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Abstract

We study the application of the continuous wavelet transform to perform signal 1ltering processes. We 1rst show that the 
convolu tion and correlation of two wavelet fu nctions satisfy the requ ired admissibility and regu larity conditions. By using 
these new wavelet functions to analyze both convolutions and correlations, respectively, we derive convolution and correlation 
theorems for the continuou s wavelet transform and show them to be similar to that of other joint spatial/spatial–frequency 
or time/frequency representations. We then investigate the e5ect of multiplying the continuous wavelet transform of a given 
signal by a related transfer fu nction and show how to perform spatially variant 1ltering operations in the wavelet domain. 
Finally, we present nu merical examples showing the u sefu lness of applying the convolu tion theorem for the continuous 
wavelet transform to perform signal restoration in the presence of additive noise.

Keywords: Continu ou s wavelet transform; Convolu tion; Correlation; Space varying 1ltering; Signal restoration

1. Introduction

The received signal in a large number of signal pro-
cessing systems is modeled as a convolution between 
the input signal and the impulse response of the system 
with additive noise. Signal restoration (or deconvo-
lution) problems have been mainly studied under the 
assumption that the input signal and noise are station-
ary (thou gh the terms stationary and non-stationary 
have some precise meanings in stochastic processes, 
in this work we use these terms in a qualitative sense, 
i.e., a stationary signal is a signal whose properties 
do not change much with time or through space), and

conventional estimation algorithms such as Wiener or
Kalman 1lters can be directly applied. However, the
problem of restoration of non-stationary signals such
as seismic data, acoustic signals, mechanical vibration,
wireless communication, radar and sonar signals, etc.,
has recently attracted the attention of signal processing
researchers. Properties of joint time–frequency repre-
sentations have allowed to 1nd optimal deconvolution
1lters for non-stationary signal restoration [4,14].
The wavelet transform is of interest for the anal-

ysis of non-stationary signals because it provides an
alternative to classical linear time–frequency repre-
sentations with better time and frequency localization
properties [32]. On the other hand, the role of the
wavelet transformation is to remove the non-stationary
properties of the involved signals; consequently, the
conventional estimation algorithms for stationary
signal processing can be employed in each scale of
the wavelet domain [5]. For these reasons, several
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Nomenclature

f̃(w) Fourier transform of function f(x)
Ef(x; w;�) generalized joint distribution of function f with kernel �
f̂ (a; b) wavelet transform of function f with wavelet
L2(R) set of all measurable functions that are square integrable
f∗(x) complex conjugate of function f(x)
‖ · ‖p norm de1ned in Lebesgue space Lp(R)
(f ⊗ g)(x) convolution of functions f(x) and g(x)
(f ∗ g)(x) correlation of functions f(x) and g(x)
(f ⊗1 g)(x; y) convolution in the 1rst variable of functions f and g
(f ⊗2 g)(x) convolution in the second variable of functions f and g
(f ∗1 g)(x; y) correlation in the 1rst variable of functions f and g
(f ∗2 g)(x) correlation in the second variable of functions f and g
(f ⊗⊗ g)(x) generalized convolution of functions f(x) and g(x)
M 

� �-order moment of wavelet  (x)
F2{f̂ }(a; w) Fourier transform of f̂ (a; b) in the second variable (b ↔ w)

algorithms have been developed in order to per-
form signal restoration in the wavelet domain
[1,5,17,23,40,43], but the lack of a convolution theo-
rem for the continuous or discrete wavelet transform
prevents us to 1nd optimal deconvolution 1lters in
the wavelet domain. Therefore, we think that the
establishing of such convolution theorems, besides
their theoretical importance from a mathematical
point of view, have interesting applications in signal
processing problems such as signal restoration.
Filtering for signals and images is at present ex-

tensively used in di5erent areas of signal and im-
age processing such as image enhancement, image
restoration, signal coding and image analysis [3]. Tra-
ditionally, most optical data processing systems only
perform space invariant processing operations, math-
ematically described in terms of convolutions, which
are easily implemented through the Fourier transform
(FT). The convolution theorem for this one states that
the FT of the convolution of to signals is the product
of their respective FT, that is

g(x) =
∫ +∞

−∞
dt f(t) h(x − t) ⇒

g̃(w) = f̃(w) h̃(w): (1)

Therefore, the 1ltering operation is generally reduced
to multiply the FT of the signal by the transfer function
of the 1lter, and to make the inverse Fourier transfor-
mation of the product, which provides a 1ltered ver-
sion of the signal.
The FT performs a global analysis of a given sig-

nal or image, and it is especially suited for stationary
signals. Nevertheless, in many cases of practical in-
terest the signal under investigation is non-stationary
and has a di5erent frequency content at di5erent in-
stants or localizations. One problem with the applica-
tion of the FT to such non-stationary signals is that
high-frequency terms appear and they are not local-
ized, but are added everywhere.
On the other hand, signals can also be a5ected by

non-stationary processes; for instance, optical defocus
may introduce a spatially variant blur in the signal.
Space or time-variant 1ltering [39] is mathematically
described as a generalized convolution or a Fredholm
integral equation of the 1rst kind:

g(x) =
∫ +∞

−∞
dt f(t) h(x; t): (2)

The convolution theorem no longer applies for these
space or time-varying 1lters and thus the Fourier
domain is less useful for their application [22].



Therefore, we come to the conclusion that spatially
variant signals and processes can be better charac-
terized by joint time–frequency or spatial/spatial-
frequency representations [8,13,28].
Wigner [41] introduced a bilinear distribution as a

joint representation of the phase space in Quantum
Mechanics. Later, Ville [37] derived the same distribu-
tion, nowadays called the Wigner–Ville distribution,
in the 1eld of signal processing. Another way to obtain
a joint representation is through the complex spectro-
gram, that can be expressed as a windowed FT, 1rst
introduced by Gabor [10]. Both Wigner–Ville and Ga-
bor distributions belong to the Cohen class of bilinear
distributions [7], in which each member is obtained
by introducing a particular kernel � in the generalized
distribution de1ned as

Ef(x; w;�) =
∫ ∫ ∫

R3
d� d� d��(�; �)

×f(�+ �=2)f∗(�− �=2)

×exp{2�i(�x − w�− ��)}: (3)

There exist convolution theorems for the Wigner–
Ville distribution [6] as well as for other joint rep-
resentations belonging to Cohen class [26]. Such
theorems state that the joint representation of the
convolution of two signals is the convolution in the
time or space variable, at every 1xed frequency, of
the respective joint representations, that is

Eg(x; w;�)

=
∫ +∞

−∞
dt Ef(t; w;�)Eh(x − t; w;�): (4)

Joint representations also allow us to perform space
variant 1lterings on a given function by multiplying
its joint representation by a function T (x; w), which
can be regarded as a space-variant transfer function,
and taking the inverse transformation. This process
has been carried out with the complex spectrogram
[34] and the Wigner–Ville distribution [2,11,34].
The continuous wavelet transform (CWT) [12,15]

stands for a scale-space representation and is an e5ec-
tive way to analyze non-stationary signals and images.
Typical applications are the detection and character-
ization of singularities [25], fractal analysis [21,38],
pattern recognition [20], noise reduction [18], image

processing [27], geophysics [9], aeromagnetic pro-
cessing [31] and the analysis of biomedical [42] and
meteorological [35] images. The existence of fast al-
gorithms for the calculus of the CWT [24,36] guaran-
tees its use for solving real problems.
The CWT is a scale-space representation of a given

function which may be regarded as a joint represen-
tation by identifying the scale with a frequency ratio
[15]. This fact introduces an adaptability in the anal-
ysis which joint representations lack. Nevertheless,
there is no convolution theorem for the CWT, and
this limits its usability in image and signal processing.
We have found in the literature some works relative
to convolution related 1ltering and CWT, which are
summarized below.
In [19], given a function g(x) as the convolution of

another function f(x) and a 1lter h(x), let ĝ(a; b) and
f̂(a; b) denote the CWT with the same wavelet of g(x)
and f(x), respectively. Then, it is shown that

ĝ(a; b) =
∫ +∞

−∞
dt f̂(a; t) h(b− t): (5)

This means that the CWT of the convolution be-
tween some function and a 1lter is the convolution in
the time or space variable, at every 1xed scale, of the
CWT of the function and the very 1lter.
In [33], given the convolution g(x) as above, let

f̂(a; b) denote the CWT of the function f(x) with
wavelet  (x) and let ĥ(a; b) denote the CWT of the
1lter h(x) with wavelet �(x)= (−x). Then, it is shown
that

g(x) =
1
C

∫ +∞

0

da
a2

(∫ +∞

−∞
d� f̂(a; �) ĥ(a; x − �)

)
;

(6)

where the normalization constantC is de1ned in (21).
That is, the convolution (instead of its CWT) be-

tween some function and a 1lter is the sum over all
scales of the convolution in the time or space variable,
at every 1xed scale, of their respective CWT, but with
di5erent wavelets.
A di5erent approach is given in [16], where

wavelet-based 1lters, known as scale 1lters, are
generated as follows. Let f̂ denote the CWT of a
given function with wavelet  and let h̃(w) denote
the FT of the 1lter h(x); then, a scale 1lter v(a) is



de1ned as

h̃(w) =
∑
a

v(a)  ̃ ∗(aw) (7)

and is calculated via linear squares methods. Then, it
is shown that

g(x) =
∑
a

v(a) f̂(a; x): (8)

A similar process has been used to construct space
varying scale 1lters [29,30].
Let us remark that neither result can be regarded

as a convolution theorem, because this must formu-
late the convolution equation in the wavelet domain
entirely, i.e., it must show a relationship between the
CWT of two functions and their convolution. Never-
theless, these works point out the existence of such
a convolution theorem similar to that for joint repre-
sentations as shown in (4) and the possibility to use
di5erent wavelets for every involved function. This
possibility is deeply investigated in Section 3.
This paper is organized as follows. In Section 2 we

de1ne some known topics about Fourier and continu-
ous wavelet transforms and introduce the notation we
will use in following sections. In Section 3 we derive
the convolution and correlation theorems for the con-
tinuous wavelet transform and show the e5ect of mul-
tiplying this by some transfer function. In Section 4
we initially show the validity of the theorems proved
in previous section and then apply them to a computer
simulation of a signal restoration problem; compar-
isons with Fourier based deconvolution are provided
showing that the signal restoration method proposed in
this paper yields better restorations. Finally, we sum-
marize the main conclusions of this work in Section 5.

2. Background

We devote this section to de1ne some known topics
about FT and CWT and introduce the notation we will
use in next section. Most results in this section come
from [12,15].
Given 16p¡∞, the Lebesgue space Lp(Rm)

is de1ned as the set of all measurable functions
f : Rm → C for which

‖f‖p =
(∫

Rm
dx̃|f(̃x)|p

)1=p
¡∞: (9)

It is well known that Lp(R) is a Banach space with
norm ‖ · ‖p and L2(R) is a Hilbert space with inner
product 〈f; g〉 = ∫R dxf(x)g∗(x), where (·)∗ denotes
complex conjugate.
The FT of a function f∈L2(R) is de1ned as

f̃(w) =
∫ +∞

−∞
dx f(x) exp{−2�ixw} (10)

which also belongs to L2(R). The reconstruction for-
mula is given by

f(x) =
∫ +∞

−∞
dw f̃(w) exp{2�ixw}: (11)

If f∈L1(R)∩L2(R), then f̃(w) is a bounded function
in L2(R), i.e., there exists a positive real number M
such that |f̃(w)|6M for all w∈R.
If f and h are complex-valued functions de1ned on

R, their convolutionf⊗h is de1ned as a new function:

g(x) = (f ⊗ h)(x) =
∫ +∞

−∞
dt f(t) h(x − t) (12)

provided that the integral exists. If f∈L2(R) and
h∈L1(R), then such an integral exists almost every-
where and f⊗h∈L2(R) with ‖f⊗h‖2=‖f‖2 ·‖h‖1.

If f and h are complex-valued functions de1ned on
R2, it is possible to convolve them in just one variable
as follows:

g1(x; y) = (f ⊗1 h)(x; y)

=
∫ +∞

−∞
dt f(t; y) h(x − t; y); (13)

g2(x; y) = (f ⊗2 h)(x; y)

=
∫ +∞

−∞
dt f(x; t) h(x; y − t); (14)

provided that both integrals exist. If f∈L2(R2) and
h∈L1(R2), then such integrals exist almost every-
where and g1; g2 ∈L2(R2).
An operator quite related to the convolution is

the so-called correlation operator. If f and h are
complex-valued functions de1ned on R, their corre-
lation f ∗ h is de1ned as a new function

g(x) = (f ∗ h)(x) =
∫ +∞

−∞
dt f(t) h(t + x); (15)

provided that the integral exists. If f∈L2(R) and
h∈L1(R), then such an integral exists almost every-
where and f ∗ h∈L2(R) with ‖f ∗ h‖2 =‖f‖2 · ‖h‖1.



When f ≡ h, f ∗ f is known as the autocorrela-
tion of f, while otherwise f ∗ h is known as the
cross-correlation between f and h.
If f and h are complex-valued functions de1ned on

R2, it is possible to correlate them in just one variable
as follows:

g1(x; y) = (f ∗1 h)(x; y)

=
∫ +∞

−∞
dt f(t; y) h(t + x; y); (16)

g2(x; y) = (f ∗2 h)(x; y)

=
∫ +∞

−∞
dt f(x; t) h(x; t + y); (17)

provided that both integrals exist. If f∈L2(R2) and
h∈L1(R2), then such integrals exist almost every-
where and g1; g2 ∈L2(R2).
Given two functions f∈L2(R) and h∈L2(R2),

their generalized convolution is de1ned as the Fred-
holm integral equation of the 1rst kind:

g(x) = (f ⊗⊗h)(x) =
∫ +∞

−∞
dt f(t) h(x; t) (18)

which is also known as a space-variant 1ltering in
optics and engineering literature [2,11], as opposed to
the space invariant 1ltering given by the convolution
de1ned in (12).
Given a 1xed function  ∈L2(R), called wavelet,

consider its translations and dilations de1ned as

 ab(x) =
1

|a|1=2
(
x − b
a

)
(19)

with a; b∈R and a �= 0. These functions are scaled
so that their L2(R) norms are independent of a. The
CWT of a function f∈L2(R) with wavelet  is now
de1ned as

f̂ (a; b) =
∫ +∞

−∞
dx f(x)  ∗

ab(x)

=
1

|a|1=2
∫ +∞

−∞
dx f(x)  ∗

(
x − b
a

)
: (20)

A wavelet function  (x) is said to be admissible if

0¡C =
∫ +∞

−∞
dw

| ̃ (w)|2
|w| ¡∞: (21)

If this is the case, the CWT f̂(a; b) is invertible on its
range, and an inverse transform is given by the relation

f(x) =
1
C

∫ ∫ +∞

−∞

da db
a2

f̂ (a; b)  ab(x); (22)

where the integral over a is understood to exclude a=0
(integrate over 0¡�6 |a|¡∞, then take the limit
� → 0).
The most important properties of wavelets are

admissibility (21) and regularity conditions. As
can be seen in (20), the wavelet transform of a
one-dimensional function is two-dimensional and for
most practical applications this is not a desirable prop-
erty. Therefore, one imposes some additional condi-
tions on the wavelet functions in order to make the
wavelet transform decrease quickly with scale. These
are the regularity conditions and they state that the
wavelet function should have some smoothness and
concentration in both time and frequency domains.
Regularity is a quite complex topic which is related
to the concept of vanishing moments; the number of
vanishing moments required depends heavily on the
application. The moments of a wavelet  ∈L2(R) are
de1ned as

M 
� =

∫ +∞

−∞
dt t�  (t): (23)

Let L be the Hilbert space of all measurable func-
tions H (a; b) that are square integrable with respect to
the weight function |a|−2, and let F be the space of
all wavelet transforms with respect to a 1xed wavelet
function  (x). It has been shown [15] that F is a
proper subspace of L; that is, not every function
H (a; b)∈L is the CWT of some function f∈L2(R).
If we apply the reconstruction formula (22) to such a
function H (a; b):

h(x) =
1
C

∫ ∫ +∞

−∞

da db
a2

H (a; b)  ab(x); (24)

then the function h(x) belongs to L2(R) and it
is the unique function such that for any other
function f∈L2(R) it is ‖H (a; b) − f̂ (a; b)‖L ¿
‖H (a; b) − ĥ (a; b)‖L. The function h(x) is known
as the least-squares approximation in L2(R) to the
inverse transform of H (a; b).
It is important to note that in (20) and (22) the

wavelet functions are not speci1ed. This is a di5erence
between the CWT and the FT, or other transforms. The



theory of wavelet transforms deals with the general
properties of the wavelets and the wavelet transforms
only. The choice of the wavelet function depends on
the particular application. For space–frequency anal-
ysis, we need a wavelet that is optimally localized in
terms of both spatial width and frequency bandwidth.
For smooth signals, we generally want a wavelet that
is itself smooth and therefore has good frequency lo-
calization. In contrast, signals that contain disconti-
nuities are better analyzed using wavelets with good
spatial localization to accurately map rapid changes
in the signal. There are several other useful properties
that the wavelet function can possess, as its orthogo-
nality, complexity, width or shape.

3. The convolution theorem

In [33] it is pointed out the possibility to use dif-
ferent wavelet functions for the signal and the 1lter.
Assuming that we have selected the best wavelets for
both, what is then the best choice for the convolu-
tion or correlation? It is somewhat natural to con-
sider the convolution or correlation of the respective
wavelets provided to satisfy the admissibility condi-
tion and have a suPcient number of vanishing mo-
ments (at least, the same number as the wavelet used
for the original signal).

Theorem 1. Let  1 ∈L2(R) and  2 ∈L1(R)∩L2(R) be
two admissible wavelets withN1 andN2 vanishingmo-
ments, respectively, and consider two new wavelets
 3 = ( 1 ⊗  2) and  4 = ( 1 ∗  2). Then, both  3 and
 4 are admissible wavelets too and have N1 +N2 van-
ishing moments.

Proof. Since  1 ∈L2(R) and  2 ∈L1(R), we know
that both  3;  4 ∈L2(R) too. De1ne

Ci =
∫ +∞

−∞
dw

| ĩ(w)|2
|w| (25)

for i = 1; : : : ; 4. Since  1(x) and  2(x) are admissi-
ble wavelets, then according to (21) we know that
0¡C1; C2 ¡∞. Taking into account some properties
of the FT, we have

˜3(w) =  ̃ 1(w)  ̃ 2(w); (26)

˜4(w) =  ̃ 1(w)  ̃ ∗
2 (w); (27)

from which we can 1nd

| ̃ 3(w)|= | ̃ 4(w)|= | ̃ 1(w)| | ̃ 2(w)|: (28)

Therefore, we get

0¡C3 = C4 =
∫ +∞

−∞
dw

| 1̃(w)|2 | ̃2(w)|2
|w| : (29)

Since  2 ∈L1(R), its FT  ̃ 2(w) is a bounded function,
so that there exists a positive real number M such that
| ̃ 2(w)|6M for all w∈R. Then, we arrive at:

0¡C3 = C46M 2
∫ +∞

−∞
dw

| ˜1(w)|2
|w|

= M 2 C1 ¡∞: (30)

Therefore, the new de1ned wavelets  3 and  4 satisfy
the admissibility condition (21). Calculate now the
moment � of wavelet  3, de1ned as

M 3
� =

∫ +∞

−∞
dt t�  3(t): (31)

By inserting (12) for  3(t) into above equation and
changing the order of integration, we 1nd

M 3
� =

∫ +∞

−∞
dx  1(x)

∫ +∞

−∞
dt t�  2(t − x): (32)

If we perform the change of variables y = t − x into
the inner integral and expand (x + y)� according to
Newton binomial expansion, we arrive at

M 3
� =

�∑
k=0

(
�

k

) ∫ +∞

−∞
dx xk  1(x)

×
∫ +∞

−∞
dy y�−k  2(y); (33)

that is

M 3
� =

�∑
k=0

(
�

k

)
M 1

k M 2
�−k : (34)

An analogous reasoning provides

M 4
� =

�∑
k=0

(−1)k
(

�

k

)
M 1

k M 2
�−k : (35)

Let be �6N1+N2. If k6N1, thenM 1
k =0 because  1

has N1 vanishing moments; otherwise, �− k6N1 +
N2−k6N1+N2−N1=N2, so that M

 2
�−k =0 because

 2 has N2 vanishing moments. Therefore, all addends



in (34) and (35) are zero and M 3
� = M 4

� = 0 for all
�6N1 + N2.

Since both the convolution and correlation of two
admissible wavelets satisfy the required admissibility
and regularity conditions, we may use them to analyze
our convolved and correlated signals. Once the signal
and the 1lter have been analyzed with two di5erent
wavelet functions and their convolution has been an-
alyzed with the convolution of the chosen wavelets,
what is the relation between the three obtained CWT?
As it was pointed out in Section 1, such a relationship
is quite similar to the convolution theorem for joint
representations shown in (4).

Theorem 2 (Wavelet convolution theorem). Let
f ∈L2(R) and  h ∈L1(R) ∩ L2(R) be two admissi-
ble wavelets, and let f̂ f and ĥ h denote the CWT of
two functions f∈L2(R) and h∈L1(R)∩ L2(R) with
wavelets  f and  h, respectively. If g = (f ⊗ h) and
 g = ( f ⊗  h), then

ĝ  g(a; b) =
1

|a|1=2 (f̂
f ⊗2 ĥ h)(a; b): (36)

Proof. The CWT of g(x), given by (20), may be
rewritten as

ĝ  g(a; b) =
1

|a|1=2
∫ ∫

R3
dx dt dy f(t) h(x − t)

× ∗
f (y)  

∗
h

(
x − b
a

− y
)

: (37)

Performing the change of variables �= x− t and $=
b+ ay − t, (37) may be rewritten as

ĝ  g(a; b) =
1

|a|3=2
∫ +∞

−∞
d$
∫ +∞

−∞
dt f(t)

× ∗
f

(
t − (b− $)

a

)

×
∫ +∞

−∞
d� h(�)  ∗

h

(
�− $

a

)
; (38)

from which it is easy to 1nd

ĝ  g(a; b) =
1

|a|1=2
∫ +∞

−∞
d$ f̂ f(a; b− $) ĥ h(a; $)

=
1

|a|1=2 (f̂
f ⊗2 ĥ h)(a; b): (39)

The correlation of two signals is an operation quite
related to the convolution. In fact, the correlation the-
orem for the FT is quite similar to the convolution
theorem; the only di5erence is the complex conjugate
that appears in the FT of the 1lter, that is, g̃(w) =
f̃(w) h̃∗(w). Therefore, it is hoped that the CWT satis-
1es a correlation theorem similar to the previous con-
volution theorem.

Theorem 3 (Wavelet correlation theorem). Let
f ∈L2(R) and  h ∈L1(R) ∩ L2(R) be two admissi-
ble wavelets, and let f̂ f and ĥ h denote the CWT of
two functions f∈L2(R) and h∈L1(R)∩ L2(R) with
wavelets  f and  h, respectively. If g = (f ∗ h) and
 g = ( f ∗  h), then

ĝ  g(a; b) =
1

|a|1=2 (f̂
f ∗2 ĥ h)(a;−b): (40)

Proof. The CWT of g(x), given by (20), may be
rewritten as

ĝ  g(a; b) =
1

|a|1=2
∫ ∫ ∫

R3
dx dt dy f(t) h(t + x)

× ∗
f (y)  

∗
h

(
y +

x − b
a

)
: (41)

Performing the change of variables �= t + x and $=
b+ t − ay, Eq. (41) may be rewritten as

ĝ  g(a; b) =
1

|a|3=2
∫ +∞

−∞
d$
∫ +∞

−∞
dt f(t)

× ∗
f

(
t − ($ − b)

a

)

×
∫ +∞

−∞
d� h(�)  ∗

h

(
�− $

a

)
; (42)

from which it is easy to 1nd

ĝ  g(a; b) =
1

|a|1=2
∫ +∞

−∞
d$ f̂ f(a; $ − b) ĥ h(a; $)

=
1

|a|1=2 (f̂
f ∗2 ĥ h)(a;−b): (43)



According to above theorems, the CWT allows us to
perform any linear 1ltering. Although this transform
is far too redundant to yield fast algorithms, the main
feature of Theorems 2 and 3 is that the convolution
and correlation operators apply at every scale indepen-
dently of each other, and this fact allows us to deeply
understand the e5ect of the 1lter on every scale of the
given signal. This property may be very useful in de-
convolution related problems, where it will be possi-
ble to design a di5erent algorithm to every scale, de-
pending on the properties of the 1lter at such a scale
and the condition number of the corresponding inverse
problem.
Despite of previous considerations, the main draw-

back of Theorems 2 and 3 is that the convolution and
correlation operators do not disappear in the wavelet
domain, and this implies no time reduction in the ap-
plication of such operators with respect to the spatial
domain. This is not the case with the FT. The convolu-
tion and correlation theorems for the FT are powerful
tools to perform space invariant 1ltering processes be-
cause they reduce these processes to simply multiply
the FT of the signal by the transfer function associated
with the 1lter.
It would be desirable to perform some kind of 1l-

tering by simply multiplying the CWT by a transfer
function; for joint representations this product per-
forms a spatially variant 1ltering on the given signal.
The similarity between the convolution theorems for
joint representations and CWT leads to think about
the possibility to perform such space varying 1ltering
operations in the wavelet domain.
Let f̂ denote the CWT of a function f∈L2(R)

with an admissible wavelet ∈L2(R) and let
H ∈L2(R2). De1ne G(a; b) = f̂ (a; b)H (a; b), which
may not be the CWT of any function in L2(R); the
least square approximation to such a function is ob-
tained by applying the reconstruction formula (22) to
G(a; b). Therefore,

g(x) =
1
C

∫ ∫ +∞

−∞

da db
a2

f̂ (a; b)

×H (a; b)  
(
x − b
a

)
(44)

with C de1ned in (21). By inserting the de1nition
of f̂ (a; b) according to (20) into above equation and

changing the order of integration, we 1nd

g(x) =
1
C

∫ +∞

−∞
dt f(t)

×
(∫ ∫ +∞

−∞

da db
|a|5=2 H (a; b)

× ∗
(
t − b
a

) (
x − b
a

))
: (45)

If we de1ne

h(x; t) =
1
C

∫ ∫ +∞

−∞

da db
|a|5=2 H (a; b)

× ∗
(
t − b
a

) (
x − b
a

)
(46)

provided the above integral to converge, then g(x) =
(f ⊗ ⊗ h)(x) is the function in L2(R) whose CWT
with wavelet  is as close as possible to the product
f̂ (a; b)H (a; b).

Although we have not found an inverse formula for
obtaining the transfer function H (a; b) which corre-
sponds to a given kernel h(x; t), this result raises an
interesting question. Is it possible to 1nd useful 1l-
ters such that their Fourier transfer functions cannot
be well approximated by rational functions but their
action is diagonal in the wavelet domain? We think
that this question might be of interest for the signal
processing community, so that future work may relay
on it.

4. Numerical examples

In this section, two numerical examples are given
to illustrate (i) the validity of the theorems proved in
previous section and (ii) the usability of such theo-
rems in signal restoration problems in the presence of
additive noise. In both examples, the test signals have
been analyzed with the 1rst and second derivatives of
the well–known normal distribution with zero mean
and unit variance, given by

 1(x) =

√
2√
�
x exp

{
−x2

2

}
(47)

and

 2(x) =
2√
3
√
�
(1− x2) exp

{
−x2

2

}
; (48)



respectively. It can be shown that both wavelets satisfy
the admissibility condition (21) with coePcients C1=
44:5466 and C2 = 29:6977, the wavelet  1(x) has a
unique vanishing moment and the wavelet  2(x) has
two vanishing moments.
In the following examples we have also employed

the convolution  3 =  1 ⊗  2 and the correlation  4 =
 1 ∗  2 of the previous wavelets, whose analytical ex-
pressions are given by

 3(x) =
1

2
√
6
x(x2 − 6) exp

{
−x2

4

}
(49)

and  4(x) =− 3(x) because of the symmetry proper-
ties of  1(x) and  2(x). Both new wavelet functions
also satisfy the admissibility condition (21) with co-
ePcients C3 = C4 = 52:6379 and have three vanish-
ing moments, in accordance with Theorem 1. All four
wavelet functions are depicted in Fig. 1.
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Fig. 1. Wavelet functions used to analyze the test signals: (a) 1rst derivative of a gaussian distribution of zero mean and unit variance,
 1, (b) second derivative of a gaussian distribution of zero mean and unit variance,  2, (c) convolution of previous wavelets,  3 =  1 ⊗  2,
and (d) correlation of the 1rst two wavelets,  4 =  1 ∗  2.

Example 1. Consider a test signal de1ned as

f(x) = exp
{
− (x − 1)2

6

}
cos(3(x − 1)) (50)

whose plot is shown in Fig. 2(a). The validity of the
wavelet correlation theorem is established by calculat-
ing the autocorrelation of the test signal in the wavelet
domain using Theorem 3 and comparing the result
with the autocorrelation obtained using the correlation
theorem for the FT.

The generated test signal is analyzed with wavelets
 1(x) and  2(x) (all integrals have been numerically
evaluated using the midpoint quadrature rule). Ac-
cording to Theorem 3, both CWT are correlated at
every 1xed scale in order to obtain the CWT of the
autocorrelation of the test signal with wavelet  4(x).
Finally, such an autocorrelation is obtained by ap-
plying the reconstruction formula (22) to its CWT.



This autocorrelation of the test signal is shown in Fig.
2(b) together with the autocorrelation obtained in the
Fourier domain. Both autocorrelations are identical,
which constitutes an empirical con1rmation of the va-
lidity of the wavelet correlation theorem proved in this
work.

Example 2. In this example, we present results that
demonstrate the use and applicability of the wavelet
convolution theorem in order to restore degraded
signals and compare them with the restoration ob-
tained working in the Fourier domain. Consider now
a non-stationary test signal de1ned as:

f(x) =




0 if x6 2;

x − 2 if 2¡x6 3;

1 if 3¡x6 4;

5− x if 4¡x6 6;

−1 if 6¡x6 7;

x − 8 if 7¡x6 8;

2 exp
{
(x − 15)2

10

}

×[cos((x − 15)2)− a] if x¿ 8
(51)

whose plot is shown in Fig. 3(a). A value a =
0:2337977 has been chosen because in such a case
the test signal veri1es

∫ +∞
−∞ dx f(x) = 0. This sig-

nal has been blurred with a gaussian 1lter h(x) with
standard deviation &h = 0:15 and random white noise
n(x) of zero mean and standard deviation &n = 0:2
has been added; Fig. 3(b) shows the degraded signal
g(x) = (f ⊗ h)(x) + n(x).

We have 1rst deconvolve this degraded signal with
a Wiener-type 1lter de1ned in the Fourier domain; if
h̃(w) and g̃(w) are the FT of the gaussian blur and
the degraded signal, respectively, then the FT of the
restored signal is given by

f̃′(w) = g̃(w)
h̃∗(w)

|h̃(w)|2 + �N=|h̃(w)|2 ; (52)

where N is the maximum value of |h̃(w)|2 and � is a
regularization parameter. Fig. 4(a) shows the restored
signal f′(x) for �= 0:001.

Now, we have deconvolved the degraded signal in
the wavelet domain taking into account Theorem 2.

-6 -3 0 3 6
x

-0.5

0

0.5

1

f (
x)

Test signal

-12 -6 0 6 12
x

-1

- 0.5

0

0.5

1

1.5

A
f
(x

)

Autocorrelation of test signal

(a)

(b)

Fig. 2. (a) Test signal used in the 1rst numerical example. (b) Au-
tocorrelation of the test signal shown in (a) obtained in the Fourier
domain (continuous line) and in the wavelet domain (boxes).

The gaussian blur has been analyzed with wavelet
 1(x) and the degraded signal with wavelet  3(x),
so that the restored signal must be synthesized with
wavelet  2(x). Given the CWT f̂ (a; b) of some func-
tion f(x), let F2{f̂ }(a; w) be its FT in the second
variable (b ↔ w are a Fourier pair), that is

F2{f̂ }(a; w)

=
∫ +∞

−∞
db f̂ (a; b) exp{−2�ibw}: (53)

Deconvolution is then performed at every 1xed
scale by applying the same Wiener-type 1lter than
before, that is

F2{f̂′ 2}(a; w)
=F2{ĝ  3}(a; w)

× (F2{ĥ 1}(a; w))∗
|F2{ĥ 1}(a; w)|2 + �N=|F2{ĥ 1}(a; w)|2 ;

(54)
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Fig. 3. (a) Test signal used in the second numerical example.
(b) Degraded signal obtained by convolving (a) with a gaussian
1lter and adding white noise.

where N is the maximum value of |F2{ĥ 1}(a; w)|2.
Fig. 4(b) shows the restored signal f′(x) for the same
value of the regularization parameter than before, �=
0:001. In order to obtain a quantitative measure of the
quality of the restorations, de1ne the percentage error
of a restoration f′(x) as

error = 100

(∫ +∞
−∞ dx (f(x)− f′(x))2∫ +∞

−∞ dx f(x)2

)1=2
: (55)

Restored signal in the Fourier domain (Fig. 4(a))
has error = 5:7%, while the restoration in the wavelet
domain (Fig. 4(b)) has error = 3:3%. These results
show the usefulness of Theorem 2 in order to perform
signal restoration in the presence of noise, although
the employed deconvolution 1lter may be improved
because it is not an optimal one, since it would be
possible to use a di5erent regularization parameter for
every scale; this remains an open question for future
research.
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Fig. 4. Results for the second numerical example: (a) Restored
signal obtained with a Wiener-type 1lter in the Fourier domain.
(b) Restored signal obtained with a Wiener-type 1lter in the
wavelet domain.

5. Concluding remarks

In this work we have studied the application of the
CWT to perform signal 1ltering processes. We have
1rst shown that the convolution and correlation of two
wavelet functions satisfy the required admissibility
and regularity conditions, and then we have derived
convolution and correlation theorems for the CWT,
which are similar to that of other joint time–frequency
representations. The main feature of such theorems is
that the convolution and correlation operators apply
at every scale independently of each other, and this
fact allows us to deeply understand the e5ect of the
1lter on every scale of the given signal. We have then
shown that multiplication of the CWT of a given sig-
nal by some transfer function is equivalent to perform
a spatially variant 1lter on such a signal; it remains
for future work the search for useful 1lters that can
be better de1ned in the wavelet domain than in the
Fourier domain.



We have also shown results from two numerical
examples that have illustrated the validity of the theo-
rems proved in this work and their usability in signal
restoration problems in the presence of additive noise.
Comparisons between restorations of a non-stationary
test signal in Fourier and wavelet domains have
demonstrated the bene1t of using the wavelet convo-
lution theorem for performing signal deconvolution.
It remains an open question the search for an optimal
deconvolution 1lter de1ned in the wavelet domain.
Results proved in this paper show a close paral-

lelism between convolution related 1ltering properties
of joint time–frequency representations and CWT and
may extend the range of applications of the later one.
Future work may rely on the search for analogous
convolution and correlation theorems for the discrete
wavelet transform; the main drawbacks are that scal-
ing and wavelet functions are not translation invari-
ants and must satisfy more restrictive properties so
that their convolutions and correlations are no longer
usable ones except in particular cases.
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