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Drawing the double circle on a grid of minimum size
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Abstract

In 1926, Jarník introduced the problem of drawing a
convex n-gon with vertices having integer coordinates.
He constructed such a drawing in the grid [1, c ·n3/2]2

for some constant c > 0, and showed that this grid
size is optimal up to a constant factor. We consider
the analogous problem of drawing the double circle,
and prove that it can be done within the same grid
size. Moreover, we give an O(n log n)-time algorithm
to construct such a point set.

1 Introduction

Given n ≥ 3, a double circle is a set P =
{p0, p1, . . . , pn−1, p′0, p′1, . . . , p′n−1} of 2n planar points
in general position such that: (1) p0, p1, . . . , pn−1 are
precisely the vertices of the convex hull of P labelled
in counterclokwise order around the boundary; (2)
point p′i is close to the segment joining pi with pi+1;
(3) the line passing through pi and p′i separates pi+1

from P ; and (4) the line passing through p′i and pi+1

separates pi from P (see Figure 1). Subindices are
taken modulo n. The double circle has been consid-
ered in combinatorial geometry and it is conjectured
to have the least number of triangulations [1, 2].
Drawing an n-vertex convex polygon with integer

vertices can be easily done by considering the n points
(1, 1), (2, 4), (3, 9), . . . , (n, n2) as the vertices of the
polygon. In this case the size of the integer point
set is equal to n2 − 1 = Θ(n2), where size refers to
the smallest N such that the point set can be trans-
lated to lie in the grid [0, N ]2. In 1926, Jarník [5]
showed how to draw an n-vertex convex polygon with
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Figure 1: A double circle of twelve points.

size N = O(n3/2) and proved that this bound is op-
timal. In recent years the so-called Jarník polygons
and extensions of them have been studied [3, 6].
Given any integer point (i, j), we say that (i, j)

is visible (from the origin) if the interior of the line
segment joining the origin and (i, j) contains no lat-
tice points. Observe that (i, j) is visible if and only
if gcd(i, j) = 1, where gcd(i, j) denotes the great-
est common divisor of i and j. We consider points
as vectors as well, and vice versa. A Jarník poly-
gon is formed by choosing a natural number Q, and
taking the set VQ of visible vectors (i, j) such that
max{|i|, |j|} ≤ Q [4, 5, 6]. The polygon is then
the unique (up to translation) convex polygon whose
edges, viewed as vectors, are precisely the elements
of VQ, that is, the vertices can be obtained by start-
ing from an arbitrary point and adding the vectors
of VQ, one by one, in counterclockwise order, to the
previously computed vertex (see Figure 2).

V2

Figure 2: A Jarník polygon (right) and its generating
vectors V2 (left).

We study how to draw a 2n-point double circle with
integer points using the smallest size N . We present
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anO(n log n)-time algorithm that correctly constructs
the double circle with size within O(n3/2), where that
bound is also optimal. In Section 2 we show our al-
gorithm, and in Section 3 its correctness is proved.
Finally, in Section 4, we state future work.

2 Double circle construction

Observe that a simple construction with quadratic
size is as follows: Consider the function f(x) = x2+x.
For i = 1, . . . , 2n − 1, add the point (i, f(i)) if i is
odd, and the point (i, f(i) + 2) otherwise. The final
point is (n, f(2n−1)+f(1)

2 − 1) = (n, 2n2 − n), i.e., the
point just below the midpoint of the segment con-
necting (1, f(1)) and (2n− 1, f(2n− 1)). The size of
the resulting point set is N = f(2n − 1) − f(1) =
(2n− 1)2 + (2n− 1)− 2 = 4n2 − 2n− 2 = Θ(n2).
We say that a sequence V of vectors is symmetric

if V contains an even number of vectors sorted coun-
terclockwise around the origin, and for every vector a
in V its opposite vector −a is also in V . Observe that
any sequence of vectors defining a Jarník polygon is
symmetric. For any sequence V = [v1, v2, . . . , v2t] of
2t vectors let the point set P(V ) := {p1, p2, . . . , p2t},
where p1 = v1 and pi = pi−1 + vi for i = 2, . . . , 2t.
Note that if we sort the elements of VQ around the
origin then the elements of P(VQ) are the vertices of
the Jarník polygon. Furthermore, if V is symmetric
then the elements of P(V ) are in convex position. Let
sequence alt(V ) := [v2, v1, v4, v3, . . . , v2t, v2t−1] (see
Figure 3 for an example with t = 8). For any scalar
λ let the sequence λV := [λv1, λv2, . . . , λv2t].

Figure 3: P(alt(V4)).

The idea is to generate a suitable symmet-
ric sequence V of 2n vectors and then build
the point set P(alt(V )) as the double cir-
cle point set, up to some transformation of
the elements of alt(V ). A (not optimal) ex-
ample is V = [(1, 1), (1, 2), . . . , (1, n), (−1,−1),
(−2,−2), . . . , (−1, n)] for even n ≥ 4. The point set
P(alt(V )) is in fact a double circle but its size is equal
to 1 + 2 + . . .+ n = Θ(n2) (see Figure 4).
The construction in which the resulting point set is

a double circle of size O(n3/2) is based on the next

Figure 4: A naive construction for n = 4 showing both
vectors (left) and the resulting point set (right).

two algorithms:
VisibleVectors(n): With input n ≥ 3, the sym-

metric sequence V of 2n visible vectors, sorted coun-
terclockwise around the origin, is generated so as to
satisfy the next two invariants. Let Bt := {p ∈ Z2 :
‖p‖1 ≤ t}, k := maxv∈V ‖v‖1, and (even) s be the
number of visible vectors of Bk−1: (i) all visible vec-
tors of Bk−1 are in V , and (ii) the other elements of V
are generated as follows, until 2n− s elements are ob-
tained: for i = 1, . . . , k− 1 generate vectors (i, k− i),
(−i,−(k− i)), (−i, k− i), (i,−(k− i)) in this order, if
and only if gcd(i, k − i) = 1. Refer to Algorithm 2.1
for a pseudo-code.

BuildDoubleCircle(n): With input n ≥ 3,
build a 2n-point double circle. First, set sequences
V :=VisibleVectors(n) and [v′1, v

′
2, . . . , v

′
2n] :=

alt(V ). Then, the sequence W = [w1, w2, . . . , w2n] of
2n vectors is created as follows: for i = 1, 3, . . . , 2n−1
set wi = (1−λ)v′i+λv

′
i+1 and wi+1 = λv′i+(1−λ)v′i+1,

where λ = 1/3. Finally, build the 2n-point set
P((1/λ)W ) as the double circle.

Algorithm 2.1: VisibleVectors(n)

k ← 1, V ← [(1, 0), (−1, 0), (0, 1), (0,−1)]
repeat
k ← k + 1
for i← 1 to k − 1

do



j ← k − i
if gcd(i, j) = 1

then


if length(V ) < 2n
then V ← V + [(i, j), (−i,−j)]

if length(V ) < 2n
then V ← V + [(−i, j), (i,−j)]

until length(V ) = 2n
Sort V counterclockwise around origin
return (V )

3 Construction correctness

Let V = [v1, v2, . . . , v2n] be the (circular) sequence of
vectors obtained by executing VisibleVectors(n),
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for n ≥ 3. For every i = 1, 3, 5, . . . , 2n−1 we say that
the pair of vectors vi, vi+1 is a pair of alt(V ).

Lemma 1 (Chapter 2 of [4]) Given a natural
number Q, the number |VQ| of vertices of the Jarník
polygon is equal to

4 + 4

Q∑
i=1

Q∑
j=1

1

gcd(i,j)=1

=
24Q2

π2
+O(Q logQ).

The size S(Q) of the Jarník polygon is equal to

1 + 2

Q∑
i=1

Q∑
j=1

i

gcd(i,j)=1

= 1 + 2

Q∑
i=1

Q∑
j=1

j

gcd(i,j)=1

=
6Q3

π2
+O(Q2 logQ).

Lemma 2 V is symmetric and point set P(V ) has
size O(n3/2).

Proof. Observe that for every vector a in V , −a is
also in V since in algorithm VisibleVectors the vec-
tors are added to sequence V in pairs, and each pair
consists of two opposite vectors. Then V becomes
symmetric once the elements of V are sorted coun-
terclockwise around the origin. On the other hand
Vb k−1

2 c
⊂ V ⊂ Vk, where k = maxv∈V ‖v‖1. Then we

have |Vb k−1
2 c
| ≤ 2n ≤ |Vk|, which implies k = Θ(

√
n)

by Lemma 1. By the same lemma we obtain:

n∑
i=1

x(vi),

n∑
i=1

y(vi) < 1 + 2

k∑
i=1

k∑
j=1

i

gcd(i,j)=1

= S(k)

= Θ(k3) = Θ(n3/2)

Hence, the size of P(V ) is O(n3/2). �

Let o denote the origin of coordinates. Given two
points p, q let `(p, q) denote the line passing through p
and q and directed from p to q, and pq denote the seg-
ment joining p and q. Given three points p = (xp, yp),
q = (xq, yq), and r = (xr, yr), let ∆(p, q, r) denote
the triangle with vertices at p, q, and r; A(p, q, r) de-
note de area of ∆(p, q, r); and turn(p, q, r) denote the
so-called geometric turn (going from p to r passing
through q) where

turn(p, q, r) =

∣∣∣∣∣∣
xp yp 1
xq yq 1
xr yr 1

∣∣∣∣∣∣
and A(p, q, r) = 1

2 |turn(p, q, r)|. Extending this no-
tation, let ∆(p, q) := ∆(o, p, q), A(p, q) := A(o, p, q),
and turn(p, q) := turn(o, p, q). We use the so-called
Pick’s theorem:

Theorem 3 (Pick’s theorem [7]) The area of any
simple polygon H with lattice vertices is equal to i +
b/2−1, where i and b are the numbers of lattice points
in the interior and the boundary of H, respectively.

Lemma 4 For every two consecutive vectors a1, a2 of
V we have A(a1, a2) = 1/2.

Proof. Suppose ∆(a1, a2) contains a lattice point p
different from o, a1, and a2. Then p cannot belong
to segments oa1 and oa2, and segment op contains
a visible point q (possibly equal to p). If ‖q‖1 <
max{‖a1‖1, ‖a2‖1} then q must belong to V by in-
variant (i) of algorithm VisibleVectors. Other-
wise, we have ‖q‖1 = max{‖a1‖1, ‖a2‖1}. Suppose
w.l.o.g. that ‖a1‖1 < ‖a2‖1, and let the point q′ de-
note the intersection of `(o, q) with the segment s con-
necting a1 to a2. Observe that q′ = δa1 + (1 − δ)a2
for some δ ∈ (0, 1), and further that ‖q‖1 ≤ ‖q′‖1 =
‖δa1 + (1− δ)a2‖1 ≤ δ‖a1‖1 + (1− δ)‖a2‖2 < ‖a2‖1,
which is a contradiction. Then we must have that
‖q‖1 = ‖a1‖1 = ‖a2‖1, which implies that q, a1, a2 be-
long to a same quadrant since in this case q is at the
interior of the segment s. Therefore, q must belong to
V by invariant (ii) of algorithm VisibleVectors. In
both cases, the fact that q belongs to V contradicts
the fact that a1 and a2 are consecutive vectors of V .
Hence A(a1, a2) = 1/2 by Pick’s theorem. �

Let λ ∈ (0, 1/2). Given a pair a, b of vectors let
h(λ, a, b) := (1− λ)a+ λb (see Figure 5).

a

b

h(λ, a, b)

h(λ, b, a)

Figure 5: Two vectors a and b, and the vectors h(λ, a, b)
and h(λ, b, a).

Lemma 5 Let a1, a2, a3, a4 be four consecutive vec-
tors of V such that a1, a2 and a3, a4 are pairs of
alt(V ). Let λ ∈ (0, 1/2), q1 = h(λ, a2, a1), q2 =
q1 + h(λ, a1, a2), q3 = q2 + h(λ, a4, a3), and q4 =
q3 + h(λ, a3, a4). Then q2 is to the right of `(o, q1)
and both q3 and q4 are to the left of `(o, q1).

Proof. (Refer to Figure 6.) We have turn(q1, q2) =
turn(q1, q1 +h(λ, a1, a2)) = turn((1−λ)a2 +λa1, a1 +
a2) = (1 − λ) turn(a2, a1) + λ turn(a1, a2) = 2(2λ −
1)A(a1, a2) < 0, which implies that q2 is to the right
of the line `(o, q1). On the other hand:

turn(q1, q3)

= turn(h(λ, a2, a1), h(λ, a2, a1) + h(λ, a1, a2) +

h(λ, a4, a3))

= turn(h(λ, a2, a1), h(λ, a1, a2)) +

turn(h(λ, a2, a1), h(λ, a4, a3))
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= turn((1− λ)a2 + λa1, (1− λ)a1 + λa2)) +

turn((1− λ)a2 + λa1, (1− λ)a4 + λa3))

= (1− λ)2 turn(a2, a1) + λ2 turn(a1, a2) +

(1− λ)2 turn(a2, a4) + λ(1− λ) turn(a2, a3) +

λ(1− λ) turn(a1, a4) + λ2 turn(a1, a3)

= 2
(

(2λ− 1)A(a1, a2) + (1− λ)2A(a2, a4) +

λ(1− λ)A(a2, a3) + λ(1− λ)A(a1, a4) +

λ2A(a1, a3)
)

= 2

(
1

2
(2λ− 1) + (1− λ)2A(a2, a4) + (1)

λ(1− λ)A(a2, a3) + λ(1− λ)A(a1, a4) +

λ2A(a1, a3)

)
≥ (2λ− 1) + (1− λ)2 + λ(1− λ) + (2)

λ(1− λ) + λ2

= 2λ > 0

where equation (1) follows from Lemma 4 and equa-
tion (2) follows from the fact that by Pick’s the-
orem the area of any non-empty triangle with lat-
tice vertices is at least 1/2. Therefore, q3 is
to the left of `(o, q1). Similarly, since we have
that turn(ai, aj) > 0 (i = 1, 2; j = 3, 4) then
turn(h(λ, a2, a1), h(λ, a3, a4)) > 0, which implies that
q4 is to the left of `(o, q1) given that q3 is to the
left of `(o, q1). By symmetry, it can be proved that
turn(q4, q3, q1) < 0 and turn(q4, q3, o) < 0, implying
that both q1 and o are to the right of `(q4, q3). �

o

q1

q2

q3

q4

`(o, q1)

h(λ, a2, a1)

h(λ, a1, a2)

h(λ, a4, a3)

h(λ, a3, a4)

Figure 6: Proof of Lemma 5.

Theorem 6 There is an O(n log n)-time algorithm
that for all n ≥ 3 builds a double circle of 2n points
in the grid [0, N ]2 where N = O(n3/2).

Proof. Execute the algorithm BuildDoubleCir-
cle with input n, being V the result of calling
VisiblePoints(n), building the point set P of 2n
points. Observe that λ = 1/3 implies that point

wi/λ = 3wi is integer for i = 1 . . . 2n, and then
all elements of P are integer points. By Lemma 5
point set P is a double circle. The size of P(V ) is
O(n3/2) by Lemma 2, and since all elements of P be-
long to the polygon with vertices P(3V ) the size N
of P is also O(n3/2). Finally, translate P to lie in the
grid [0, N ]2. In algorithm VisiblePoints the time
complexity is dominated by: (1) computing gcd(i, j)
for O((

√
n)2) = O(n) pairs i, j; and (2) sorting vec-

tors V counterclockwise around the origin. In Case
(1) the time complexity is O(n log n) since gcd(i, j)
consumes O(log(min{i, j})) = O(log

√
n) = O(log n)

time. Case (2) consumes O(n log n) time as well.
Since the time complexity of VisiblePoints dom-
inates the time complexity of the main algorithm
BuildDoubleCircle, the result follows. �

4 Future work
We are working on extending these results to build
other known point sets in integer points of small size,
such as the double convex chain, the Horton set, and
others. We plan to eventually release a software li-
brary supporting many of these constructions.
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