments have also demonstrated a direct
inhibitory effect of melatonin on intrathyroid hormone
production (Pevet, 2000; Wright et al., 2000). On the
other hand, melatonin synthesis by C cells may play a
role in antioxidant defense to protect thyroid cells from
oxidative stress. In this respect, many researchers have
suggested the role of melatonin in the protection against
oxidative damage during both physiological and
pathological processes in the thyroid (Karbownik and
Lewinski, 2003b; Mogulkoc et al., 2006; Rao and
Chhunchha, 2010). Reactive oxygen species (ROS) are
involved in cellular processes of the thyroid gland, as
occurs in other organs. For example, hydrogen peroxide
participates in different steps of hormone synthesis, as
well as in the Wolff-Chaikoff’s effect and in
hypothyroidism caused by iodine excess in the thyroid
(Karbownik and Lewinski, 2003a).

Finally, we have also described the presence of MT,
in CA77 cells and rat thyroid tissue C-cells. It is
interesting to consider the possibility of an autocrine
regulation, common in endocrine cells, in the secretion
of melatonin by thyroid C-cells. It is interesting the fact
that a similar pattern was also exhibited by rat thyroid
tissue, which contributes to clear up the possibility of
unexpected AANAT, HIOMT or MT, expression as a
consequence of cell transformation usually described in
cell lines.

In conclusion, we have demonstrated that rat thyroid
C-cells express the two key enzymes in melatonin
biosynthesis, AANAT and HIOMT, suggesting that this
hormone could be another local regulator synthesized by
C-cells. This endogenous melatonin, together with pineal
melatonin and other hormonal and non-hormonal agents,
could modulate and regulate thyroid function and
homeostasis (Sainz et al., 2003; Mocchegiani et al.,
2006). On the other hand, rat thyroid C-cells and
follicular cells express melatonin receptor MT),.
Although further studies are needed to evaluate the
significance of MT, expression in thyroid cells and the
paracrine/autocrine effects of melatonin in the thyroid,
our data provide new evidence for a putative novel
intrathyroidal regulatory pathway of thyroid regulation
via paracrine/autocrine melatonin signalling that may be
involved in thyroid-hormone synthesis or redox
homeostasis.
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