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Abstract 

This paper is devoted to correlate the microstructure and room temperature 

mechanical properties of single-wall carbon nanotube (SWNT) reinforced 3 mol% yttria 

stabilized tetragonal zirconia with high SWNT content (2.5, 5 and 10 vol%).  Fully 

dense composites were prepared by using a combination of aqueous colloidal powder 

processing and Spark Plasma Sintering. SWNTs were located at the ceramic grain 

boundaries and they were not damaged during the sintering process. The weak 

interfacial bonding between SWNTs and ceramic grains together with the detachment of 

SWNTs within thick bundles have been pointed out as responsible for the decrease of 

hardness and fracture toughness of the composites in comparison with the monolithic 

3YTZP ceramic 
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 2 

1. Introduction 

 

During the last decade, there has been an increasing interest in the development 

of advanced ceramic matrix composites containing carbon nanotubes (CNTs)
1-3

, as it is 

expected that some of the attractive properties of the CNTs
4,5

 (high Young´s modulus, 

high tensile strength, high electrical conductivity or good thermal conductivity) will be 

transferred to the resulting composites. However, up to date, the positive effects of 

CNTs addition on the mechanical properties of ceramic matrix composites are still 

matter of debate. Whereas some groups reported enhancements in properties as fracture 

toughness or creep resistance
6-10

, other authors found no improvements or even a 

detrimental effect of the CNTs addition
11-14

. 

The disparity of results can be related to the different processing methods used 

to prepare the composites, giving place to very different microstructures or not 

completely densified composites. The key points in the processing of these type of 

composites are, on one hand, a homogeneous dispersion of CNTs in the ceramic matrix 

together with a good interfacial bonding between both materials, and on the other, a 

high densification of the material. Several approaches, including different powder 

processing and sintering methods have been proposed in literature. Physical mixing 

under wet conditions by ultrasonication, ball milling or attrition milling has been 

conducted to disperse CNTs into alumina or zirconia powders
2,6,8-11

. Other approaches 

as colloidal processing including heterocoagulation, use of dispersants or charge 

stabilization have been also discussed in literature
13-17

. Recently, the in-situ growth of 

multi-wall carbon nanotubes (MWNT) onto alumina
18

 or zirconia
19

 particles was 

reported as a good approach to obtain a good dispersion of the CNTs in the ceramic 

matrix and a high density after consolidation by spark plasma sintering (SPS).   
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 3 

Among the published studies on ceramic matrix composites in recent years 

several works were devoted to the study of zirconia-based composites, as the superior 

mechanical properties and good ionic conductivity of yttria-doped zirconia make this 

ceramic a technologically interesting material for a wide range of applications such as 

structural material, solid oxide fuel cells or oxygen sensors
20-22

.  

Most of the studies about CNTs reinforced zirconia reported heterocoagulation 

or use of dispersants for the processing of the composite powder
13-15,23,24

, sometimes 

combined with other techniques such as slip-casting
14

 or spray drying
25

. Regarding the 

densification step, hot pressing
13,25

 or conventional
14

 sintering were used by some 

authors. Garmendia et al
14

 reported a colloidal processing route based on the strong  

attractive interaction of the MWNT and the 3 mol% yttria-doped zirconia (3YTZP) 

powder by heterocoagulation, using poly(ethylenimine) (PEI) as cationic dispersant. 

After slip casting and conventional sintering they obtained composites with 96% of the 

theoretical density. In their study, significant improvements in hardness or fracture 

toughness were not achieved. Zhou et al
25

 combined heterocoagulation using 

polyacrylate acid (PAA) with spray drying to obtain the 3YTZP/MWNT composite 

powder. Fully densified composites were not obtained after hot-pressing the composites 

(98% of the theoretical density for composites with 0.5 and 1 wt% MWNT). However, 

increases in flexural strength and fracture toughness were reported up to 1.0 wt% 

MWNT. 

Among the reported studies on CNT/3YTZP composites, highly densified 

samples were only obtained in studies using SPS
19,23,24

. Nevertheless, a decrease of 

hardness in the composites when compared with the monolithic ceramic, even when 

they are fully densified, and an increase of fracture toughness only for low percentages 

of CNTs
11,15,19,23-25

 have been reported in most of these studies. Recently, Mazaheri et 
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al
8,9

 reported an increase of fracture toughness on nearly fully dense 3 mol% yttria-

doped zirconia reinforced with 0.5-5 wt% MWNT with no detrimental effect on 

hardness. These composites were prepared by a combination of attrition milling and 

SPS. 

Up to date, most of the investigations focused on MWNT reinforced yttria-

doped zirconia, however, the study of processing and mechanical properties of single 

wall carbon nanotube (SWNT) reinforced yttria stabilized zirconia composites is still a 

challenge. SWNT present better mechanical properties than MWNT as it is possible to 

avoid the inter-wall sliding that can take place in MWNT, with inner graphitic walls 

being extracted from outer walls in a “sword and sheath” failure
6,26

. However, SWNT 

tend to agglomerate easily due to Van der Waals interactions, which complicate the 

composites processing. Recently, Shin and Hong
27

 reported on the processing and 

microstructure of SWNT reinforced yttria stabilized zirconia composites with promising 

mechanical and tribological properties. These authors combined the use of 

dimethylformamide as a solvent to disperse the SWNT in the matrix with SPS to obtain 

composites with 0.1-1.0 wt% SWNT. Although full densification was not obtained in 

the whole set of composites, an enhancement of fracture toughness together with an 

improvement of wear properties was reported. 

In recent years, an intense debate on the reliability of different fracture 

toughness measurement methods to characterize CNT-ceramic matrix composites has 

taken place
12,23,28-31

. There have been different arguments about the validity of the 

indentation technique, and some authors have compared the results obtained using this 

method with the ones obtained with the single edge notched beam (SENB) test. Wang et 

al
12

 have shown that cracks are hardly produced in SWNT-Al2O3 composites after 

Vickers or Hertzian indentation, which would give extremely high fracture toughness 
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values; however, no increase of fracture toughness was obtained from SENB 

measurements. An increase of KIC when increasing the CNT content has been reported 

by Cho et al
31

 and Mazaheri et al
9
 for MWNT-SiO2 and MWNT-3YTZP composites, 

respectively. Although the absolute values of KIC measured by Vickers indentation or 

SENB test differ (higher values obtained from indentation measurements), a similar 

trend was observed when measuring using the two techniques. It seems clear that the 

indentation technique should not be used to determine absolute values of KIC in CNT-

ceramic matrix composites. Nevertheless, it has been proposed that this test could be 

useful for assessing relative toughness values in well-densified materials with good 

nanoscale dispersion if sufficiently developed cracks are produced
23,31

. In this context, 

although the KIC values obtained from Vickers indentations are not directly comparable 

to values in the literature for materials tested with the SENB method, they can be used 

to compare different compositions tested in a same study.  

In this work, 3 mol% yttria doped zirconia matrix composites containing high 

SWNT content (2.5, 5 and 10 vol%) were prepared by using a combination of aqueous 

colloidal processing and Spark Plasma Sintering. Full densification, together with 

homogeneous dispersion of the SWNT throughout the ceramic matrix in the nanoscale, 

was obtained. The microstructure of the composites was characterized and the evolution 

of their hardness and fracture toughness with SWNT volume fraction was analysed.  

 

2. Experimental procedure 

 

2.1. Materials Processing 

 

2.1.1 SWNTs acid treatment 
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Commercially available purified SWNT (Carbon Solutions Inc., Riverside, 

California) were selected as starting material. Acid treatment of the SWNTs was carried 

out using a mixture of concentrated sulfuric acid (98%) and nitric acid (70%) in the 

ratio 3:1, with the aim of disentangle and cut the raw SWNTs ropes
16,32

. SWNTs were 

suspended in the acid mixture for 24 h at room temperature; the suspension was 

sonicated for 8 h. SWNTs were collected on ~20 nm pore filter membranes and washed 

with high-purity ethanol several times. The acid-treated SWNTs were then dried on hot 

plate at 70-80 ºC and homogenized in agate mortar. 

 

2.1.2 3YTZP-SWNTs powder colloidal processing  

3 mol% yttria stabilized tetragonal zirconia powder (3YTZP), with 40 nm 

particle size and 99% purity, was obtained from a commercial source (Nanostructured 

and Amorphous Materials Inc., Houston, Texas). Colloidal processing
16

 of the 

composite powders (2.5, 5 and 10 vol% SWNTs) was carried out in aqueous solution of 

pH 12, where both the SWNTs and the 3YTZP nanoparticle surfaces are negatively 

charged, using NH3 to adjust the solution pH. In a first step, independent SWNTs and 

ceramic powder solutions were prepared and subjected to ultrasonic agitation for 30 

min. In a second step, 3YTZP+SWNTs powder blends were dispersed in aqueous 

solution and subjected to ultrasonic agitation for 30 min, followed by drying on a hot 

plate while being stirred. Finally, composite powders were homogenized in agate 

mortar. 

By using this colloidal dispersion by charge stabilization we avoid using 

surfactants that could introduce undesirable impurities which could affect the sintering 

process and/or composites properties. 
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2.1.3 Spark Plasma Sintering (SPS) 

The SPS (Model 515S, SPS Dr Sinter Inc., Kanagawa, Japan) of the composite 

powders was performed in vacuum in a 15-mm diameter cylindrical graphite die/punch 

setup, under a uniaxial pressure of 75 MPa at 1250 °C for 5 min. The heating and 

cooling rates were 300 and 50 °C/min, respectively. For the sake of comparison, 

monolithic 3YTZP ceramic was sintered using the same conditions. A sheet of graphite 

paper was placed between the powders and die/punches for easy specimen removal. 

Temperature was measured by means of an optical pyrometer focused on a bore hole in 

the middle part of the graphite die. The sintered ceramics of ~15 mm in diameter and ~2 

mm in thickness were ground to eliminate the surface carbon.  

Density of the composites was determined using the Archimedes’ method, using 

water as the immersion liquid. The theoretical densities of the composites were 

calculated according to the rule of the mixtures, assuming a density of 1.80 g cm
–3

 for 

SWNTs
3
.  

 

2.2. Microstructural and mechanical characterization 

 

Phase identification was carried out using X-ray diffraction (XRD, model D8 

Advance A25, Bruker Co., Massachusetts, USA). The Rietveld method was used for 

quantitative analysis using the FULLPROF program. 

Sintered composites were characterized by Raman spectroscopy in order to 

detect possible damage of SWNTs after sintering. Raman spectra were recorded on 

fracture surfaces using a dispersive microscope (Horiba Jobin Yvon LabRam HR800, 

Kyoto, Japan), with a 20-mW He-Ne green laser (532.14 nm), without filter, and with a 
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600 g/mm grating. The microscope used a 100x objective and a confocal pinhole of 100 

m. The Raman spectrometer was calibrated using a silicon wafer. 

Microstructural observations of sintered composites were carried out on the 

fracture and polished surfaces by high-resolution scanning electron microscopy 

(HRSEM), using a Hitachi S5200 microscope (Hitachi High Technologies America 

Inc., USA). Polished samples (up to 1 m diamond paste) were thermally etched at 

1150 ºC for 20 min in air to reveal the grain boundaries. The morphological parameters 

equivalent planar diameter, d = (4×area/π)
1/2

 and shape factor, F = (perimeter)
2
/4×area, 

were measured on HRSEM micrographs by using ImageJ software. 

Vickers indentation tests were carried out with a diamond Vickers indenter to 

establish the hardness and fracture toughness at room temperature, under 2 kgf and 10 

kgf, respectively. At least 15 valid measurements were carried out on mirror-like 

finished top surfaces for each sample, in well-separated and randomly selected regions. 

The crack lengths were measured using a LEICA DCM 3D confocal microscope.  

The fracture toughness, KIC, was calculated by using the equation given by 

Anstis et al.
33

 .  



















2/3

2/1

016.0
c

P

H

E
K IC        (1) 

where c is the crack length measured from the center of the imprint, E is the elastic 

modulus in GPa and H is the Vickers hardness in GPa, calculated from the indentation 

load P and the diagonal of the Vickers imprint a:  

2
854.1

a

P
H      (2) 

 

3. Results and discussion 
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Figure 1 shows the evolution of the shrinkage and temperature as a function of 

time during heating and stabilization at the sintering temperature for the composites 

with different SWNTs content. This evolution was recorded in situ during the SPS 

process. It can be observed that sintering takes place mainly for temperatures higher 

than 850 ºC and up to 1200 ºC, with a slight density enhancement for temperatures from 

1200 ºC to 1250 ºC. A similar behaviour is observed in all sintered composites, which is 

in agreement with the full densification measured by the Archimedes method in the 

three composites (>99% relative density for the three composites, table 1). 

XRD patterns of the sintered specimens are shown in figure 2. In all the samples, 

it is clear the presence of the tetragonal phase (JCPDS 01-078-1808) as the main one, 

with a contribution of the monoclinic phase (JCPDS 01-081-1314). Rietveld refinement 

carried out for the monolithic 3YTZP ceramic pointed out the formation of these two 

phases, being the major crystalline phase the tetragonal one (92.4%) and the minor 

phase the monoclinic one (7.6%). An increase of the two main peaks corresponding to 

the monoclinic phase (at 28.2 and 31.4 º2) is clearly observed when increasing the 

SWNT content. Thus, the transformation of the tetragonal phase to the monoclinic one 

is clearly favoured by the addition of SWNT. Bocanegra-Bernal et al
34

 have recently 

experimentally evidenced such transformation in ZrO2 for zirconia toughened alumina 

(ZTA)/0.01 wt% MWNT composites pressureless sintered in air using graphite as bed 

powder. The increasing effect observed in our results states that it is indeed the presence 

of carbon nanotubes (SWNTs in this case) which promotes the presence of the 

monoclinic phase. However, the mechanism of this transformation is still unclear and 

future work on this subject will be carried out.  

Figure 3 shows the Raman spectra measured in the sintered composites, as well 

as in the monolithic 3YTZP ceramic and in the SWNTs. The Raman spectra measured 
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in the composites show characteristic radial breathing mode (RBM) bands near 150–200 

cm
−1

 and G-bands near 1500–1600 cm
−1

, which are very similar to the measured ones in 

the SWNT before processing of the composites. These results clearly demonstrate the 

presence of SWNTs after SPS. The D-band (centred on 1350 cm
−1

) shows a slight 

increase, which can be attributed to the formation of disordered graphite and defects in 

the composites during the SPS process. When comparing the spectra measured in the 

composites and in the SWNTs, a shift towards higher frequencies is observed in the 

composites G-band (~20 cm
−1

), which has been attributed by different authors to 

residual stresses in the SWNTs imposed by the constraining ceramic matrix
12,35

. On the 

other hand, peaks at 165, 260, 320, 465, 610, and 643 cm
-1

 are observed in the spectra 

measured in the composites. These peaks correspond to the six Raman bands predicted 

for theoretical tetragonal zirconia, as has been described by previous authors
36,37

.  

HR-SEM micrographs of fracture surface of the composites reinforced with 

different SWNTs content are presented in figure 4. SWNTs bundles are located on the 

ceramic grain boundaries and debonded CNTs from the matrix can be observed on the 

fracture surfaces. The fracture mode is mainly intergranular (grain boundary weakness 

due to the presence of the SWNTs promotes intergranular fracture along grain 

boundaries, over transgranular fracture through the grains). SWNTs are well distributed 

on the ceramic matrix, however, some agglomerates could be observed in the 

composites (not shown). The presence of these nanotube agglomerates or clusters has 

been reported by previous authors
10,13,17,23,25

. Recently, Poorteman et al
17

 found such 

inhomogeneities in MWNT-ceramic matrix composites even after using aqueous 

colloidal processing optimizing electrostatic repulsion and conserving the homogeneity 

by freeze-drying the composite powder. A thermodynamic explanation based on the free 
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volume of isotropic particles and particles with a high aspect ratio, which promotes the 

demixion of both phases, was suggested. 

Figure 5 shows the HR-SEM micrographs of thermally etched polished surfaces 

and grain size distribution plots of monolithic 3YTZP ceramic and composite with 5 

vol% SWNTs. An equiaxed grain microstructure was found in all the materials (shape 

factor around 0.8, table 1). Some holes can be observed (fig. 5(c)), which could 

correspond to previous locations of SWNT bundles or agglomerates burned out during 

thermal etching in air. While global microstructure presents a mean grain size about 250 

nm for all compositions (table 1), areas with larger grain sizes were scarcely observed 

(not shown). These zones could be related to monoclinic transformed regions.  

Some authors have reported a decrease in grain size with increasing SWNT 

content, however, this reduction is usually related to a decrease in the density of the 

composite
10,13,27

. This fact can be ruled out in this study, since all the processed 

composites are fully densified and a clear effect of the SWNT percentage on the mean 

grain size is not observed (table 1). 

Regarding the room-temperature mechanical properties, a decrease in Vickers 

hardness is found when increasing the SWNTs content (figure 6). The same behaviour 

has been recently reported in fully densified MWNT-3YTZP composites
23,24

. Although 

this tendency is usually linked to a decrease in the composite density
13,25,27

, the SWNT-

3YTZP composites studied in this work are fully densified, denoting the decrease in 

hardness when increasing the CNTs content as an intrinsic effect of the CNT-3YTZP 

system probably associated to weak interfacial bonding between SWNTs and ceramic 

grains.  

SEM micrographs of the Vickers indentations performed in the studied 

composites are shown in figure 7. Values of fracture toughness obtained from these 
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measurements as a function of SWNT content are shown in figure 6.  Lower fracture 

toughness is obtained for the composites when compared to monolithic ceramic. On the 

other hand, no significant effect of the difference in SWNT content on the fracture 

toughness value is observed. This result is in disagreement with the increase of fracture 

toughness in SWNT-3YTZP composites recently reported by Shin and Hong
27

. 

However, it should be noted that these authors used lower SWNT content (up to 1.0 wt 

%) than the ones used in the present study (up to 10 vol %) to reinforce the 3YTZP 

ceramic matrix. A similar reinforcing effect has been reported also in MWNT-3YTZP 

composites, with an increase of fracture toughness for low CNT contents followed by a 

decrease for high CNT contents
11,15,23,25

. A comparative of the relative toughness 

variation reported in literature for different CNT-3YTZP composites, according to 

the type and CNT content used, relative density and zirconia grain size, is shown in 

table 2.  

 Some authors have reported that large quantities of SWNTs would impede the 

densification process, leading to possible residual porosity and a subsequent decrease in 

mechanical properties
13,25,27

. Also, it is widely accepted that polycrystalline tetragonal 

zirconia compositions exhibit a substantial decrease in the contribution of 

transformation toughening to the fracture toughness with decrease in grain size
38

. 

However, the decrease of fracture toughness in the composites under study can not be 

related to factors as possible residual porosity or smaller mean grain size with respect to 

the monolithic ceramic, as it has been shown that all the processed samples are fully 

dense and no significant differences were detected in grain size between the monolithic 

ceramic and the composites (Table 1). 

The classical toughening mechanisms described for conventional ceramic 

composites reinforced by fibers or whiskers, such as fiber pull-out, crack deflection and 
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crack bridging, have been mentioned in literature as useful to describe toughening in 

CNT-ceramic matrix composites
10,39,40

. However, another possible mechanism based in 

uncoiling and stretching of CNTs has been recently described as responsible of 

enhanced toughness in these composites
2,9

. What appears to occur in this mechanism is 

the uncoiling of the CNTs bundles located at the ceramic grain boundaries in the crack 

wake as the crack advances intergranularly. With further propagation of the crack, the 

uncoiled CNTs would stretch, producing crack bridging. The uncoiling and stretching 

produces friction work and dissipates energy at the crack tip, resulting in higher 

toughness
2,9

. 

In the SEM micrographs of the 3YTZP/5 vol% SWNTs composite fracture 

surface, SWNT bridging between ceramic grains could be found (figure 4d). SWNTs 

with two ends embedded in two separate grains are clearly observed. This observation is 

in line with previous findings in CNT ceramic and glass composites
9,23-25,40

. However, 

these SWNT bridging were scarcely found in our composites.  

Considering that evidences of toughening mechanisms have not been detected 

and taking into account that the SWNT volume fraction used in this study is higher than 

the ones used by other authors
27

, it could be concluded that the SWNT amounts used in 

this study exceed the appropriate percentages that would result in an enhancement of 

fracture toughness.  

Using the model developed by Zapata-Solvas et al
41

, it is possible to calculate 

the surface fraction of ceramic grains in contact with SWNTs, A, for the values of 

studied SWNT volume fractions according to: 

 

          (3) 

 

w

dff
A

4

)1( 

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Considering an estimated mean SWNT bundle diameter w of about 25 nm
42

 and 

mean grain size d ~250 nm, we obtain that 22, 12 and 6% of surface fraction of ceramic 

grains are covered by SWNTs for compositions with 10, 5 and 2.5 vol% SWNTs, 

respectively. Those percentages are clearly above percolation
41

. Also, this calculation 

reveals that the processing route used to prepare the composites gives place to a low 

coverage of the ceramic grains due to the existence of thick SWNT bundles (about 15 

SWNTs each), which would result in a poor reinforcing effect in any case. 

The accumulation of SWNT at the grain boundaries in form of thick bundles 

would not allow the uncoiling and stretching of SWNT when the crack is advancing but 

it would result in a decrease in cohesion between ceramic grains. Moreover, inter 

bundles detachment would be favoured rather than uncoiling and stretching, being the 

decohesion between SWNT within the bundle the key point in the process. 3 point 

bending tests carried out in SWNT solids
43

 revealed that failure occurred via inter-

bundles slippage rather than the failure of the SWNTs themselves.  

Taking into account the mechanism proposed above, the fact that the SWNT 

contents in our composites are higher than the percolation limit would explain that the 

fracture toughness values are independent of the SWNT vol%. 

Future work will be performed to clarify whether a toughness enhancement 

mechanism exists in low SWNT content composites, in order to assess if lower SWNT 

vol% results in thinner SWNT bundles surrounding the ceramic grains and that finally 

results in an enhancement of the mechanical properties of the composite. 

 

4. Conclusions 
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Fully dense 3 mol% yttria doped zirconia matrix composites containing 2.5, 5 

and 10 vol% SWNT have been prepared by using a combination of aqueous colloidal 

powder processing and Spark Plasma Sintering. All the samples are mainly tetragonal, 

with a minor contribution of the monoclinic phase. An increase of the latter when 

increasing the SWNT content was found, pointing to a transformation of the tetragonal 

phase to the monoclinic one promoted by the presence of SWNTs. 

An equiaxed grain microstructure and an almost constant ceramic grain size 

(190-270 nm) have been obtained in the composites. SWNTs were located on the 

ceramic grain boundaries and homogeneously distributed on the ceramic matrix at the 

nanoscale, however, the presence of large SWNT agglomerates could not be avoided. 

A decrease in hardness has been found when increasing the SWNTs content in 

spite of the full densification of the composites. A decrease of the fracture toughness 

was also found, possibly as a consequence of a SWNT weakening effect on interfacial 

cohesion between ceramic grains. The detachment between SWNT within bundles has 

been pointed out as the decisive point in the fracture process. 
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Figure captions  

 

Figure 1: Shrinkage and temperature curves recorded during the SPS processing of the 

3YTZP/SWNTs composites. 

 

Figure 2: X-ray diffraction patterns of the monolithic 3YTZP ceramic and the 

composites.  

 

Figure 3: Raman spectra measured in the composites including the RBM frequency 

range, and the D-Band and G-Band frequency range. Raman spectra measured in the 

monolithic 3YTZP ceramic and in the SWNTs have been included for comparison. 

 

Figure 4: HRSEM micrographs of fracture surface of the composites reinforced with 

different SWNT contents (a) and (b) 2.5 vol%, (c) and (d) 5 vol%, and (e) and (f) 10 

vol%. 

 

Figure 5: HRSEM micrographs of thermally etched polished surfaces and grain size 

distribution plots of the (a) monolithic 3YTZP ceramic, and (b) composite reinforced 

with 5 vol% SWNTs. (c) HRSEM micrographs of thermally etched polished surface of 

the 3YTZP/5 vol% SWNTs composite, showing some holes related to agglomerates 

burned out during thermal etching in air. 

 

Figure 6: Hardness and indentation fracture toughness of the SWNT-3YTZP 

composites. 
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Figure 7: SEM micrographs of the Vickers indentations in the composites with (a) 2.5, 

(b) 5, and (c) 10 vol% SWNTs. 
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Table 1: Properties of the studied composites 

 

Material 
Relative 

density (%) 

Grain size 

(m) 
F 

Hardness 

(GPa) 

Fracture 

toughness 

(MPa·m
1/2

) 

3YTZP 100 0.26  0.11 0.76  0.06 13.0  0.5 6.1  0.9 

3YTZP/2.5 vol% SWNT 100 0.27  0.13 0.76  0.06 12.4  0.7 4.7  0.9 

3YTZP/5 vol% SWNT 99.3 0.19  0.08 0.76  0.07 11.4  0.5 4.8  0.6 

3YTZP/10 vol% SWNT 100 0.24  0.13 0.76  0.08 9.2  0.9 5.0  0.8 
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Table 2: Comparison of properties for CNT-3YTZP composites reported in 

literature. 

 

 
Type of 

CNT 

CNT 

vol% 

Grain 

size 

(nm) 

Relative 

Density 

(%) 

Method of 

KIC 

measurement 

KIC (MPa·m
1/2

) 
Relative 

KIC 

variation 

(%) 
Monolithic Composite 

This study  SWNT 2.5 270 100 IF 6.1 4.7 -23 

Shin 2012 

(27) 
SWNT 3.4 280  98.0 IF 4.4 5.2 18 

Chintapalli 

2012 (24) 
MWNT 2 161  98.7 IF 3.9 4.5 15 

Garmendia 

2011 (23) 
MWNT 

3 218  99.5 IF 2.36 4.06 72 

6 146 99.1 IF 2.36 2.07 -14 

Mazaheri 

2011 (9) 
MWNT 12.5 96 98.4 

IF 5.5 11 100 

SENB 6 8 33 

Zhou 2009 

(25) 
MWNT 

3.4 --- 98.6 IF 4.9 5.8 21 

5 --- 98 IF 4.9 5.2 5 

Garmendia 

2009 
MWNT 1 220 95.7 IF 3.8 4.0 5 

Duszová 

2008 (13) 
MWNT 3.4 140 88 IF 6.24  5.6 -10 

Ukai 2006 

(11) 
MWNT 

1.7 --- 100 IF 5.56 6.10 10 

3.4 --- 100 IF 5.56 5.69 2 

Sun 2005 

(15) 
MWNT 

1.7 --- 99.1 IF 5.28 5.52 4 

3.4 --- 99.1 IF 5.28 4.47 -15 

* IF: Indentation Fracture, SENB: Single Edge Notched Beam  
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Figure 4
Click here to download high resolution image

http://ees.elsevier.com/jecs/download.aspx?id=392699&guid=7a6df3be-c5e9-4f50-944a-c92be904bd3c&scheme=1


Figure 5
Click here to download high resolution image

http://ees.elsevier.com/jecs/download.aspx?id=392703&guid=81d0f086-400f-49a4-9956-811859027394&scheme=1
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Figure 7
Click here to download high resolution image

http://ees.elsevier.com/jecs/download.aspx?id=392701&guid=ed4ca8f2-043c-44b3-bb2c-34429cab7f50&scheme=1
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Figure captions  

 

Figure 1: Shrinkage and temperature curves recorded during the SPS processing of the 

3YTZP/SWNTs composites. 

 

Figure 2: X-ray diffraction patterns of the monolithic 3YTZP ceramic and the 

composites.  

 

Figure 3: Raman spectra measured in the composites including the RBM frequency 

range, and the D-Band and G-Band frequency range. Raman spectra measured in the 

monolithic 3YTZP ceramic and in the SWNTs have been included for comparison. 

 

Figure 4: HRSEM micrographs of fracture surface of the composites reinforced with 

different SWNT contents (a) and (b) 2.5 vol%, (c) and (d) 5 vol%, and (e) and (f) 10 

vol%. 

 

Figure 5: HRSEM micrographs of thermally etched polished surfaces and grain size 

distribution plots of the (a) monolithic 3YTZP ceramic, and (b) composite reinforced 

with 5 vol% SWNTs. (c) HRSEM micrographs of thermally etched polished surface of 

the 3YTZP/5 vol% SWNTs composite, showing some holes related to agglomerates 

burned out during thermal etching in air. 

 

Figure 6: Hardness and indentation fracture toughness of the SWNT-3YTZP 

composites. 

 

Figure Captions
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Figure 7: SEM micrographs of the Vickers indentations in the composites with (a) 2.5, 

(b) 5, and (c) 10 vol% SWNTs. 

 


