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Some general ideas
Elastography and inverse problems

What is Elastography?

A technique to detect elastic properties of tissue
Applications in Medicine

Aspects:

@ Three elements:
Acoustic waves generator (Low frequency) mechanical excitation — waves
Captor (mechanical waves detection and visualization; MR or ultrasound)
Mathematical tool (solver — identification of tissue stiffness)

@ Medical fields of application: detection and description of breast, liver, prostate
and other cancers; arteriosclerosis (hardening of the arteries); fibrosis; deep vein
thrombosis; treatment monitoring; .. .

@ At present: emerging techniques lead to the detection of internal waves through
non-invasive techniques (a very precise description)

First works: [Ophir-et-al 1991], [Muthupillai-et-al 1995], [Sinkus-et-al 2000],
[McKnight-et-al 2002], ...
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Some general ideas
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Figure: Classical detection methods in mammography (l): palpation

E. Fernandez-Cara Inverse problems and Elastography



Some general ideas
Elastography and inverse problems

Figure: Classical detection methods in mammography (Il): x-rays

Elastography is better suited than palpation and x-rays techniques:

— Tumors can be far from the surface
— or small
— or may have properties that become indistinguishable through palpation or x-rays
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Some general ideas

Elastography and inverse problems

10 20 w0
Shear stiffness (kKPa)

Figure: A breast elastogram. Identification of tissue stiffness
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Figure: Applications of MR Elastography to tumor detection. Liver and brain elastograms
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Some general ideas
Elastography and inverse problems

In mathematical terms: inverse problem governed by PDEs
Some words on inverse problems:

@ General setting of a direct problem:
Data (Dg U D1) — Results (R) — Observation (additional information) (Z)
@ A related inverse problem:
Some data (D) + Information (Z) — The other data (Dy)
@ Example: identification of the shape of a domain
(a) Direct problem:
Data: Q, ¢ and D
Result: the solution u to

) —Au=0, xeQ\D
u=0, xedD;, u=¢p, xe€

Information:
2)

(b) Inverse problem:

(Partial) data: 2 and ¢

(Additional) information: o (on =)

Goal: Find D such that the solution to (1) satisfies (2)
[Andrieux-et-al 1993], [Alessandrini-et-al 2000 .. .], [Kavian 2002],
[Alvarez-et-al 2005], [Doubova-EFC-GlezBurgos-Ortega 2006], [Yan-Ma 2008]
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Some general ideas
Elastography and inverse problems

P=9(X)

Figure: A geometrical inverse problem: identification of the open set D from Q, ¢ and the additional
information 84 = o on ~y
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Some general ideas
Elastography and inverse problems

Many interesting problems in Medicine, Biology, etc. lead to IPs for PDEs of this class:
coefficient, source or shape identification

A SECOND EXAMPLE: identification of the conductivity of a dielectric body (Calderon)
(a) Direct problem:

Data: Q, ¢ and a = a(x)

Result: the solution u to

() -V -(a(x)Vu) =0, xe€Q
u=p, x €N
Information:
(2 ulw =z

(b) Inverse problem:
(Partial) data: Q and ¢
(Additional) information: z (in w)
Goal: Find a such that the solution to (1) satisfies (2)

Applications to tomography ...
[Calderén 1980], [Sylvester-Uhiman 1987], [Astala-Paavarinta 2003], ...
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2638, Nb of Vertices = 1355
E. Fernandez-Cara

in the central (resp. bottom, left) disk; a = 1 elsewhere — To solve the problem: FEM approach

Figure: The domain and the mesh — The solution is given by a = 0.01 (resp. a = 100, a = 1000)

(P;-Lagrange) — Nb of Triangles
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Figure: Computations with FreeFEM (these and those below; BFGS method) — ¢ = xf — x23 —w
is the central disk — Reconstructed potential — a = 1.01 (resp. a = 100, a = 1000) in the central
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Some general ideas
Elastography and inverse problems

A THIRD SIMILAR EXAMPLE: identification of the viscosity of a Navier-Stokes fluid
(a) Direct problem:

Data: Q, D, U and v = v(x)

Result: the solution (u, p) to

1) (u-VY)u—V-wx)(Du+Du")+Vp=0, V-u=0, xc Q\D
u=0, xedD;, u=U, xe€o

Information:
(2) Ul =z
(b) Inverse problem:

(Partial) data: 2, D and U

(Additional) information: z (in w)
Goal: Find v such that the solution to (1) satisfies (2)

Applications to blood diseases description and therapy ...

Thrombosis, detection of coagula in blood vessels ...
[Nakamura-Uhlman 1994], [Yamamoto 2009], ...
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Figure: The domain and the mesh — The solution is given by v = 10 (resp. v = 100) in the left
(resp. bottom) cylinder; v = 0.1 elsewhere — To solve the problem: FEM approach
(P> ® P;-Lagrange) — Nb of Triangles = 3799, Nb of Vertices = 1971
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ERANANLREGA

Figure: Computations with FreeFEM (BFGS method) — U = (1, 0) on the left and the right,
U = (0, 0) elsewhere — w is the left cylinder — Reconstructed velocity field — v = 10
(resp. v = 100) in the left (resp. bottom) cylinder; v = 0.1 elsewhere
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Figure: Computations with FreeFEM (BFGS method) — U = (1, 0) on the left and the right,
U = (0, 0) elsewhere — w is the left cylinder — Reconstructed pressure — v = 10 (resp. v = 100)
in the left (resp. bottom) cylinder; v = 0.1 elsewhere
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Some general ideas
Mathematical formulations

A TYPICAL IP IN ELASTOGRAPHY
The data: Q Cc RS, F, (U°,U") and B
The problem: Find A = A(x) and p = p(x) such that the solution U = (Uy, Us, Us) to

Uu=o, (x,t)ex

Up — V- (p(x)(VU+VUT) +X(x)(V-Ud) = F, (x,t)€Q
U(x,0) = U°(x), Ui(x,0) = U'(x), xXeEQ

satisfies

oovi= (M(x)(vu +VUTY + A(X)(V - U)Id.) -v=BonSx(0,T)

v = v(x) : outwards directed unit normal vector at x € 9Q and S C 9Q

[Sinkus-et-al 2000], [Barbone-et-al 2004], [Isaakov 2005], [Khaled-et-al 2006],
[Perrifiez 2009], [Imanuvilov-Yamamoto 2011]
Explanations:

@ F: agiven source, (U°, U"): an initial state (known)

@ The tissue is described by A\ and p (under isotropy assumptions)

@ The displacement U = (U;, U», U3) is fixed on &

@ o-vismeasuredon S x (0, T)
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Some general ideas
Mathematical formulations

A SIMPLIFIED VERSION (for the axial displacement)
The data: Q c RS, f, (u°, u') and o
The inverse problem (IP): Find v € L*°(9; {«, 8}) N BV(Q2) (0 < a < ) such that the

solution to
ug — V- (v(x)Vu) = f(x, t), x,1)eQ:=Qx(0,T)
u=0, (x, 1) eX:=002x(0,T)
U(X,O):UO(X), Ut(X,O):U1(X), X e€Q

satisfies

ﬂ/% =oonSx(0,T)
ov

[Lurie 1999], [Allaire 2002], [Imanuvilov 2002], [Isaakov 2004],
[Bellasoued-Yamamoto 2005], [Pedregal 2005], [Maestre-Pedregal 2006],
[Maestre-Miinch-Pedregal 2008], ...

Explanations:

@ Again: f is a given source, (u°, u') is an initial state (known), u|s is fixed,
%Lg x (0, T) is measured and ~ is the unknown

@ Sometimes it can be assumedthatu=U - v, v = pu
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Some general ideas
Mathematical formulations

The inverse problem (IP): Find v € L>°(2; {«, 8}) N BV(2) (0 < a < B) such that the
solution to
ug — V- (v(x)Vu) = f(x, 1)
U|): = 0,
satisfies B
'y—u =oonSx(0,7)
v

Relevant questions:

@ Uniqueness: v and 7’ solve (IP) = ~=+'
[Barbonne 2004]

@ Stability: v (resp. 7’) solve (IP) (resp. (IP) for o’)
" =l < F(oillo” = oll) for small [|o" — o|?

@ Reconstruction: given o (and maybe some additional information), “compute” v

For reconstruction: (a) Direct methods and (b) Iterative methods
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Some general ideas
Mathematical formulations
THE INVERSE PROBLEM (IP): Find v € L>°(2; {«, 8}) N BV(£2) (0 < a < B) such
that the solution to
up — V- (v(x)Vu) = f(x, t)
{ uls =0,

satisfies

’y@:oonSX(O,T)
ov

AN “ITERATIVE” METHOD: rewrite (IP) as an extremal problem
Cost function

.
) =3 [ Inge]g = oI dt, v e 1=(@:i{a 80 nBY(@)

(|| - || is an appropriate norm)
An extremal problem:

(EP) Minimize I(~)
Subjectto v € L>°(Q; {«, 8}) N BV(2), usolves...

Then: ~ solves (IP) < ~ solves (EP), with /() =0
In the sequel: we analyze and try to “solve” (EP)
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Bounded total variation models
The one-dimensional case

(EP) Minimize 1(v) = § 5 /34| — o(DI at
Subjectto v € ... usolves...

{ Uy — V- (v(x)Vu) = f(x,t)
uls =0,

Results in collaboration with F. Maestre:

The total variation of ~ is uniformly bounded — Existence I

N = 1, no a priori bound on the total variation of
@ Non-existence

@ Identification of the relaxed problem (and existence of “generalized ~”)
(as in [Maestre-Miinch-Pedregal 2008]; new proofs)
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Bounded total variation models
The one-dimensional case

N =1 and (EP) reads
(EP) Minimize I(v) = } fo [v(Dux(1,t) — o(t)|? at
Subjectto v € L°(2; {a, 8}) N BV(Q2), usolves...

Necessarily: ~ is piecewise constant in [0, 1] and v(x) is a.e. equal to « or 3, with a
finite number of discontinuities

Consider

(EP-K) Minimize 1(v) = 1 [] lv(1)ux(1, 1) — o(t)[2 at
Subjectto v € 'k, usolves...

with Ty = {y € L°(Q; {«a, 8}) N BV(Q) : v has, at most, k discontinuities in [0, 1]}

Existence for (EP-k)

A particular case of a result proved below
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Bounded total variation models
The one-dimensional case

SOME COMMENTS:

@ Since N = 1, « has to be simple. For N > 2, more complex situations may appear
@ Same argument = existence for

Minimize I-(v) = 3 [ [v(1)ux(1, ) — o2 dt + S TV(7)?
Subjectto v € L°(Q; {«, 8}) N BV(Q2), usolves...

What happens as e — 07?

E. Fernandez-Cara Inverse problems and Elastography



Bounded total variation models
The general N-dimensional case

N > 2, Q c RN open, connected, regular and bounded
(at least, 8Q € W)

(EP) { Minimize I(v) = } fo v 34|s — o|? at
Subjectto v € L=(; {a, ﬂ}) NBV(Q), usolves...
Consider
) Minimize ()
(EP-C) { Subjectto v € A(C), usolves ...

with A(C) = { v € L=(Q; {a, B}) N BV(Q) : TV() < C}

Existence for (EP-C)

E. Fernandez-Cara Inverse problems and Elastography



Bounded total variation models
The general N-dimensional case

PROOF - FIRST PART:
Vy € A(C), 734 is defined in L>°(0, T; H~1/2(6Q)) by duality:

ou

5,02 :<v.(wu)7z>+//owu.w vz e L'(0, T; H'(Q)),

(v

{yn}: @ minimizing sequence for / in A(C). Then:

v — v*  weakly-x in BV(Q)
~" — 4* strongly in LP(Q2) for all p € [1, +00) and a.e.

with v* € A(C)
u": the state associated to v". Then:

u" — u* weakly-x in L>(0, T; H{ (%))
up — uf  weakly-x in L°(0, T; L2(Q))

But: u* is the state associated to v*, because

YIVU" — 4*Vu* weakly in LP1(0, T; LP2(Q)N) Vpy € [1,4+00), VP2 € [1,2)

E. Fernandez-Cara Inverse problems and Elastography



Bounded total variation models
The general N-dimensional case

PROOF - SECOND PART:
iminfo_ o0 1(37) > I(v*)? Yes
Indeed:
@ u"is bounded in C°([0, T]; X) for X := [D(A), H} ()]s,
(a Hilbert space compactly embedded in Ha ()
and uf is uniformly bounded in L (0, T; L?(Q))
@ Consequently, u" is precompact in L2(0, T; H}(Q)) and
,ou” ou*

N Y weakly in L2(0, T; H-1/2(8Q))
ov v

To prove the first assertion: we write —V - (v"Vu") = f — uf} and we use

Lemma:

35 such that, Va € L>°() N BV(Q) with a < a < 8, Yh € L?(Q), the solution to

—V.(aVw)=h, x€Q
w =0, X € 09

satisfies:
lwl[x < C(N,Q,«, B, ||allv) l|All 2

Here, X = [D(A), H} ()]s,

v

For the proof: Meyers’ Theorem, elliptic regularity and nonlinear interpolation (Tartar) O
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Bounded total variation models
The general N-dimensional case
SKETCH OF THE PROOF OF THE LEMMA:

We use Meyers’ Theorem, elliptic regularity and nonlinear interpolation (Tartar):
o lfael>*(Q)anda<a<Bae,
Wil 1. < C(Q, N, 0, 8) [lhll2 Vhe L3(Q), py>2
[Meyers 1963]
oo _ 2p
o lfa,d e L*(Q),a<ad <Bae.andr= oz

W' = Wiy < C@ N, 8) 1 — allur [|hlle ¥h € L2(R)

elfac Wh(Q)anda<a<p
IWllpe < C(QN,a,8) (1 + IVallr) bl 2 Vh e L3(Q)
(elliptic regularity theory)

® BV(Q)NL>(Q) C [WH(Q), L"(Q)]1/r,00 N L=()
@ Finally, all this and a nonlinear interpolation result by [Tartar 1972] =

1 -2
w e [D(A), H (Q)]5.00 for 6 = = = 40 + estimates

7 2pm

O
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Bounded total variation models
The general N-dimensional case

SOME COMMENTS:

@ Again, same argument = existence for

Minimize I(v) = 3 fy v8%|s — o|[? dt+5 TV ()2
Subjectto v € L°(Q; {a, 8}) N BV(Q2), usolves...

@ Generalizations in several directions:

(a) Lamé systems: Meyers-like estimates, elliptic regularity, . ..
Applications in Elastography

(b) Semilinear hyperbolic systems: global estimates
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An unbounded total variation one-dimensional model

Formulation and non-existence

A RELATED BUT DIFFERENT PROBLEM
(N=1,f=0):

{ Minimize Js(v) = 217 fOTfJ,(; [ux(x, t) — U(t)|2 ax dt (EP-6)

Subjectto v € L°(Q; {«, B}), usolves ...

Attention: v can now depend on x and t; uy is observed for x € [1 — §, 1]

Rewritting the state equation, an idea from [Pedregal 2005]:
Vi (7 Dux, u) =0 & v e H'(Qx(0,T)): ur = v, —v(X,)Ux = v
Set

Ay = {F € M?¥2 . M,F() — F@ — 0}, M =<2 2)) forn=a,8

and ,
_ [ IFii—o@®)P, ifFeAaUAg
Wit F) 7{ +o0, otherwise

Then, (EP-6) is equivalent to the variational problem
Minimize Ks(U) = 1 fi [ s W(t, V(x.U(x, 1)) dx dt
Subjectto U = (u,v) € H'(Q; R?)
U(X’ O) = UO(X)7 U[(X, O) = U (X) in (07 1)
u(0,t) =u(1,t) =0 in (0, T)

E. Fernandez-Cara Inverse problems and Elastography



An unbounded total variation one-dimensional model

Relaxation and existence

In general, (EP-§) possesses no solution

Let us introduce the function W, with

IFiy — (D)2 ifFez
W(L F) = (ﬂ+a) ’F11 B+a)2 Fgg‘ = 20’(f)F11 +O'(t)2 if FeZy
+o00 otherwise

where we have denoted by Z_ (resp. Z.) the family of matrices F € M?*2 satisfying
Fi2 — F21 = 0 and (aFy1 — F2)(BF11 — Fa2) < 0 (resp. Fiz — Fo1 =0
and (aF11 + F22)(BF11 + Fa2) > 0). Then QW = W

E. Fernandez-Cara Inverse problems and Elastography



An unbounded total variation one-dimensional model

Relaxation and existence

SKETCH OF THE PROOF: _ B
We can assume o = 0 and W = W(F) and W = W(F) respectively given by

‘F11 |2, ifFeZ_
_ |F11|2,ifF€/\aU/\@ 7 . B+a 2 2 2,
W) = { +00, otherwise ) = (Bfa> ‘F” T (Bta)? Foo| \ifF € Zy

+o00, otherwise

CW, PW, QW and RW: the convexification, poly-convexification, quasi-convexification
and rank-one-convexification of W. For instance:

CW(F) = sup{ G(F) : G: M?*? — Ris convexand G < W },

Then CW < PW < QW < RW, with possibly strict inequalities
But BW < Wand W < CW:

@ If G = G(F) is rank-one convex and G < W, then G < W
(a computation), whence RW < W

o W is convex and W < W, whence W < CW |

E. Fernandez-Cara Inverse problems and Elastography



An unbounded total variation one-dimensional model
Relaxation and existence

Other proof can be obtained from [Maestre-Miinch-Pedregal 2008] (Young measures)
A consequence:

Corollary
The variational problem

Minimize Ks(U) = 1 [T [ s W(t, V(x.0U(x, 1)) dx at
Subjectto U = (u,v) € H'(Q; R?)
u(x,0) = up(x), ui(x,0) = uq(x) in (0,1)
u(0,t) =u(1,t)=0 in (0, T)

(REP-6)

is a relaxation of (EP-9), i.e.
@ inf(EP-6) = inf (REP-6)
@ (REP-6) possesses optimal solutions

© Optimal distributions of oz and g in (REP-6): given by the behavior in the limit of
minimizing sequences of (EP-6), i.e. codified by the related Young measure
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Additional comments

SOME ADDITIONAL COMMENTS AND QUESTIONS:

@ Interpretation: In the (optimal) minimizing sequence, « and j3 tissues are placed
alternating “small” bars in proportions determined by the solution to (REP-6)

@ Forthcoming (theoretical and numerical) results for some variants:
1 T 1 2
5 L =, (o hupi = (0 D = 0....

@ How to solve (and interpret) similar N-dimensional problems? Lamé versions?

E. Fernandez-Cara Inverse problems and Elastography



Additional comments

JUST TO END: NUMERICAL SOLUTION OF A “SIMPLE” RELATED PROBLEM:
Identifying the wave speed coefficient
(a) Direct problem:

Data: Q, D, T, ¢, (u°, u') and v = ~(x)

Result: the solution u to

{ ug — V- (7(x)Vu) =0, (x,t) € (2\D) x (0,T)
(1) u=1, (x,1)e 2 x(0,T); u=0, (x,t)coDx(0,T)
(U, up)| =0 = (u°,u")
Information:
(2) u(-, Nlw =¢

(b) Inverse problem:
(Partial) data: Q, D, T, + and (u°, u")
(Additional) information: ¢ (in w)
Goal: Find v (piecewise constant) such that the solution to (1) satisfies (2)

Again: applications to thrombosis, detection of coagula in blood vessels ...
This begins to look like an elastography problem

E. Fernandez-Cara Inverse problems and Elastography
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Some general ideas

Elastography and inverse problems

Figure: Computations with FreeFEM (Conjugate Gradient algorithm) — The desired and computed
states — ¢ = 1 on the left-bottom, 1) = 0 elsewhere — f = 0 — w is the left cylinder — The
solution is given by v = 10 (resp. v = 50) in the left (resp. bottom) cylinder; v = 0.5 elsewhere —
To solve the problem: FEM approach (P;-Lagrange) and BFGS method — Cost = 0.000674199 —
Nb of Triangles = 2436, Nb of Vertices = 1271
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Some general ideas
Elastography and inverse problems
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Figure: The domain and the mesh — The solution is given by v = 10 (resp. v = 50) in the left
(resp. bottom) cylinder; v = 0.5 elsewhere — To solve the problem: FEM approach (P;-Lagrange)
and BFGS method — Nb of Triangles = 3799, Nb of Vertices = 1971
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Figure: Computations with FreeFEM (Conjugate Gradient algorithm) — The desired and computed
states — ¢ = 1 on the left, ¢» = 0 elsewhere — f = 0 — w is the left cylinder — The solution is
given by v = 10 (resp. v = 50) in the left (resp. bottom) cylinder; v = 0.5 elsewhere — To solve
the problem: FEM approach (P;-Lagrange) and BFGS method — Cost = 0.00979552 — Nb of
Triangles = 3799, Nb of Vertices = 1971
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Figure: Computations with FreeFEM — The computed state
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