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BANACH ALGEBRAS WITH TRIVIAL COHOMOLOGY

RACHID EL HARTI

Abstract. A plausible conjecture is that Banach algebras with trivial
cohomology have to be semisimple and finite dimensional. In this paper,
we show that a Hermitian Banach ∗-algebra has trivial cohomology if and
only if it is ∗-isomorphic to a finite direct sum of full matrix algebras.

1. Introduction

Let (A, ‖ ·‖, ∗) be a Banach algebra A with an identity and some involution.
A is called a Hermitian Banach ∗-algebra if for every element a in A, a∗a has
real spectrum. It is said to be a C∗-algebra if its norm ‖·‖ is a C∗-norm, i.e, ‖·‖
satisfies: ‖a∗a‖ = ‖a‖2 for all a ∈ A. Obviously, a C∗-algebra is a Hermitian
Banach ∗-algebra. A state τ is a linear form on A such that τ(1) = ‖τ‖ = 1.
A ∗-representation of A on a pre-Hilbert space X is a ∗-homomorphism of A
into the algebra B(X) of bounded operator on X.

Given a Banach algebra, A, we define a Banach left A-module X to be a
Banach space which is a structure left module A such that the linear map

(a, x) ∈ A× X 7−→ ax ∈ X
is continuous. Right modules are defined analogously. A Banach A-bimodule
is a Banach space with a structure bimodule over A such that the linear map

(a, x, b) ∈ A× X ×A 7−→ axb ∈ X
is continuous. A Banach A-submodule of a given Banach A-module X is at
the same time a closed subspace of X and an algebraic A-submodule of X .
A Banach left A-module morphism θ : X → Y is a continuous linear map

Revised December 15, 2004.
This is an improved version of a previous paper by the same author, [2].

79



80 R. EL HARTI

between two left Banach A-modules such that θ(ax) = aθ(x) for all a ∈ A
and all x ∈ X . Banach right A-module morphisms and Banach A-bimodule
morphisms are defined analogously. For each Banach A-bimodule X , the dual
X ∗ is naturally a Banach bimodule over A with the module actions defined by
aT (x) = T (xa) and Ta(x) = T (ax), for all a ∈ A, T ∈ X ∗, and x ∈ X ; where
T (x) denotes the evaluation of T at x.

A derivation from A into a Banach A-bimodule X is a linear operator D :
A → X which satisfies D(ab) = D(a)b + aD(b), ∀a, b ∈ A. Notice that for
any x ∈ X , the mapping δx : A → X defined by δx(a) = ax − xa, a ∈ A, is a
continuous derivation called an inner derivation. An n-linear bounded operator

T : A× n)· · · ×A → X is called a n-cochain. The set of n-cochains forms a Banach
space denoted by Cn(A,X ). The standard cohomological complex is

0 → X δ0

−→ C1(A,X ) δ1

−→ · · · δn−1

−→ Cn(A,X ) δn

−→ Cn+1(A,X ) δn+1

−→ · · · ,

where δn is defined as follows for n ≥ 1:
(δnT )(a1, . . . , an+1) =a1T (a2, . . . , an+1)

+
n∑

k=1

(−1)kT (a1, . . . , ak−1, ak+1, . . . , an+1)

+ (−1)n+1T (a1, . . . , an)an+1

and
δ0(x)(a) = δx(a) = xa− ax.

The spaces ker δn and im δn−1 are denoted by Zn(A,X ) and Bn(A,X ) re-
spectively, and their elements are called n-dimensional cocycles and n-dimensional
coboundaries respectively.

The quotient Zn(A,X )/Bn(A,X ) is called the n-dimensional cohomology
group of A with coefficients in X and denoted by Hn(A,X ) (see [3]). Note that
Hn(A,X ) = 0 means that every bounded n-linear map T with δnT = 0 is of the
form δn−1S for some bounded (n− 1)-linear map S. Note also that Z1(A,X )
is the space of all derivations from A to X and that B1(A,X ) is the space of
all inner derivations. Thus, H1(A,X ) = 0 means that Z1(A,X ) = B1(A,X )
and consequently all derivations from A to X are inner.

Fixed a Banach algebra A, the statement H1(A,X ) = 0 for every Banach
A-bimodule X imply the same statement for all n ≥ 1.

Definition 1.1. We say that a Banach algebra A has trivial cohomology if
H1(A,X ) vanishes for each Banach A-bimodule X .

Obviously, a finite-dimensional algebra A has trivial cohomology if and only
if it is semisimple (i.e, its Jacobson radical is trivial) and so, it is a finite
direct sum of full matrix algebras. In view of the difficulties to find an infinite
dimensional Banach algebra with trivial cohomology, the following question has
been frequently asked (see [6, p. 180]):
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Question. Is every Banach algebra with trivial cohomology a finite direct sum
of full matrix algebras?

In the paper mentioned above, J.L. Taylor gives a partial answer to this
question by proving that Banach algebras with trivial cohomology and the
bounded approximation property are finite direct sum of full matrix algebras.
Note that not every Hermitian Banach ∗-algebra or C∗-algebra does satisfy
the bounded approximation property, so it is important to know what happens
whenever this class of algebras have trivial cohomology. The following theorem,
which is the main result of this paper, solves the above question for the class
of Hermitian Banach ∗-algebras.

Theorem 1.2. Let A be a Hermitian Banach ∗-algebra. Then, A has trivial
cohomology if and only if there are n1, n2, . . . , nk ∈ N such that

A ∼=Mn1(C)⊕Mn2(C)⊕ · · · ⊕Mnk
(C)

where Mni(C) is the algebra of complex ni × ni-matrices.

2. Preliminaries

Given X , Y and Z Banach 〈left, bi-〉 A-modules and θ : X → Y, β : Y → Z
〈left, bi-〉 module morphisms, the sequence

Σ : 0 → X → Y → Z → 0

is a short exact sequence if θ is one-to-one, im β = Z, and im θ = kerβ. A
short exact sequence Σ is called admissible if β has a continuous right inverse
or, equivalently, if kerβ has a Banach space complement in Y. An admissible
short exact sequence splits if the right inverse of β is a Banach 〈left, bi-〉 module
morphism or, equivalently, if kerβ has a Banach space complement in Y which
is an A-submodule.

Proposition 2.1. Let A and B be Banach algebras and θ : A −→ B be a
continuous homomorphism with dense range. If A has trivial cohomology, then
so has B. In particular, if I is a closed two-sided ideal of a Banach algebra A
with trivial cohomology, then so is A/I.
Proof. Assume that A has trivial cohomology. Let X be a Banach B-bimodule.
Consider on X , the structure of A-bimodule defined by ax = θ(a)x and xa =
xθ(a). Since θ is continuous, X is a Banach A-bimodule. Now, let D : B → X
be a continuous derivation. It is easy to see that D◦θ is a continuous derivation
from A to the Banach A-bimodule X and, thus, it is inner. Therefore, there
exists x ∈ X such that D(θ(a)) = ax− xa = θ(a)x− xθ(a) for all a ∈ A. Since
θ(A) is dense in B, we have D(b) = bx − xb for all b ∈ B. It follows that D is
inner and thus, B has trivial cohomology. ¤

Notice that a Banach algebra A with trivial cohomology is unital and every
admissible short exact sequence of 〈left, bi-〉 Banach modules on A splits ([1,
Theorem 6.1]). This is the reason why the following proposition holds:
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Proposition 2.2. Let A be a Banach algebra with trivial cohomology and I
be a closed 〈left, two-sided〉 ideal of A which has a Banach space complement.
Then there exists a closed 〈left, two-sided〉 ideal J of A such that

A = I ⊕ J .

Proof. Let A be a Banach algebra and let I be a closed 〈left, two-sided〉 ideal
of A which has a Banach space complement. Then the short exact sequence

Σ : 0 → I → A → A/I → 0

is admissible. Moreover, if A has trivial cohomology, then Σ splits and I has
a Banach space complement which is a 〈left, two-sided〉 ideal. ¤

Theorem 2.3. Let A be a Banach algebra with trivial cohomology. Assume
that each maximal left ideal of A is complemented as a Banach space in A.
Then, there are n1, n2, . . . , nk ∈ N such that

A ∼=Mn1(C)⊕Mn2(C)⊕ · · · ⊕Mnk
(C).

Proof. As stated above, the algebra A has an identity 1A. Let (Mi)i∈I be a
family of all maximal left ideals of A. By hypotesis each Mi is complemented
as a Banach space. By Proposition 2.2, there exists a left ideal Ji such that
A = Mi ⊕ Ji. Notice that by definition

Rad(A) =
⋂

i

Mi

is the Jacobson radical of A and

(1)
⊕

i∈I

Ji ⊆ Soc(A),

where Soc(A) is the socle of the algebra A, i.e, it is the sum of all minimal
left ideals of A and it coincides with the sum of all minimal right ideals of A.
Recall that every minimal left ideal of A is of the form Ae where e is a minimal
idempotent, i.e, e2 = e 6= 0 and eAe = Ce. On the other hand, for each finite
family of minimal idempotents (ek)k∈K , we have

(2) A =
⊕

k∈K

Aek

⊕ ⋂

k∈K

A(1A − ek).

It follows from (1) and (2) that Soc(A) is dense in A/Rad(A). This shows
that A/Rad(A) is finite-dimensional. Therefore

A = Rad(A)⊕ Soc(A).

If Rad(A) 6= {0}, this would mean that Rad(A) has an identity and this is
impossible. Therefore, A = Soc(A) and then it is a finite direct sum of certain
full matrix algebras. ¤
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3. Proof of Theorem 1.2

It suffices to show the only if part. First, suppose now thatA is a C∗-algebra.
Let M be a maximal left ideal. By [4, Theorem 5.3.5 and Theorem 5.2.4], the
space A/M is a Hilbert space. It follows that the short exact sequence

Σ : 0 →M→ A→ A/M→ 0

is admissible and thus M has a Banach space complement. By Theorem 2.3,
A is ∗-isomorphic to a finite direct sum of full matrix algebras.

Consider now the general case where A is a Hermitian Banach ∗-algebra
with trivial cohomology. Let T(A) be the set of all states of A and let R∗(A)
be the ∗-radical of A, i.e., the intersection of the kernels of all ∗-representations
of A on Hilbert spaces. Since A is Hermitian and has an identity, T(A) 6= ∅
and so R∗(A) 6= A. Let τ ∈ T(A) and Iτ = {a ∈ A : τ(b∗a) = 0 for all b ∈ A}.
As shown, τ is positive, i.e τ(a∗a) ≥ 0 for all a ∈ A. It is easy to check that
Xτ = A/Iτ is a pre-Hilbert space with respect to the induced inner product:

〈a + Iτ , b + Iτ 〉 = τ(b∗a).

For each a ∈ A define a linear operator θτ (a) on Xτ by

θτ (a)(b + Iτ ) = ab + Iτ .

Since Iτ is a left ideal, θτ (a) is well defined. It is easy to prove that a → θτ (a)
is ∗-representation of A on Xτ .

Let Hτ be the Hilbert space completion of A/Iτ and let πτ (a) denote the
unique extension of θτ (a) to a bounded linear operator on Hτ . Hence a → πτ (a)
is a ∗-representation of A on Hτ . Let π =

⊕
τ∈T(A) πτ and H =

⊕
τ∈T(A) Hτ .

Then π is a ∗-representation of A on H. Consider

‖π(a)‖ = sup
τ∈T(A)

‖πτ (a)‖.

Then ‖·‖ is a C∗-norm on π(A). Moreover, let B denote the closure of (π(A), ‖·
‖), then π : A → B is a continuous mapping into the C∗-algebra B such
that ker(π) = R∗(A). The Banach algebra A has trivial cohomology. By
Proposition 2.1, the C∗-algebra B has also trivial cohomology and thus, it
has to be finite dimensional. Notice that A/R∗(A) is ∗-isometric to the ∗-
subalgebra π(A) of B. Thus, it follows that A/R∗(A) is finite-dimensional.
Since R∗(A) is a finite-codimensional closed two-sided ∗-ideal, there exists a
closed two-sided ideal K such that

A = R∗(A)⊕K.

Next, note that ‖π(a)‖2 = sup{τ(a∗a), τ ∈ T(A)} ≥ |a∗a|σ where |a|σ is
the spectral radius of a ∈ A. By Pták [5], we obtain ‖π(a)‖2 ≥ |a|2σ. So, if
a ∈ R∗(A), then |a|σ = 0. Therefore every element of R∗(A) is quasinilpotent.
Notice that in general Rad(A) ⊆ R∗(A). Since R∗(A) is a closed two-sided ∗-
ideal, we have R∗(A) = Rad(A) and so, A is finite-dimensional and semisimple.
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