Some inverse problems in Elastography

Enrique FERNÁNDEZ-CARA

Dpto. E.D.A.N. - Univ. of Sevilla

joint work with F. MAESTRE - Dpto. E.D.A.N. - Univ. of Sevilla

Clermont-Ferrand, June 2011

Outline

Some general ideas

- Elastography and inverse problems
- Mathematical formulations

- The one-dimensional case
- The general N-dimensional case

- Formulation and non-existence
- Relaxation and existence

What is Elastography?

A technique to detect elastic properties of tissue Applications in Medicine

Aspects:

• Three elements:

Acoustic waves generator (Low frequency) mechanical excitation \rightarrow waves Captor (mechanical waves detection and visualization; MR or ultrasound) Mathematical tool (solver \rightarrow identification of tissue stiffness)

- Medical fields of application: detection and description of breast, liver, prostate and other cancers; arteriosclerosis (hardening of the arteries); fibrosis; deep vein thrombosis; treatment monitoring; ...
- At present: emerging techniques lead to the detection of internal waves through non-invasive techniques (a very precise description)

First works: [Ophir-et-al 1991], [Muthupillai-et-al 1995], [Sinkus-et-al 2000], [McKnight-et-al 2002], ...

Figure: Classical detection methods in mammography (I): palpation

Figure: Classical detection methods in mammography (II): x-rays

Elastography is better suited than palpation and *x*-rays techniques:

- Tumors can be far from the surface
- or small
- or may have properties that become indistinguishable through palpation or x-rays

Figure: A breast elastogram. Identification of tissue stiffness

Figure: Applications of MR Elastography to tumor detection. Liver and brain elastograms

In mathematical terms: inverse problem governed by PDEs Some words on inverse problems:

- General setting of a direct problem: Data $(\mathcal{D}_0 \cup \mathcal{D}_1) \rightarrow \text{Results } (\mathcal{R}) \rightarrow \text{Observation (additional information) } (\mathcal{I})$
- A related inverse problem: Some data (D₀) + Information (I) → The other data (D₁)
- Example: identification of the shape of a domain
 - (a) Direct problem: Data: Ω , φ and DResult: the solution u to

(1)
$$\begin{cases} -\Delta u = 0, \ x \in \Omega \setminus \overline{D} \\ u = 0, \ x \in \partial D; \ u = \varphi, \ x \in \partial \Omega \end{cases}$$

Information:

(2)

$$rac{\partial u}{\partial
u} = \sigma, \quad x \in \gamma \subset \partial \Omega$$

(b) Inverse problem:

(Partial) data: Ω and φ

(Additional) information: σ (on γ)

Goal: Find *D* such that the solution to (1) satisfies (2)

[Andrieux-et-al 1993], [Alessandrini-et-al 2000 . . .], [Kavian 2002], [Alvarez-et-al 2005], [Doubova-EFC-GlezBurgos-Ortega 2006], [Yan-Ma 2008]

Figure: A geometrical inverse problem: identification of the open set *D* from Ω , φ and the additional information $\frac{\partial u}{\partial \nu} = \sigma$ on γ

Many interesting problems in Medicine, Biology, etc. lead to IPs for PDEs of this class: coefficient, source or shape identification

A SECOND EXAMPLE: identification of the conductivity of a dielectric body (Calderón) (a) Direct problem:

Data: Ω , φ and a = a(x)Result: the solution *u* to

(1)
$$\begin{cases} -\nabla \cdot (a(x)\nabla u) = 0, \ x \in \Omega \\ u = \varphi, \ x \in \partial \Omega \end{cases}$$

Information:

(2)

$$u|_{\omega} = z$$

(b) Inverse problem:
(Partial) data: Ω and φ
(Additional) information: z (in ω)
Goal: Find a such that the solution to (1) satisfies (2)

Applications to tomography ... [Calderón 1980], [Sylvester-Uhlman 1987], [Astala-Paavarinta 2003], ...

Figure: The domain and the mesh — The solution is given by a = 0.01 (resp. a = 100, a = 1000) in the central (resp. bottom, left) disk; a = 1 elsewhere — To solve the problem: FEM approach (P_1 -Lagrange) — Nb of Triangles = 2638, Nb of Vertices = 1355

Elastography and inverse problems

Figure: Computations with FreeFEM (these and those below; BFGS method) — $\varphi \equiv x_1^3 - x_2^3 - \omega$ is the central disk — Reconstructed potential — a = 1.01 (resp. a = 100, a = 1000) in the central (resp. bottom, left) disk; a = 1 elsewhere

A THIRD SIMILAR EXAMPLE: identification of the viscosity of a Navier-Stokes fluid (a) Direct problem:

Data: Ω , *D*, *U* and $\nu = \nu(x)$ Result: the solution (u, p) to

(1)
$$\begin{cases} (u \cdot \nabla)u - \nabla \cdot (\nu(x)(Du + Du^T)) + \nabla p = 0, \ \nabla \cdot u = 0, \ x \in \Omega \setminus \overline{D} \\ u = 0, \ x \in \partial D; \ u = U, \ x \in \partial \Omega \end{cases}$$

Information:

$$(2) u|_{\omega} = z$$

(b) Inverse problem:
(Partial) data: Ω, *D* and *U*(Additional) information: *z* (in ω)
Goal: Find ν such that the solution to (1) satisfies (2)

Applications to blood diseases description and therapy ... Thrombosis, detection of coagula in blood vessels ... [Nakamura-Uhlman 1994], [Yamamoto 2009], ...

Figure: The domain and the mesh — The solution is given by $\nu = 10$ (resp. $\nu = 100$) in the left (resp. bottom) cylinder; $\nu = 0.1$ elsewhere — To solve the problem: FEM approach ($P_2 \otimes P_1$ -Lagrange) — Nb of Triangles = 3799, Nb of Vertices = 1971

Elastography and inverse problems

Figure: Computations with FreeFEM (BFGS method) — U = (1, 0) on the left and the right, U = (0, 0) elsewhere — ω is the left cylinder — Reconstructed velocity field — $\nu = 10$ (resp. $\nu = 100$) in the left (resp. bottom) cylinder; $\nu = 0.1$ elsewhere

Figure: Computations with FreeFEM (BFGS method) — U = (1, 0) on the left and the right, U = (0, 0) elsewhere — ω is the left cylinder — Reconstructed pressure — $\nu = 10$ (resp. $\nu = 100$) in the left (resp. bottom) cylinder; $\nu = 0.1$ elsewhere

A TYPICAL IP IN ELASTOGRAPHY

The data: $\Omega \subset \mathbb{R}^3$, *F*, (U^0, U^1) and *B* The problem: Find $\lambda = \lambda(x)$ and $\mu = \mu(x)$ such that the solution $U = (U_1, U_2, U_3)$ to

$$\begin{cases} U_{tt} - \nabla \cdot (\boldsymbol{\mu}(\boldsymbol{x})(\nabla U + \nabla U^T) + \boldsymbol{\lambda}(\boldsymbol{x})(\nabla \cdot U) \mathbf{ld.}) = F, & (x,t) \in Q \\ U = 0, & (x,t) \in \Sigma \\ U(x,0) = U^0(x), \ U_t(x,0) = U^1(x), & x \in \Omega \end{cases}$$

satisfies

$$\sigma \cdot \nu := \left(\mu(\mathbf{x})(\nabla U + \nabla U^{\mathsf{T}}) + \lambda(\mathbf{x})(\nabla \cdot U)\mathsf{Id.}\right) \cdot \nu = B \text{ on } S \times (0, \mathsf{T})$$

 $\nu = \nu(x)$: outwards directed unit normal vector at $x \in \partial \Omega$ and $S \subset \partial \Omega$

[Sinkus-et-al 2000], [Barbone-et-al 2004], [Isaakov 2005], [Khaled-et-al 2006], [Perriñez 2009], [Imanuvilov-Yamamoto 2011]

Explanations:

- *F*: a given source, (U^0, U^1) : an initial state (known)
- The tissue is described by λ and μ (under isotropy assumptions)
- The displacement $U = (U_1, U_2, U_3)$ is fixed on Σ
- $\sigma \cdot \nu$ is measured on $S \times (0, T)$

A SIMPLIFIED VERSION (for the axial displacement)

The data: $\Omega \subset \mathbb{R}^3$, f, (u^0, u^1) and σ The inverse problem (IP): Find $\gamma \in L^{\infty}(\Omega; \{\alpha, \beta\}) \cap BV(\Omega)$ ($0 < \alpha < \beta$) such that the solution to

$$\begin{cases} u_{tt} - \nabla \cdot (\boldsymbol{\gamma}(\boldsymbol{x}) \nabla u) = f(\boldsymbol{x}, t), & (\boldsymbol{x}, t) \in \boldsymbol{Q} := \Omega \times (0, T) \\ u = 0, & (\boldsymbol{x}, t) \in \boldsymbol{\Sigma} := \partial \Omega \times (0, T) \\ u(\boldsymbol{x}, 0) = u^{0}(\boldsymbol{x}), & u_{t}(\boldsymbol{x}, 0) = u^{1}(\boldsymbol{x}), & \boldsymbol{x} \in \Omega \end{cases}$$

satisfies

$$\gamma \frac{\partial u}{\partial \nu} = \sigma \text{ on } S \times (0, T)$$

[Lurie 1999], [Allaire 2002], [Imanuvilov 2002], [Isaakov 2004], [Bellasoued-Yamamoto 2005], [Pedregal 2005], [Maestre-Pedregal 2006], [Maestre-Münch-Pedregal 2008], ...

Explanations:

- Again: *f* is a given source, (u^0, u^1) is an initial state (known), $u|_{\Sigma}$ is fixed, $\frac{\partial u}{\partial u}|_S \times (0, T)$ is measured and γ is the unknown
- Sometimes it can be assumed that $u = U \cdot \nu$, $\gamma = \mu$

The inverse problem (IP): Find $\gamma \in L^{\infty}(\Omega; \{\alpha, \beta\}) \cap BV(\Omega)$ ($0 < \alpha < \beta$) such that the solution to

$$u_{tt} - \nabla \cdot (\gamma(x)\nabla u) = f(x, t)$$

$$u|_{\Sigma} = 0, \quad \dots$$

satisfies

$$\gamma \frac{\partial u}{\partial \nu} = \sigma \text{ on } S \times (0, T)$$

Relevant questions:

- Uniqueness: γ and γ' solve (IP) $\Rightarrow \gamma = \gamma'$ [Barbonne 2004]
- Stability: γ (resp. γ') solve (IP) (resp. (IP) for σ')

$$\|\gamma' - \gamma\| \le F(\sigma; \|\sigma' - \sigma\|)$$
 for small $\|\sigma' - \sigma\|$?

 $\bullet\,$ Reconstruction: given σ (and maybe some additional information), "compute" γ

For reconstruction: (a) Direct methods and (b) Iterative methods

THE INVERSE PROBLEM (IP): Find $\gamma \in L^{\infty}(\Omega; \{\alpha, \beta\}) \cap BV(\Omega)$ ($0 < \alpha < \beta$) such that the solution to

$$u_{tt} - \nabla \cdot (\gamma(\mathbf{x}) \nabla u) = f(\mathbf{x}, t)$$

$$u|_{\Sigma} = 0, \quad \dots$$

satisfies

$$\gamma \frac{\partial u}{\partial \nu} = \sigma \text{ on } S \times (0, T)$$

AN "ITERATIVE" METHOD: rewrite (IP) as an extremal problem Cost function

$$I(\gamma) = \frac{1}{2} \int_0^T \left\| \gamma \frac{\partial u}{\partial \nu} \right|_{\mathcal{S}} - \sigma(t) \|^2 dt, \ \gamma \in L^{\infty}(\Omega; \{\alpha, \beta\}) \cap BV(\Omega)$$

 $(\|\cdot\|$ is an appropriate norm) An extremal problem:

(EP) $\begin{cases} \text{Minimize } I(\gamma) \\ \text{Subject to } \gamma \in L^{\infty}(\Omega; \{\alpha, \beta\}) \cap BV(\Omega), \text{ } u \text{ solves} \dots \end{cases}$

Then: γ solves (IP) $\Leftrightarrow \gamma$ solves (EP), with $I(\gamma) = 0$ In the sequel: we analyze and try to "solve" (EP) (EP)

Minimize
$$I(\gamma) = \frac{1}{2} \int_0^T ||\gamma \frac{\partial u}{\partial \nu}|_S - \sigma(t)||^2 dt$$

Subject to $\gamma \in \dots$ *u* solves \dots

$$\begin{cases} u_{tt} - \nabla \cdot (\gamma(x) \nabla u) = f(x, t) \\ u|_{\Sigma} = 0, & \dots \end{cases}$$

Results in collaboration with F. Maestre:

1st result:

The total variation of γ is uniformly bounded \rightarrow Existence

2nd result:

- $\mathit{N}=$ 1, no a priori bound on the total variation of γ
 - Non-existence
 - Identification of the relaxed problem (and existence of "generalized γ")

(as in [Maestre-Münch-Pedregal 2008]; new proofs)

N = 1 and (EP) reads

(EP)
$$\begin{cases} \text{Minimize } I(\gamma) = \frac{1}{2} \int_0^T |\gamma(1)u_x(1,t) - \sigma(t)|^2 dt \\ \text{Subject to } \gamma \in L^{\infty}(\Omega; \{\alpha,\beta\}) \cap BV(\Omega), \ u \text{ solves} \dots \end{cases}$$

Necessarily: γ is piecewise constant in [0, 1] and $\gamma(x)$ is a.e. equal to α or β , with a finite number of discontinuities

Consider

(EP-k)
$$\begin{cases} \text{Minimize } I(\gamma) = \frac{1}{2} \int_0^T |\gamma(1)u_x(1,t) - \sigma(t)|^2 dt \\ \text{Subject to } \gamma \in \Gamma_k, \text{ u solves } \dots \end{cases}$$

with $\Gamma_k = \{\gamma \in L^{\infty}(\Omega; \{\alpha, \beta\}) \cap BV(\Omega) : \gamma \text{ has, at most, } k \text{ discontinuities in } [0, 1]\}$

Theorem:

Existence for (EP-k)

A particular case of a result proved below

SOME COMMENTS:

- Since N = 1, γ has to be *simple*. For $N \ge 2$, more complex situations may appear
- Same argument ⇒ existence for

 $\begin{cases} \text{Minimize } I_{\varepsilon}(\gamma) = \frac{1}{2} \int_{0}^{T} |\gamma(1)u_{x}(1,t) - \sigma|^{2} dt + \frac{\varepsilon}{2} TV(\gamma)^{2} \\ \text{Subject to } \gamma \in L^{\infty}(\Omega; \{\alpha, \beta\}) \cap BV(\Omega), \ u \text{ solves } \dots \end{cases}$

What happens as $\varepsilon \to 0^+$?

 $N \geq 2, \, \Omega \subset \mathbb{R}^N$ open, connected, regular and bounded (at least, $\partial \Omega \in W^{2,\infty}$)

(EP)
$$\begin{cases} \text{Minimize } I(\gamma) = \frac{1}{2} \int_0^T \|\gamma \frac{\partial u}{\partial \nu}\|_S - \sigma\|^2 dt \\ \text{Subject to } \gamma \in L^{\infty}(\Omega; \{\alpha, \beta\}) \cap BV(\Omega), \ u \text{ solves } \dots \end{cases}$$

Consider

(EP-*C*) $\begin{cases} \text{Minimize } I(\gamma) \\ \text{Subject to } \gamma \in \Lambda(C), \text{ } u \text{ solves} \dots \end{cases}$

with $\Lambda(\mathcal{C}) = \{ \gamma \in L^{\infty}(\Omega; \{\alpha, \beta\}) \cap BV(\Omega) : TV(\gamma) \leq \mathcal{C} \}$

Theorem:

Existence for (EP-C)

PROOF - **FIRST PART**: $\forall \gamma \in \Lambda(C), \gamma \frac{\partial u}{\partial \nu}$ is defined in $L^{\infty}(0, T; H^{-1/2}(\partial \Omega))$ by duality:

$$\langle \gamma \frac{\partial u}{\partial \nu}, z \rangle = \langle \nabla \cdot (\gamma \nabla u), z \rangle + \iint_{Q} \gamma \nabla u \cdot \nabla z \quad \forall z \in L^{1}(0, T; H^{1}(\Omega)),$$

 $\{\gamma_n\}$: a minimizing sequence for *I* in $\Lambda(C)$. Then:

 $\left\{ \begin{array}{l} \gamma^n \to \gamma^* \quad \text{weakly-* in } BV(\Omega) \\ \gamma^n \to \gamma^* \quad \text{strongly in } L^p(\Omega) \text{ for all } p \in [1, +\infty) \text{ and a.e.} \end{array} \right.$

with $\gamma^* \in \Lambda(C)$ u^n : the state associated to γ^n . Then:

 $\begin{cases} u^n \to u^* & \text{weakly-* in } L^\infty(0, T; H^1_0(\Omega)) \\ u^n_t \to u^*_t & \text{weakly-* in } L^\infty(0, T; L^2(\Omega)) \end{cases}$

But: u^* is the state associated to γ^* , because

 $\gamma^n \nabla u^n \to \gamma^* \nabla u^*$ weakly in $L^{p_1}(0, T; L^{p_2}(\Omega)^N) \quad \forall p_1 \in [1, +\infty), \forall p_2 \in [1, 2)$

PROOF - SECOND PART:

 $\liminf_{n \to +\infty} I(\gamma^n) \ge I(\gamma^*)?$ Yes Indeed:

- uⁿ is bounded in C⁰([0, T]; X) for X := [D(Δ), H¹₀(Ω)]_{δ,∞} (a Hilbert space compactly embedded in H¹₀(Ω)) and uⁿ_t is uniformly bounded in L[∞](0, T; L²(Ω))
- Consequently, u^n is precompact in $L^2(0, T; H^1_0(\Omega))$ and

 $\gamma^n \frac{\partial u^n}{\partial \nu} \to \gamma^* \frac{\partial u^*}{\partial \nu}$ weakly in $L^2(0, T; H^{-1/2}(\partial \Omega))$

To prove the first assertion: we write $-\nabla \cdot (\gamma^n \nabla u^n) = f - u_{tt}^n$ and we use

Lemma:

 $\exists \delta$ such that, $\forall a \in L^{\infty}(\Omega) \cap BV(\Omega)$ with $\alpha \leq a \leq \beta$, $\forall h \in L^{2}(\Omega)$, the solution to

$$\begin{cases} -\nabla \cdot (a\nabla w) = h, & x \in \Omega \\ w = 0, & x \in \partial \Omega \end{cases}$$

satisfies:

$$\|\boldsymbol{w}\|_{X} \leq C(\boldsymbol{N}, \boldsymbol{\Omega}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \|\boldsymbol{a}\|_{BV}) \|\boldsymbol{h}\|_{L^{2}}$$

Here, $X = [D(\Delta), H_0^1(\Omega)]_{\delta,\infty}$

For the proof: Meyers' Theorem, elliptic regularity and nonlinear interpolation (Tartar) \Box

SKETCH OF THE PROOF OF THE LEMMA:

We use Meyers' Theorem, elliptic regularity and nonlinear interpolation (Tartar):

• If $a \in L^{\infty}(\Omega)$ and $\alpha \leq a \leq \beta$ a.e.,

$$\|w\|_{W^{1,p_M}} \leq C(\Omega, N, \alpha, \beta) \|h\|_{L^2} \quad \forall h \in L^2(\Omega), \quad p_M > 2$$

[Meyers 1963]

• If $a, a' \in L^{\infty}(\Omega)$, $\alpha \leq a, a' \leq \beta$ a.e. and $r = \frac{2p_M}{p_M - 2}$,

$$\|\boldsymbol{w}'-\boldsymbol{w}\|_{\boldsymbol{H}_{0}^{1}} \leq C(\Omega,\boldsymbol{N},\alpha,\beta) \, \|\boldsymbol{a}'-\boldsymbol{a}\|_{L^{r}} \, \|\boldsymbol{h}\|_{L^{2}} \quad \forall \boldsymbol{h} \in L^{2}(\Omega)$$

• If
$$a \in W^{1,r}(\Omega)$$
 and $\alpha \leq a \leq \beta$

 $\|\boldsymbol{w}\|_{H^2} \leq C(\Omega, N, \alpha, \beta) \left(1 + \|\nabla \boldsymbol{a}\|_{L^r}\right) \|\boldsymbol{h}\|_{L^2} \quad \forall \boldsymbol{h} \in L^2(\Omega)$

(elliptic regularity theory)

- $BV(\Omega) \cap L^{\infty}(\Omega) \subset [W^{1,r}(\Omega), L^{r}(\Omega)]_{1/r',\infty} \cap L^{\infty}(\Omega)$
- $\bullet\,$ Finally, all this and a nonlinear interpolation result by [Tartar 1972] $\Rightarrow\,$

$$w \in [D(\Delta), H_0^1(\Omega)]_{\delta,\infty}$$
 for $\delta = \frac{1}{r'} = \frac{p_M - 2}{2p_M} + \text{estimates}$

SOME COMMENTS:

• Again, same argument \Rightarrow existence for

$$\begin{cases} \text{Minimize } I_{\varepsilon}(\gamma) = \frac{1}{2} \int_{0}^{T} \|\gamma \frac{\partial u}{\partial \nu}|_{S} - \sigma\|^{2} dt + \frac{\varepsilon}{2} TV(\gamma)^{2} \\ \text{Subject to } \gamma \in L^{\infty}(\Omega; \{\alpha, \beta\}) \cap BV(\Omega), \ u \text{ solves} \dots \end{cases}$$

• Generalizations in several directions:

(a) Lamé systems: Meyers-like estimates, elliptic regularity, ... Applications in Elastography

(b) Semilinear hyperbolic systems: global estimates

An unbounded total variation one-dimensional model

A RELATED BUT DIFFERENT PROBLEM ($N = 1, f \equiv 0$):

$$\begin{cases} \text{Minimize } J_{\delta}(\gamma) = \frac{1}{2\delta} \int_{0}^{T} \int_{1-\delta}^{1} |u_{x}(x,t) - \sigma(t)|^{2} dx dt \\ \text{Subject to } \gamma \in L^{\infty}(Q; \{\alpha, \beta\}), \ u \text{ solves } \dots \end{cases}$$
(EP- δ)

Attention: γ can now depend on x and t; u_x is observed for $x \in [1 - \delta, 1]$

Rewritting the state equation, an idea from [Pedregal 2005]:

 $\nabla_{(x,t)} \cdot (-\gamma(x,t)u_x, u_t) = 0 \iff \exists v \in H^1(\Omega \times (0,T)) : u_t = v_x, \quad -\gamma(x,t)u_x = v_t$ Set

$$\Lambda_{\eta} = \{ F \in \mathcal{M}^{2 \times 2} : M_{\eta} F^{(1)} - F^{(2)} = 0 \}, \quad M_{\eta} = \begin{pmatrix} 0 & 1 \\ \eta & 0 \end{pmatrix} \text{ for } \eta = \alpha, \beta$$

and

$$W(t,F) = \begin{cases} |F_{11} - \sigma(t)|^2, & \text{if } F \in \Lambda_{\alpha} \cup \Lambda_{\beta} \\ +\infty, & \text{otherwise} \end{cases}$$

Then, (EP- δ) is equivalent to the variational problem

 $\begin{cases} \text{Minimize } K_{\delta}(U) = \frac{1}{\delta} \int_{0}^{T} \int_{1-\delta}^{1} W(t, \nabla_{(x,t)} U(x,t)) \, dx \, dt \\ \text{Subject to } U = (u, v) \in H^{1}(Q; \mathbb{R}^{2}) \\ u(x, 0) = u_{0}(x), \ u_{t}(x, 0) = u_{1}(x) \text{ in } (0, 1) \\ u(0, t) = u(1, t) = 0 \text{ in } (0, T) \end{cases}$

In general, (EP- δ) possesses no solution

Theorem:

Let us introduce the function \tilde{W} , with

$$\tilde{W}(t,F) = \begin{cases} |F_{11} - \sigma(t)|^2 & \text{if } F \in Z_-\\ \left(\frac{\beta + \alpha}{\beta - \alpha}\right)^2 \left|F_{11} - \frac{2}{(\beta + \alpha)^2}F_{22}\right|^2 - 2\sigma(t)F_{11} + \sigma(t)^2 & \text{if } F \in Z_+\\ +\infty & \text{otherwise} \end{cases}$$

where we have denoted by Z_- (resp. Z_+) the family of matrices $F \in \mathcal{M}^{2 \times 2}$ satisfying $F_{12} - F_{21} = 0$ and $(\alpha F_{11} - F_{22})(\beta F_{11} - F_{22}) \leq 0$ (resp. $F_{12} - F_{21} = 0$ and $(\alpha F_{11} + F_{22})(\beta F_{11} + F_{22}) \geq 0$). Then $QW = \tilde{W}$.

SKETCH OF THE PROOF:

We can assume $\sigma \equiv 0$ and W = W(F) and $\tilde{W} = \tilde{W}(F)$ respectively given by

$$W(F) = \begin{cases} |F_{11}|^2, \text{ if } F \in \Lambda_{\alpha} \cup \Lambda_{\beta} \\ +\infty, \text{ otherwise} \end{cases} \quad \tilde{W}(F) = \begin{cases} |F_{11}|^2, \text{ if } F \in Z_- \\ \left(\frac{\beta+\alpha}{\beta-\alpha}\right)^2 \left|F_{11} - \frac{2}{(\beta+\alpha)^2}F_{22}\right|^2, \text{ if } F \in Z_+ \\ +\infty, \text{ otherwise} \end{cases}$$

CW, *PW*, *QW* and *RW*: the convexification, poly-convexification, quasi-convexification and rank-one-convexification of *W*. For instance:

 $CW(F) = \sup\{ G(F) : G : \mathcal{M}^{2 \times 2} \mapsto \overline{\mathbb{R}} \text{ is convex and } G \leq W \},$

Then $CW \leq PW \leq QW \leq RW$, with possibly strict inequalities But $RW \leq \tilde{W}$ and $\tilde{W} \leq CW$:

- If G = G(F) is rank-one convex and G ≤ W, then G ≤ W
 (a computation), whence RW ≤ W
- \tilde{W} is convex and $\tilde{W} \leq W$, whence $\tilde{W} \leq CW$

Other proof can be obtained from [Maestre-Münch-Pedregal 2008] (Young measures) A consequence:

Corollary

The variational problem

 $(\mathsf{REP}-\delta)$

 $\begin{cases} \text{Minimize } \tilde{K}_{\delta}(U) = \frac{1}{\delta} \int_{0}^{T} \int_{1-\delta}^{1} \tilde{W}(t, \nabla_{(x,t)} U(x,t)) \, dx \, dt \\ \text{Subject to } U = (u, v) \in H^{1}(Q; \mathbb{R}^{2}) \\ u(x, 0) = u_{0}(x), \quad u_{t}(x, 0) = u_{1}(x) \text{ in } (0, 1) \\ u(0, t) = u(1, t) = 0 \text{ in } (0, T) \end{cases}$

is a relaxation of (EP- δ), i.e.

• inf (EP- δ) = inf (REP- δ)

(REP- δ) possesses optimal solutions

Optimal distributions of α and β in (REP-δ): given by the behavior in the limit of minimizing sequences of (EP-δ), i.e. codified by the related Young measure

SOME ADDITIONAL COMMENTS AND QUESTIONS:

- Interpretation: In the (optimal) minimizing sequence, α and β tissues are placed alternating "small" bars in proportions determined by the solution to (REP-δ)
- Forthcoming (theoretical and numerical) results for some variants:

 $\frac{1}{\delta}\int_0^T\int_{1-\delta}^1|\gamma u_x-\sigma(t)|^2,\quad (\rho(x,t)u_t)_t-(\gamma(x,t)u_x)_x=0,\ldots$

• How to solve (and interpret) similar N-dimensional problems? Lamé versions?

JUST TO END: NUMERICAL SOLUTION OF A "SIMPLE" RELATED PROBLEM:

Identifying the wave speed coefficient

(a) Direct problem:

Data: Ω , *D*, *T*, ψ , (u^0, u^1) and $\gamma = \gamma(x)$ Result: the solution *u* to

$$\begin{cases} u_{tt} - \nabla \cdot (\boldsymbol{\gamma}(\boldsymbol{x}) \nabla \boldsymbol{u}) = 0, \quad (\boldsymbol{x}, t) \in (\Omega \setminus \overline{D}) \times (0, T) \\ u = \psi, \quad (\boldsymbol{x}, t) \in \partial \Omega \times (0, T); \quad u = 0, \quad (\boldsymbol{x}, t) \in \partial D \times (0, T) \\ (u, u_t)|_{t=0} = (u^0, u^1) \end{cases}$$

Information:

(1)

$$(2) u(\cdot, T)|_{\omega} = 0$$

(b) Inverse problem:

(Partial) data: Ω , *D*, *T*, ψ and (u^0, u^1) (Additional) information: ζ (in ω) Goal: Find γ (piecewise constant) such that the solution to (1) satisfies (2)

Again: applications to thrombosis, detection of coagula in blood vessels ... This begins to look like an elastography problem

Figure: The domain and the mesh — The solution is given by $\gamma = 10$ (resp. $\gamma = 50$) in the left (resp. bottom) cylinder; $\gamma = 0.5$ elsewhere — To solve the problem: FEM approach (P_1 -Lagrange) and BFGS method — Nb of Triangles = 2436, Nb of Vertices = 1271

Figure: Computations with FreeFEM (Conjugate Gradient algorithm) — The desired and computed states — $\psi = 1$ on the left-bottom, $\psi = 0$ elsewhere — $f \equiv 0 - \omega$ is the left cylinder — The solution is given by $\gamma = 10$ (resp. $\gamma = 50$) in the left (resp. bottom) cylinder; $\gamma = 0.5$ elsewhere — To solve the problem: FEM approach (P_1 -Lagrange) and BFGS method — Cost = 0.000674199 — Nb of Triangles = 2436, Nb of Vertices = 1271

Figure: The domain and the mesh — The solution is given by $\gamma = 10$ (resp. $\gamma = 50$) in the left (resp. bottom) cylinder; $\gamma = 0.5$ elsewhere — To solve the problem: FEM approach (*P*₁-Lagrange) and BFGS method — Nb of Triangles = 3799, Nb of Vertices = 1971

Figure: Computations with FreeFEM (Conjugate Gradient algorithm) — The desired and computed states — $\psi = 1$ on the left, $\psi = 0$ elsewhere — $f \equiv 0 - \omega$ is the left cylinder — The solution is given by $\gamma = 10$ (resp. $\gamma = 50$) in the left (resp. bottom) cylinder; $\gamma = 0.5$ elsewhere — To solve the problem: FEM approach (P_1 -Lagrange) and BFGS method — Cost = 0.00979552 — Nb of Triangles = 3799, Nb of Vertices = 1971

Figure: Computations with FreeFEM — The computed state

E. Fernández-Cara Inverse problems and Elastography

THANK YOU VERY MUCH ...