
XV Spanish Meeting on Computational Geometry, June 26-28, 2013
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Abstract

An intriguing conjecture of Nandakumar and Ramana
Rao is that for every convex body K ⊆ R2, and for
any positive integer n, K can be expressed as the
union of n convex sets with disjoint interiors and each
having the same area and perimeter. The �rst di�cult
case - n = 3 - was settled by Bárány, Blagojevi¢, and
Szucs using powerful tools from algebra and equivari-
ant topology. Here we give an elementary proof of
this result in case K is a triangle, and show how to
extend the approach to prove that the conjecture is
true for triangles.

Introduction

Let K be a convex body in the plane. Nandakumar
and Ramana Rao [7] noticed that if a ham-sandwich
cut for K were rotated through π radians - always
maintaining a bisection of K - then at some point in
this process, K is partitioned into two convex parts
with disjoint interiors, and each having the same area
and perimeter. A slightly more careful argument us-
ing this fact, along with induction, was given to show
that for n = 2k, K can always be partitioned into n
convex subsets, each with the same area and perime-
ter. They made the intriguing

Conjecture 1 For every n ∈ N and all convex bodies
K ⊆ R2, K is the disjoint union of n convex pieces,
each with the same area and perimeter.

The conjecture describes an n−equipartition ofK (be-
cause of the n equal areas) which is in addition fair,
by virtue of the equal perimeters. Observe that, in
the related problems of cake partitioning [1] only the
perimeter of ∂K is taken into account.
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Bárány et. al. [3], using heavy-duty tools from alge-
bra and equivariant topology settled the case n = 3:
A 3−fan is a point P in the plane with three rays
emanating from it. It is convex if all angles are at
most π. It equipartitions K if the three rays divide
K into three regions of equal area, and it is fair, if
these regions also have equal perimeter. Bárány et.
al. showed that there is a convex 3−fan that makes
a fair equi-partition of K. Subsequently, Aronov and
Hubard [2] and then Karasev [6], showed that the con-
jecture was true for n = pk, a prime power, and also
in dimension d ≥ 2, with �area� replaced by �volume�
and �perimeter�, by �surface area�. Blagojevi¢ and
Ziegler found some problems with the proofs in these
two papers, so they established the results - and more
- using di�erent tools. In the present paper, in an at-
tempt to understand some of the geometric features
of this problem and why - or why not - it may be
di�cult, we use (only) elementary methods to study
the conjecture for R2, and when K is a triangle. We
call a 3−fan interior for K if the apex P is interior to
K; otherwise it is exterior. In the �rst case, all three
rays play a role in the partition. In the second case,
the partition is simply via two chords (which might
meet on the boundary of K, but not in its interior).
Because our results concern only exterior 3-fans, we
will state them using chords. A main result of this
paper is

Theorem 1 Every triangle has a fair equi-partition
de�ned by two disjoint chords.

More importantly, the ideas used to prove this re-
sult can be extended to show that every triangle has
a fair n-partition de�ned by n− 1 disjoint chords.

Corollary 2 For every n ≥ 1, every triangle has a
fair, n-equipartition using n− 1 disjoint chords.

In [7] it was observed that when K is a triangle,
it can be covered by n = k2 disjoint triangles simi-
lar to K, and all with the same area (and perimeter).
But Theorem 1 is a new step toward resolving Con-
jecture 1, if only for triangles.
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Figure 1: Illustration for Lemma 2.

1 Some details

In this section we describe some ideas behind the
proofs for our results. The full proofs will appear in
the actual paper.
We are able to understand this problem in the tri-

angle case partly due to a simple tool that describes
how perimeters change when a chord in a partition is
moved slightly while still preserving the areas of all
regions.
We use a Cartesian coordinate system in the Eu-

clidean plane, and denote by AB and |AB|, respec-
tively, the segment de�ned by points A and B and its

length. Vector
−−→
OP and point P will be identi�ed if the

context is clear enough. The list of points AB · · ·D
will be used to denote the corresponding polygon and,
�nally, π(·) will be the perimeter of the polygon.
Let A, B, C be non collinear points, and �x A as

the origin of the coordinate system.

Lemma 3 Consider points P ∈ AB and Q ∈ AC
such that |AP | ≤ |AQ|. Let P ′ = tP and let Q′ = 1

tQ
(then the area of APQ equals the area of AP ′Q′).

1. π(AP ′Q′) and π(BCQ′P ′) are convex functions
of t, achieving their minima when |AP ′| = |AQ′|.

2. If we write ∆π1 = π(AP ′Q′) − π(APQ) and
∆π2 = π(BCQ′P ′) − π(BCQ′P ′) then |∆π1| ≥
|∆π2|.

Consider a unit area triangle ∆ = ABC. Without
loss of generality, we can assume that the smallest
side is AB and that the coordinates of its vertices are
A = (0, 0), B = (b, 0), and C = (c, 2/b), with b > 0
and c ≥ b/2, as in the �gure above. If we take points
U = (b/3, 0) and V = (2b/3, 0), ∆ is partitioned into
∆1 = CAU,∆2 = CUV , and ∆3 = CV B, all with the
same area. The goal is to rotate the chords CU and
CV maintaining equality of all three areas, but in such
a way as to force all three perimeters to coincide. To
describe this process unambiguously, we place points
D and E on the boundary of ∆. Initially both points
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Figure 2: Rotation for an isosceles triangle.

are placed on C. We then manipulate the chords DU
and EV by moving the endpoints along the boundary
of ∆, thus altering the three sets in the partition. We
use the notation πi to denote the perimeter of region
i.

The case where x = b/2, and ∆ is isosceles, is
easiest. Here, we move chord DU counter-clockwise
(maintaining the area of ∆1 = DAU), and chord EV
clockwise (maintaining the area of ∆3 = EV B) un-
til U and V coincide at F = (b/2, 0) (see Figure 2).
During this process the middle region is a pentagon
∆2 = CDUV E, ending at ∆2 = CDFE. If we also
keep U+V = (b, 0), there will be a position where the
partition is fair, by the intermediate value theorem,
since ∆1 and ∆3 initially have equal perimeters, but
larger than that of ∆2, and at the end, π1 = π3 ≤ π2,
by virtue of AB being the smallest side of ∆.

When ∆ is not isosceles, we rotate DU , again main-
taining the area, till the perimeters of two regions are
equal. Observe that, during the rotation, both π1 and
π2 decrease. If b/2 < c < 2b/3, because we start with
perimeters π1 > π3 > π2, we must reach case 1 in
Figure 3, where π1 = π3 > π2. If c ≥ 2b/3, we start
with perimeters π1 > π2 ≥ π3. When rotating DU we
can get π2 = π3 < π1 (case 2) or π1 = π2 > π3 (case
3).

Using Lemma 3 we know how to proceed in each
case. For case 1, we rotate the chord EV clockwise,
and the chordDU counterclockwise, preserving equal-
ity for the areas of regions 1 and 3. For case 2, we
rotate the chords in the same way, maintaining now
equal areas for regions 2 and 3. Finally, for case 3
both chords are rotated counterclockwise, keeping ar-
eas of regions 1 and 2 equal. Theorem 1 will be proven
if we show that during this rotation, equality of the
three perimeters is achieved.

For cases 1 and 2, the key is to observe that the foot
of the left chord reaches the midpoint of AB �rst. If U
is the midpoint of AB, we consider the triangle UBE′,
congruent with AUD (see Figure 4,left). From this,
it is not hard to see that ∆3 has to be V BE, with
V ∈ UB and that π1 < π2.

For case 3, consider a partition into three pieces of
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Case 2: π2 = π3 < π1
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Case 1: π1 = π3 > π2

Case 3: π1 = π2 > π3
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Figure 3: After the �rst rotation, two perimeters are
equal.
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Figure 4: Situation at the end of the rotation.

equal area (but di�erent perimeters) using two chords
parallel to BC (see Figure 4,right). In this setting, it
can be shown that π1 + π2 < 2π3. Therefore, if we
consider now the chord that divides AV E into two
pieces of equal area and perimeter, from Lemma 3 it
follows that perimeters of regions 1 and 2 are smaller
and in that situation we must have π1 = π2 < π3.

The approach of the arguments above can be ap-
plied to prove the existence of a fair n-equipartition of
every triangle. Take points Vi = (ib/n, 0) and points
Ui, i = 0, . . . , n; initially all Ui = C. The n−1 chords
UiVi, i = 1, . . . , n − 1 partition ∆ into n triangles
(∆i = Ui−1Vi−1Vi, i = 1, . . . , n), of equal area. We
order the chords left to right, and so the chord with
foot at Vi is the i-th chord. The chords for which
Vi < c are called left chords, and the rest are the right
chords.

We start by rotating the �rst chord counterclock-
wise, until the perimeter of the �rst region is equal,
either to the perimeter of the second region, or to
the perimeter of the last one. In the �rst case, we

continue by rotating the �rst and the second chord
(both counterclockwise), maintaining equality of the
perimeters of the �rst two regions. In the second case,
we continue by rotating the �rst chord counterclock-
wise, and the last chord clockwise, again maintaining
equal perimeters for the involved regions. This pro-
cess can be iterated, and when we reach the �central
region� (the one in between the last left chord and the
�rst right chord), we will have cases analogous to the
ones in Figure 3. We proceed in the same way here,
and it can be shown than equality of all perimeters
is obtained before reaching a critical situation. The
proof of this fact is more involved and will appear in
the full version of this paper.

2 Discussion

It is clear that an equilateral triangle has two distinct
fair 3-equipartitions that are interior (as well as three
exterior ones - for each vertex, the process outlined in
the previous section produces an equi-partition with
an exterior 3-fan). It is easy to see that skinny tri-
angles do not have fair interior 3-equipartitions. It
would be interesting to characterize which triangles
have equipartitions both exterior and interior, and
which have only exterior ones.
It is easy to see that fair equipartitions of disks have

to be radial, with the vertex at the center. Therefore,
we cannot expect to extend the approach of this paper
to the general case. Nevertheless, some convex bod-
ies may have fair n-equipartitions produced by n− 1
disjoint chords. It would be interesting to try to char-
acterize this family.
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