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The tunneling of a particle between two states, as influenced by coupling the particle to an external field, is
investigated. A spin-boson Hamiltonian is used to describe the tunnel system and its interaction with a medium
and is augmented by a term coupling the dipole moment of the particle to the external field. A projection
operator method is introduced that provides equations of motion for the particle’s density matrix and permits
discussion of external field effects on tunneling even at very low temperatures. These equations of motion can
exhibit solutions characterized by population relaxation with a rate constant that is an average over the period
of the external field. As an application of this theory, the modification by an external field of the tunneling rate
of a defect in a metal, where the system-medium interaction is characterized by an Ohmic spectrum, is
evaluated. At sufficiently low temperatures, for experimentally relevant parameter values, suitably chosen
(constant and/or sinusoidakxternal fields can greatly suppress or enhance the tunneling rate relative to the
field-independent valu¢ S0163-182@06)06943-3

I. INTRODUCTION localized states, and therefore an appropriate coupling would
be via an electric field. For a charge-neutral tunnel system,
Reactions that are based on tunneling find application irthe coupling then is between the dipole of the particle and
diverse areas of biology, chemistry, and physicsEx-  the electric field. Other couplings can be addressed. For ex-
amples of tunneling species include protons, hydrogen, andmple, if the tunnel particle is best described as a hydrogen
heavier atoms, chemical groups such as a methyl group, eleatom, the coupling would be to an external pressure field. In
trons, and defects and impurities in solids. The major emphaview of the flexibility of electric fields, with regard to inten-
sis of studies of such reactions has been on characterizirgjty and frequency, and the prevalence of tunnel systems that
their rates in terms of the given properties of the tunnel sysexhibit significant charge displacement on transfer, electric
tem, and the surrounding medium to which the tunnel systerfields should be viewed as prime candidates for controlling
is coupled. Recently, there have been works that discuss thanneling.
possibility of attempting to control tunneling by the applica- In general, a discussion of tunneling should be carried out
tion of external field$%2° If tunneling can be controlled from the perspective of the characteristics of the potential-
externally, then the possibility of storing and retrieving in- energy surface that the particle experiences. However, as is
formation can be contemplatéf;1230-32 typically the case, a reduction to a two-level system is ap-
Our objective is an investigation of the prospect of con-propriate. Then the problem can be formulated in terms of a
trolling tunneling by the application of an external field. spin-boson Hamiltoniat?® with the addition of a coupling
Tunneling is responsible for the transfer of a “particle” from term to the external field.
one spatially localized region to another by the quantum- In previous work we studied the control of tunneling
mechanical process of wave-function penetration of awhen the medium could be treated classically in the sense
potential-energy barrief’ As is well known® the probabil-  that theBhw<1, where=1/ksT and w is a characteristic
ity of tunneling increases as the particle’s mass decreasesjedium frequency>!* The coupling to various forms of an
and the height and width of the barrier of the potential de-external field could produce dramatic enhancements or re-
crease and maximize for a symmetric potential profile. At theductions of the tunnel rate, when a rate regime was found to
most basic level, an external field can control tunneling bybe appropriate. We actually focused on the equations of mo-
biasing the potential profile. For example, if the potentialtion of the tunnel system, so that the entire dynamic process
profile experienced by the tunnel particle were symmetric, incould be discussed for different initial conditions. This con-
the absence of an external field, then its application couldrasts with the approach of directly obtaining an approxima-
provide an asymmetry that would greatly reduce the possition to the population evolution by, e.g., a golden rule calcu-
bility of tunneling. Conversely, an asymmetric potential pro-lation. This latter approach is directed toward obtaining a
file in the absence of an external field could be symmetrizedate constant for the rate of population decay. While this is
by its application and greatly enhance the tunneling. As aften the regime that emerges in the presence of coupling to
tunneling probability is strongly dependent on the degree o medium, we found examples where the approach to an
asymmetry in the potential, external fields can have dramatiequilibrium state from some prepared initial state is not mo-
effects on the tunneling. notonous. When the external field is time dependent, an
In order to control tunneling externally, the tunnel particle equation of motion method should be used, as golden rule
must be connected to the external field. Often, tunnel sysealculations rely on short-time approximations that may be
tems exhibit different charge distributions in their different violated in general.
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In this work we consider the situation wheBhw can be  asymmetrye. When the external field is time dependent
large, so that the medium must be treated quantum mecharthere is no rate constant, strictly speaking, but we are able to
cally. Several groupd?>?°~?°considered external field ef- derive useful expressions for an external-field-period-
fects in this regime by use of a noninteracting-blip approxi-averaged rate constant. This averaged rate constant expres-
mation approach. The role of the external field in modifyingSion shows that the rate of tunneling can be controlled by
the transition temperature that separates coherent from inc@Pplication of periodic and/or constant external fields even at
herent tunneling was examined. As is known from tunneling®W temperature. _ .
calculations in this temperature regime, more particulars of 1€ plan of the remainder of the paper is as follows: In

the medium enter the theory than at high temperature. ip€C. Il we use the projection operator method to obtain the

particular, a thermally weighted average of the spectral der€auations of motion for the elements of the tunnel system’s

sity characterizing the coupling between the medium ancFr‘ensity matrix. The external field induces complications in

tunnel system enters, which arises in spin-boson Hamiltonial € equations 9f motion due to noncommutativity of opera-
theories>®3 in contrast to high temperatures, where only a ors taken at different times. It also produces differences in

moment of the spectral density, the reorganization energy, i@etﬁqgatlogs %f rtnot|or|1 th? Obé‘:’["r.] b)(/jtge prOJect|or}_opt¢rato:c
involved. Nevertheless, the control of tunneling expressionge od and what would be obtained by a generalization o

we will develop will be qualitatively the same as the simpler edf|e|_d thte_zory t? :Lme-vary!_ng ext?rnaltfleld_s. Inthe_c. gl'tﬁnt
classical medium expressions. approximation of the equations of motion is obtained tha

A particular motivation for this investigation is recent ex- :e?ds tof a rel"’.ltt.'vﬁlyl S|m|ple devi)lttjtmg eq(;‘.?t'on for dthe pr?pﬁ_
periments on the tunneling of individual defects in submi- ation ot an Initially localized state. L.onditions under whic

crometer Bi wireS®=3" The low-temperature tunnel dynam- 2 rate constant description of the relaxation to equilibrium

ics of this defect in bismuth can be modeled as that of &€ found. the time-dependent ratduced by a time-
two-level system coupled to a dissipative medium formed’@"ying external fielflis analyzed, and it is averaged over a

from the metal's conduction electroff&® At very low tem- cycle of the external field to provide the rate constant for an

perature, the defect would tunnel coherently between its twéverad ded dece;ytr?f populatio dn ddescr|pt|on.t TTe. temple ratl(jr(ta
available states. As the temperature is increased, a regime(ligpen ence of this averaged decay constant 15 analyzed 10
reached where the defect tunnels incoherently, and its d contrast it with the tunnel rate in the absence of an external

namics can be described as an exponential decay of tﬁéeld‘ Our concluding remarks are presented in Sec. IV.
population of an initially prepared state, as described by a

rate constant® Kondo®®>°noted that, since the electrons are Il. PROJECTION OPERATOR DERIVATION

excited in electron-hole pairs around the Fermi level, excita- OF THE EQUATIONS OF MOTION

tion is possible even for vanishing energies. Consequently, The Hamiltonian appropriate to a two-level systéf.S)

the spectrum characterizing the defect-bath coupling iginearly coupled to an infinite number of bosonic excitations
Ohmic. For symmetric tunnelinghe equilibrated states of ity the addition of an external field that couples to the
the defect have equal enejgyhe rate constant-T=*"~. ;- 0cinion dipole of the tunneling objecf&*

Herea<1 is a system-bath coupling const&htThis unusual
dependence of an increasing rate with decreasing tempera- 2
ture is a consequence of the Ohmic excitation spectrum and H =Vsz+2 ?'
the relatively weak coupling of the impurity to the bath. Ex- ]
perimental evidence of this temperature dependence has been 2.9)
found for muon diffusion in Cu and Af, and for H intersti- ~ HereV is the splitting of the tunnel doublet in the absence of
tials trapped by O-atom impurities in KBH),.*> For an  coupling to the medium; the bath oscillators are character-
asymmetric tunnel system, with asymmedtythe behavioris  jzed by the coordinates and momentgs andpj’s, respec-
more complex. It depends on whether the rate corresponds tively; and the masses of the oscillators are set to 1 for con-
a downhill (exothermi¢ or uphill (endothermig process and  venience. The TLS medium couplings are characterized by
the temperature regimggT<e or kBT>s).8'43_46 Evidence theyj’s, and the external field's form is left general, for now,
of this complexT dependence has been found in the aboveas b(t) (the factor of 2 is included for notational conve-
noted tunneling of individual defects in submicrometer Biniencg. The spin operators,, s,, ands, are the conven-
wires35-37 tional Pauli matrices. The above Hamiltonian is written on
In order to investigate controlling tunneling when the me-the basis of the tunnel doublet eigenstdtes) and|0—) of
dium should be treated quantum mechanically, we will use ahe unperturbed system. The couplikgis responsible for
projection operator methdd;*® as the low temperature re- the tunneling between the Iéft) and right|R) states, which
quires a special treatment. In particular, the tunnel splittingare defined as the symmetric and antisymmetric linear com-
which characterizes the energy difference between the istinations of the tunnel statefl:)=(1#/2)[|0+)+|0—)] and
lated tunnel states, is no longer suitable as the natural expafR)=(1#/2)[|0+)—|0—)]. The problem can be formulated on
sion parameter. The Hamiltonian should first be rearranged localized basis as well; it is purely a matter of convenience
into a form suitable for carrying out perturbation theory valid as to which basis is used. The origin of thé) term is the
at low temperature. The result of our calculations is a set otoupling of an external electric field to the transition dipole
equations of motion for the system density-matrix elementsnoment of the tunneling object. In the delocalized basis it
with coefficients specified in terms of the spectral densityhas the formP—52
and the effects arising from the coupling to the external field.
A constant external field acts simply as another source of 2b(t)=m-E(t). (2.2

2
+2b(t)s,.

1.2 i
+§wj(qj—zsx
]
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m=|mli, wherei is a unit vector pointing in the direction of the external field, the medium variables, and a system-

the external field an¢im|=|e(0+|r|0—)| is the magnitude of medium interactiorH,,. This latter term will be considered

the transition dipole moment associated with the tunnel douto be small.

blet. The evolution of the overall density matrp(t) is given
Our strategy will be to transform the Hamiltonian to a by the Liouville equation

form suitable for a perturbation theory that is still valid when

V, the Franck-Condon renormalized tunnel splitting, is no ap

longer a suitable expansion parameter. This is the case, for i% E=[H(t),p(t)]. (2.9

example, wherV is large compared with the temperature or

with tﬁ‘? 48 %%%mme?ry . between the initial and final We want a kinetic equation fos(t) =tr,p(t), the reduced
states4"48:53597 projection operator method can be used to : . . :
density matrix of the system. To carry out this reduction, we

obtain an equation of motion for the system’s density matrix o . L
: . . use a projection operator methttA suitable projection op-
to second order in the perturbation, that we will refer to as a . . - ' . L
kinetic equation. Previously, we carried out a projection o eratorP is defined byP O=p,tr,0. Applying this projection
quation. Y, : bro) P operator to Eq(2.9 yields the exact but formal expression

erator analysis along these lines in the absence of an extern

field.*”*8 When there is a time-dependent external field, a

similar methodology can be developed, as we now show. do(t) _ ft
Applying the unitary transformation - Uk (Wppo(D+ odT (1)
. t
i ipj X(Tels QLI QL (t t)+IVT,
U:exp(% 6> %pj) 2.3 ( JQL(Dppa(t)
o (2.10a
to the Hamiltonian of Eq(2.1), and dividing the interaction where
term in the transformed Hamiltonian into its thermally aver-
aged part and the fluctuations about it leads to
L()=Lo(t)+Ly,
H=Hmediunit Hs+ He(t) +Hjp, (2.49
i
where Lo(t)"'E_g[HS+HF(t)+Hmediuma---]
p? q’ _
Hmediumzz 7J+wj2 %), Hs=Vs,, =Lgt+Le(t)+Ly, (2.10b
j
i
Y, Ly---=—+[Hi,,...],
He()=2b(t)s,, Hip== (®7s,+dis,). (2.4D !  [Hin..]

in 2
The interaction part of the Hamiltonian involves the opera-2ndQ=1—P. Here IVT denotes the contribution to the dy-
tors d* namics from the initial value of the density matrix. The
choice of an initial ensemble(0)=p,0(0) makes the IVT
Ot=I1_+I1,-2(II), ® =I_-II,, (2.5 zero. As the Hamiltonian has an explicit time dependence
arising from the external field, we had to introduce a time
that are related to shifting operatdis. by ordering in Eq.(2.10 to deal with the noncommuting time-
dependent operator§ We use the notation
I1 =exp<+2—i2 4 p-) (2.6
. Th T W ' Teltds QUIRQ= (T, g~ (i/fids QHIIQ)
and their equilibrium averages taken withp,
=exp(— BH medium/troeXp(— BH megium.— the density matrix
describing the medium at equilibrium,

X O(T_et(/MI9s QHSIQ) (2 19)

whereT, (T_) denotes time ordering with the largest time

1 2 to the left(right).
<H>E<H+>=trbpbn+=exp< —_— 7_13 Cotr(ﬂﬁwj/Z)), Working to second order ifl;,, and taking into account
B B T useful relations valid for any operaté,
(2.7)

with B=1/kgT, and tg denoting a_trace over the medium PLo(1)QA=0, QLo(t)QA=Lo(t)QA,
degrees of freedom. The quantity in Eqg. (2.4 is the
Franck-Condon-renormalized tunnel splitting PL,PQ=0, 2.12

V=\V(II). (2.8

PL,QA=PL,A,
The Hamiltonian of Eq(2.4) has been separated into several
parts containing the system variable and its interaction witHeads to
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do(t) i S;(\(t,7))=COSA(t,7)S,—SIN2(t,7)S,
at __g[HS‘*'HF(t):O'(t)] (2.19
1 [t Sy(\(t,7))=COSA(t,7)s,+SIN2\(t,7)s,.
- dr tr,[Hiy,[H; t,7), o t, 711,
2 fo olFin [Hi por(t,7)1] At this point we may obtain a more explicit expression for

2.13 Eqg. (2.13 by taking its matrix elements in the basis of eigen-
' states oHg, the system Hamiltonian. We focus attention on

with the definitions the relaxation term, as the oscillating term’s evaluation is
- I straightforward. By expanding the double commutator and
Hin(t,7) = (T e~ (/W] ddHsTHr(9)+Hpl) using the cyclic permutation property of the trace over the

I medium operators to rearrange terms, we ultimately find the
X Hip(T_e" (/MIAdHsTHEOTH]) (2,14 Kinetic equation

and
g(t’T):(T+e—(i/ﬁ)j‘Tds[HSJrHF(s)]) dt :(_g [(Hst+Hg(1),0(t)]

ij
X o(7)(T_et M adhstHeS]) (2 15

Use has been made oHE,H,]=[Hg(t),H,] =0, to sim-

plify Eq. (2.15. )
The difficulty in analyzing the above equation of motion With

centers on the time-ordering requirement arising from the

noncommutativity of the time-dependent external field op- 4 _ 4

erator and the system operatdt {(t),Hg] #0. Specializing Rijia (6, 7) =T (8, 7) + i (8, 7) = 5”2 Lt (t,7)

to the specific form of our Hamiltonian will permit progress,

as evaluating this commutator with the use_of E2.4b _

shows that it is proportional to the small quantitis(t). The N 5ik§r: Ly (4,7),

modification of the evolution in Eq$2.14) and(2.15 from

assuming commutativity is therefore negligible. Then Eq.

(2.14) becomes

t ~
+E f Rijkl(tlT)a-kl(t!T)dTv (2203
Kl 0

1 ~ —
Tt m)= 72 e 'k I(H(t= 7)) Hin O (1, 7))k,
lfiin(th) _ (e—(i/ﬁ)(t—T)HS)(e—(i/h)f‘Tds He(s)) (2.200
X(e—(i/ﬁ)(t—T)Hb)Hin(e+(i/h)(t—7)Hb)

- 1 —iw)j(t—7) /1. 0
X(e+(i/h)f5_ds He(9)) (@ (i/1)(t-IHg) (2.16 Lyjik(t,7)= 72€ M DH (7)) Hin(t— ik,
and similarly for Eq.(2.15. With the form ofH,, in Eq.

(.45, we have and we have definebl_m and’I—uhn as

—(i/h)(t—H (@t (ilh)(t-7H — \/
(e b)Hin(e b) Hin()\(t,r))“-:E[CI)+SZ()\(t,T))|j+(I)7isy()\(tv7'))lj]v

=;((D+(T—t)sz+(l>_(7'—t)isy), (2.17) y (2.23)
where we have explicitly written the time dependence of the Tt~ D=7 [ (t=7)(s)+ P (t=7)(isy)y]-
medium operator®™ in the Heisenberg representation. Note
that the argument of the operators in Eg.17) is (—t)  Recall that the brackets denote the averages over the equilib-
according to the conventional relation between the operatorsum medium density matrix as given in E.7). These
in the Schirdinger and Heisenberg representatidtishe ac-  equilibrium time correlation functions are nonstationary and
tion of the field propagator on the spin operators in Eq.therefore depend explicitly onand 7 (not just their differ-

(2.1, encg because of the time dependence of the external field.
L ; . ; H;,(t—17) represents the conventional Heisenberg operator at
(e IMLDS s (e IINEDS) =5 (N (1, 7)), time t—r obtained from the corresponding ScHimger op-
(2.183 erator with the action of the medium propagator, while
where we have defined H;,(\(t,7) denotes the operator obtained from the action of

the external field propagatdcf. Eq. (2.18)].
t The relaxation part of Eq2.20 is expressed in terms of
}‘(th):J 2b(s)ds, (2.189  the quantitys(t,7) that we now need to express in terms of
T o(7) in order to obtain a closed equation for These re-
which is readily found by generating second-order differen-duced density matrices are connected via &315. Thus
tial equations in\ for the spin operators,(\). This yields the relaxation equation in EqR2.20 can be written as
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doj(1) i tion in Eq.(2.19 includes its potentially significant effect on
at =< % [(HstHg(1),0(t)] ) the system dynamics and leads to differences in the forms of
i the kinetic equations. Explicit equations expressing this dif-
t_ ference are presented below.
+Z f Rijui (t, 7)o (7)d 7, (2.22 The analysis of the population dynamics implied by the
_ ki Jo above kinetic equation requires solutions of the coupled
where the tilde orR;, symbolizes the redefined relaxation equations of motions for the density-matrix elements. The
tensor obtained from the conversion of th¢t,7) matrix ~ equations of motion have coefficients given By, , the
elements to thes(r) matrix elements. We stress that Eqgs. elements of the relaxation tensBr These elements can be
(2.20 and (2.22 are just different expressions of the sameéexpressed in terms of the medium, system-medium, and
kinetic equation. system-external field coupling parameters. This calculation is
The kinetic equation as written in E€R.22) is not of the ~ carried out in the Appendix. We first focus on the structure
convolution structure because of the presence of the timedf the equations of motion, and then will list the various
dependent external field. If the external field were constanindependent elements &. Since a two-level system’s den-
(or absent then Eq.(2.22 would have a convolution struc- Sity matrix is characterized by three independent quantities,

ture and could be expressed in Laplace transform space witheé may choose the following linear combinations as our
= variables:

the transformed relaxation kernﬁ(,u). (The caret denotes

the Laplace transform of the function, and we uséor the .

Laplace transform argumeptThe conventional time local P(D)=01(t) + 02(V),

kinetic equation is obtained by replacii with R .
5 ned by replacifg() with Rix d_(0)=i (o) —apl1), (2.24

=0). This replacement is correct wh&{u) is an analytic

function of u in the neighborhood gf.=0. A case where this _ _

replacement is not valid is for very low temperatures and a di(t)=011(t) —opo1).

medium whose mode spectrufthe ;'s of Eq. (2.1] i op the basis of eigenstates of the system Hamiltorpgt),
Ohmic. HereR(u) has a branch point gi=0. The conse- is the difference in population between the left and right
guences of this feature have been discussed in detail by Ledpcalized states, the quantity of interest for tunneling dynam-
gettet al® Even in the Ohmic case, when the temperature idcs.

not so low, time-local equations give a satisfactory account We now analyze the general kinetic equation, E320).

of the dynamic$? In the following we will assume the ad- To do so it is convenient to relate the matrix elements of
equacy of this replacement, as it describes the kinetics ir(t,7)=0(t) to those ofa(7) according to the relation of

most regimes. Eq. (2.15, which is simply a rotation. Thus

A connection with a local-in-time, Redfield-like theat,
including the effect of an external field, can now be made. [ pt) 1 0 0 p(7)
Equation(2.15 shows that another way of writing(t, 7) is @) |=| 0 cosa(t,r) —sina(t,n) || d.(»

aso”(t), where this latter notation expresses the feature that| o ;
(t) is the zero-order solution of E¢2.203 with the con- d=(t) 0 sinA(t,r)  cosA(t,7) d’(g 25
dition that at the initial timet=r, the density matrix was '
‘7(()7)' Therefore, in Eq(2.208, o(t,7) can be replaced by \wjt this connection, and Eq2.20, we eventually obtain
a (). Since Eq.(2.20 has been obtained by second-order,o following equations of motion:

perturbation theory, it is correct, to the order of the calcula-

tion, to replaces(t) by o(t). As a consequence, we obtain

the following Redfield-like kinetic equation: p(t)zz(Wﬁ)d_(t)+ ft[g(t,r)+c(t,r)]p(r)dr
0

doy(t) [ i
- _( — 7 [(Hs+ HF(t)),U(t)]>

t
ij +f0[a(t,7)+ﬂ(t,7)]d7,

+> FR-- (t,7)d7|oy(t).  (2.23 : —

q [ o UK ! d_(t)=—2(V/H)p(t)+4(b(t)/F)d, (1)

We stress that, even if the kinetic equation in E222) is t

approximated by its time-local version, it still differs from +f {la(t,7) —c(t,7)Jcod2\ (1, 7))

Eq. (2.23 as the relaxation tensors are different. The differ- 0

ence arises from the presence of the external field. In the +i[a(t,7)— B(t,7)]sin(2\(t, 7)) d_(7)dT

absence of the external field, the time evolution connecting
o(t,7) ando(7) is slow, as it originates from the small quan- t
tity V. Thus, without an external field, and assuming the + 0{'[,30,7')—a(t,T)]COE(ZK(t,T))

existence of the time integral in E¢R.23 [or thatzR”-k,(,u _ :
=0) exisil, Egs.(2.22 and(2.23 are equivalent. When the Lot 7) —c(t,n)]sin@A(t, 7))id. (7)d7,
external field is present, the interaction representation evolu- (2.26
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. d
d, (t)=—4(b(t)/A)d_(t)+ ft{zc(t,r)cos(zx(t,r)) an o
0 a(t,7)+ B(t,7)=2(VIH) eV —eWt=D1i sin2\(t,7),

+2i y(t, 7)sin(@\ (t, 7))}, (r)d T (2.30
¢ whereW(t) is defined in Eq(A5). Note that Eq(A5) relates
+J’ {2iy(t,7)cod2\ (t,7)) W(t) to the spectral density of the system-medium interac-
0 tion.

B . Clearly, Eqs(2.26) [or Eqs.(2.28] are very complex. We
2¢(t, 7)sin(2A(t, 7))}d - (n)dT. first analyze them for a constant external field. For an initial
The coefficients in these equations are expressed in terms efndition p(0)=1, d_ (0)=d_(0)=0, corresponding to the

the elements of the relaxation ten$®mas follows: system localized on the left side, an accurate approximate
equation of motion can be developed. Since the relaxation
a=Ry11, B=Ro111, 9=Rizp, C=Rypg, terms in the second and third equations in E226 are
explicitly of order V2, and, considering that . (t) vanish
Y=Ri11. (2.27  initially, their effect on the evolution op(t) may be ne-

_ ) . glected except perhaps for very long times. Then, the equa-
The “true” Redfield equations would be obtained by re- tions of motion in Eq.(2.26 simplify to

placing a(t,7) by o(t) in Eq. (2.20 and, as usual, by ex-

tending the integration limit to infinity. The resulting equa- . — t
tions of motion for the two-level system are p(t)=2(V/f)d_(t)+ jo[g(t— 7)+c(t—7)]p(n)dr
p(t)= Z(Wﬁ)d—(t)“' fo [g(t,7)+c(t,7)]dTp(t) + ft[a(t— 7)+B(t—71)]dr,
0
+ fw[a(t,7)+ﬁ(t,r)]d7, d_(t)=—2(V/A)p(t) +4(b/h)d, (1) + O(V), (2.31
0

d. (t)=—4(b/h)d_(t)+O(V?).

If the Redfield Eqs(2.28 were approximated in the same
* spirit, the equations of motion would be the local-in-time
+ fo [9(t.7)—c(t,7)]d7d_(1) analog of Eqs(2.31). Thus, to the extent that local equations
are adequate, the Redfield and projection operator based re-
e sults will coincide. Equation$2.31) do, however, have a
i J; [A(t, 1) =a(t,n]drd (1), (228 conyolution structure that will permit Laplace transforma-
tion. Formally solving the second and third equations for
i w d_(t) and inserting the first equation provides a closed equa-
d+(t)=—4(b(t)/h)d,(t)+2f c(t,7)drd_(t) tion for p(t), whose Laplace transformed solution is a
0 generalizatioff of the so-called noninteracting blip
o approximatiorf The advantage of this convolution formula-
+2i f y(t,7)drd_(t). tion is its validity at temperatures smaller th&nThe tunnel
0 system’s interaction with the medium at such low tempera-

Note that the equation for the population evolutjpft) has  tures may not be sufficiently strong as to completely destroy
the same structure for both approaches but that the equatioHze coherence of the tunneling event. There is no guarantee
for the other elements differ. The differences are due to th@f @ rate process, as would be implied by a time-local kinetic
external field term\(t,7) as noted above, in general. How- €quation. As the temperature is raisstidecreases rapidly,
ever, as we now show, approximate solutions of E3<26) _and the_n mcohere_znt tunnellng, as described by a rate process,
and (2.28 will coincide. So, in this sense, the projection IS obtained. In this regime, the inhomogeneous term in Eq.
operator and Redfield approaches can lead to the same pi@31 accounts for the decay @f(t) to its correct long-time
dictions. equilibrium valué
For our model Hamiltonian there are only five indepen- _
dent elements. Their explicit expressions are presented in the Peq= —tani(2b/kgT). (2.32
Appendix. Along with the definition ok(t,7) in Eq.(2.18b,  This gives the correct Boltzmann population distribution of
they completely specify the equations of motion. Two com-the left and right state€for V small compared td).
binations that will be relevant to approximate solutions of

d_(t)=—2(V/H)p(t) +4(b(t)/h)d, (t)

these equations are+8 and c+g. Their explicit forms, lIl. CONTROL OF TUNNELING
obtained with the use of E4A6), are AT LOW TEMPERATURES
g(t,7)+c(t,7) For a time-dependent external field, the nonconvolution
o structure of the above equations of motion precludes a
=—2(VIh)[eVt~ D+ eWr=Y—2]cosA(t, 7) simple analysis in terms of Laplace transforms for arbitrary

(2.29 time variations. Nevertheless, we should anticipate that,
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while a rate regime is strictly precluded here, due to thethat we will refer to as the time-dependent rate, and the cor-
external field’'s time dependence, a rate regime shouldesponding quantitie§';(t) andI',(t) for the forward and
emerge as a suitable average of a time-dependent relaxatibackward rates. If a rate regime is to emerge, we must as-
guantity. In particular, for a sinusoidal variation of the exter-sume that the kerndi(t,7) decays rapidly relative to the
nal field, a cycle-averaged rate constant can be expected fmpulation decay, and that this time scale separation leads to
describe the population decay. We can proceed analyticallthe relaxation equation

by again using the physically interesting initial condition
p(0)=1,d,(0)=d_(0)=0. Also, we shall assume that the
renormalized tunnel splitting is a negligible quantity, even
though V=V/(I1)=Ve™®?2 s itself small but not negli-

gible. ThatV is much smaller thal is a well-known feature  For g sinusoidal external field whose variation is rapid rela-
of a fermionic bath, as characterized by an Ohmictye to the population decay, it is appropriate to introduce

spectrunt® The temperature then will also be assumed to b&yveraged rate constanks,, I's 5y, and Ty ,, according to,
large compared witlV, so that the tunneling is in the inco- ¢ ’ ’

herent regime. In the studies of defect tunneling in metals

noted in Sec. |, where an Ohmic spectrum is assumed to QO [2m0
characterize the coupling between the defect and the conduc- Fav=2— f
tion electrons, th&/ values found are many orders of mag- m
nitude smaller than the temperature regif@el—2.0 K of
the experiment>=%" Thus a rate regime is the appropriate
one to focus on. Even for, in this sense, “high” tempera-
tures, the medium dynamics may still have to be treate
guantum mechanically, agiw may not be small. Under
these conditions, terms proportional Y6 and V2 are ne-
glected, while those proportional t¥? are kept in Egs.
(2.26. In this way the evolution op(t) is decoupled from
that ofd..(t), and is given by the first order in time equation

t
p(t)=—T(Hp(t)+ fo[a(t,T)+B(t,T)]dT- (3.5

T (tdr. (3.6)

0

While the experimental quantity of greatest interest and ac-
cessibility is the averaged rate constant, we will first analyze
&he time-dependence of, e.d;(t), to see under what con-
ditions it, too, is roughly constant.

The quantityl'¢(t) can be written in terms of the spectral
densityJ(w) by use of Eqs(A5) and(3.3) in Eq. (3.4):

Ff(t):%(ZV/ﬁ)zj eW(7')—W(O)eierei2)\(t,-r)dT7 (3.7
0

. t t
p(t)=— fo[k(t.T)]p(T)dT+ fo[a(t.T)Jrﬁ(t,T)]dT,

with
(3.1 _
where the rate kerndd(t,7) is defined as W) ~W(0)=T(1) = F(0) ~iG()
k(t,7)=—(g(t,7) +c(t, 7)) = f 3 @) 0 coth B w/2)(coswt— 1)

min

=2(VIH) [Vt~ + W™V _ 2]cosA(t, ) —i sinwt]dw. (3.9

~2(VIh)H eWt= D~ WO @Wr=O-WO0cosA(t, 7)

=(2V/1)2e? = D"YOcod5(t— r)cos A(t, 7).
(3.2
The rate kernek(t, 7) is the sum of the forwaré;(t,) and

backwardk(t,7) (left to right and right to left rate kernels.

They are readily obtained as
k(t,7)=k¢(t,7) +ky(t,7)
=31(2V/h)2e¥ =DV Olcod G(t—7)— 2\ (t,7)]
+cog G(t—7)+ 2N (t,7)]}. (3.3

In the absence of an external field, this is the conventional
expression for the rate coefficient for tunneling in a two-level
system of asymmetry coupled to a bath whose couplings
are described by(w).2>® To be specific, we now introduce
the Ohmic spectrund(w)=2aw for 0<w<w., wherea is

the coupling strengtlie<3), and w, is a cutoff frequency
whose energy is much larger than the thermal energy and the
tunnel splitting. As noted in Sec. I, this spectral density can
characterize the interaction of a tunneling defect with the
conduction electrons of a met&.*’ For the Ohmic spectral
density?®

sinhamkg Tt/

At high temperatureffiw<<l, the forward rate kernel ob-
tained from Eq.(3.3) coincides with the result we obtained
by using a classical bath analysis at the outdét.the quan-

W(t)—W(0)=—2a In| V1+ (wt)?

kg Tt

: ; IS —i2a tan Y wct). 3.9
tum regime, rate equations S|m|la2rztg 2&9@.1) have recently “ (ct) 3.9
been obtained by other methats?*2°- It is convenient to use the external field
We now analyze the effects arising from a quantum me-
dium in the presence of a time-dependent external field on b(t)=b.+b coglt (3.10

the quantity
as it readily yields results for a constant and a sinusoidal
external field. With the definition ok(t,7) in Eq. (2.18D,

(3.9 Sl
I';(t) then is given as

F(t)=f0wk(t,r)dr,
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FIG. 1. The time-dependent ralg(t) relative to the field-free
rate constant’s(¢) for one cycle of the external field. The param-

FIG. 2. The time-dependent r t) relative to the field-free
eters(in K) aree=—1 (top panel ande=0 (bottom panet 4b=1.0 P alg(t)

rate constant’s(¢) for one cycle of the external field. The param-

and 2=0.1. eters(in K) aree=—1 (top panel ande=0 (bottom panet 4b=1.0
and(=5.0.
1 2 W(7)—W(0) ni(s+4bc) 7 ] ] ) ]
I'+(t)=2(2Vik)"Re fo € € ¢ results, are plotted in units éit. Figure 1, where is small
A _ ' (Q27kgTa=0.1), shows thal ;(t) has a substantial varia-
X g! (4b/A)[sINQY =it = Q7)1 7 (3.1) tion over its period. The cosine symmetry is readily obtained

by expanding sifiT as Q7 in Eq. (3.11) to obtain the ap-
proximate express
ion

For a constant external fielw=0, this expression shows that
the asymmetry of the rate constant has been changeddrom
to e+b.. This shift can, of course, modify the rate constant
dramatically for appropriate choices of these parameters. The w .
effects of a time-dependent external field are obtained by Ff(t):%(ZV/ﬁ)zRef eW(n = WO)gile (4b/cos Qg 7,
numerical integration of Eq3.11) with Eq. (3.9). As long as 0 (312

the cutoff is suitably large, the results are independent of its '

value. We present';(t) normalized by the value in the ab- This shows that a time-dependent asymmetry can be defined
sence of the external field;;(e), as defined by Eq(3.18  ase(t)=e+(4b/A)cos(2t), and Eq(3.12) for I'¢(t) can be
below. We seb,=0, since any asymmetry can be expressedntegrated to yield

directly throughe, even though the source is different, of DT 1201 sin

course. It is clear, from the explicit form of Eq8.11) and _ KB T
(3.9), that the dimensionless quantities Ff(t)_(v’/ﬁ)[ V, } exple (1)/2kgT) 27

2

el2mkgT, hQP2mkgT, 4b/AQ , (3.13

x|

ie(t) )

at ———
are appropriate units of measurement, and we will use the
corresponding temperatures foy Q, and 4 in listing the  whereI'(z) is the gamma function of complex argument
parameter values. The results are presented for a selection@fd V,=V(V/w)**~*. The parameteV, is the renormal-
the asymmetries=—1, 0, and 1 corresponding to endother- ized tunnel splitting.
mic (uphill), symmetric, and exothermiéownhill) reac- At the other extreme of largQ, the oscillations of si{2t
tions, in the forward direction. We have usee-0.216, as —{17) should average to zero. Then E®.11 can be re-
this is one value found in the experiments and also makeguced to
27kgTa=1.0 K for T=1 K. The field strength B is kept at
1 K, and() is varied from 0.1 to 10 K1 K=1.3X 10t s T'((t)=L(2V/#)?Re fweW(r)*W(O)eisrdT Qi (AD/AQ) SN Q)
to span external frequencies that are small to large as com- 0
pared with 2rkg T at 1 K. Figures 1-3, summarizing these (3.19
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FIG. 3. The time-dependent forward rdfg(t) relative to the
field-free rate constari;(¢) for one cycle of the external field. The
parametergin K) aree=—1 (top panel and =0 (bottom panelt
4b=1.0 andQ=1.0.

If in addition 4b/AQ)<1, we may expand in this factor to
obtain, schematically,

rf(t)/rf(s)=1+A(s)% sinQt),  (3.19

whereA(e) is a quotient of integrals involving the spectral
density and depends significantly on the value.ofigure 2
shows the oscillation of Eq3.15. Note, too, that the aver-
aged rate constarlt; ,, is predicted to be one from Eqg.
(3.15. This follows from the assumed small value df/A(},

as we shall see below. For large values(W2 wakgT but
4b/hQ not small, the oscillation is not well described by Eq.
(3.15 (it is not of symmetric magnitude around unitut

1000.00
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@ 10.00

[:\.
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L:‘
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001 1 1 { | |
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FIG. 4. The averaged forward rate consthpt,, relative to the
field-free rate constarif;(e) as a function of the temperature. A
time-dependent external field withb#(Q1=1.202 ande=—-Q=
—0.5 K for the solid line anc=0 with 1=0.5 K for the dotted
line.

m=—o

4b
Tiam 2 J%(m)rf(s+4bc+mﬂ), (3.17
m=—©

where we have defined
Ff(c)z%(ZV/ﬁ)zRef eM-WOeicrq,  (3.18
0

Thus, for a time-dependent external field with=0, the
averaged rate constant is a Bessel-function-weighted sum of
rate constants of asymmetriés+m(}). This suggests the
following control of tunneling strategi€s:=2>?To make the
averaged rate constant large, relative to the field-free rate
constant, arrange matters to minimize the-0 rate constant
and/or Bessel-function term in the sum in E§.17). For
example, if we chooseb7Q)=2.408 . . ., thefirst zero of

the J, Bessel function, and take=() such that the rate con-

the magnitude of the oscillations is not very large. For inter-stantl’;(¢) will be small relative tol’;(e—(}), then the exter-

mediate values of)/27akgT, we have not been able to

nal field will enhance the averaged rate constant. Figure 4

obtain a simple expression to characterize the oscillationglustrates this feature for the parameters indicated in the fig-
shown in Fig. 3. The variation over a cycle is about a factorure legend. That the difference in rates increases at lower
of 2. Thus we may anticipate that an averaged formuldemperature reflects the increasing valueet®;T. To de-

should be useful, the more so 8827 akgT increases.
A formula for the averaged rate constdnt ,, can be
obtained by use of the expansfdn

p:w
ei(4b/hQ)sith:pzz_Do Jp(4b/ﬁﬂ)eipﬂt_ (3.16)

Its use in Eq.(3.9 with Eq. (3.11) permits Eq.(3.6) to be
reduced to

crease the rate relative to the field-free case can be accom-
plished by again eliminating th@=0 term in Eq.(3.17), but

now enhancind’(¢) relative tol';(e£(). Figure 4 displays

this external-field-produced rate reduction.

Finally, as noted above, a constant external field acts sim-
ply as an additional source of asymmetry. Thus appropriate
choices of a constant external field should also be effective in
modulating the tunnel rate. An increase and decrease relative
to the no external field rate are shown in Fig. 5.
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would be the possibility of externally induced transitions be-
tween different tunnel doublets and their effect on the popu-
lation transfer from one localized state to the other.

An interesting consequence of a time-dependent external
100.00 1 field is the different equations of motion that result from the
projection operator and “Redfield” procedures. This is, to
our knowledge, a new effect, in addition to the conventional
one, whereby the Redfield methodology leads to time-local
equations, while the projection operator method leads to a
convolution structure that can accommodate a nonrate re-
gime, even in the absence of a time-dependent external field.
1.00 The fast variation of the external field, present in the inter-
OO action representation of Eq2.15, is responsible for this
difference in the equations of motion.

The solution of the equations of motion that we obtained
in Sec. Il relies on the feature that the Franck-Condon renor-
malized splittingV is small compared with the baké Then
the three equations of motion, Eq&.26), decouple to pro-

T (K) vide a population evolution equation of the form of E8.1).

Note that this approximate solution is the same for the pro-
jection operator and Redfield approaches. In the absence of
an external field, or one constant in time, the evolution equa-
tion has a convolution structure whose solution is the same
as obtained by the noninteracting blip approximafidror
suitable spectral densities, and not too low a temperature,
time-local equations result, and the evolution is characterized
by a rate constant. The presence of a time-dependent external
IV. CONCLUDING REMARKS field precludes a rate process, but an average over the period

The projection operator method that we have used hagf the external field should characterize the relaxation. In
provided the equations of motion of E.20. The expan- principle, however, it should be possible to detect a nonex-
sion is carried out in terms ofl,. [cf E'q ('2 4], whose ponential decay in response to the oscillatory external field.

in [cf. Eqg. (2.9)],

thermal average is zero. The rate equations that are extract any case, once the ex_tern_al field's frequency becomes
from the equations of motion are valid whghV is small, as arge relative to the relaxation time of the rate kefrél Eq.

we use an approximation scheme appropriate for a rate ré—3'9)]’ the time_ variation.oﬂ“(t) beco”.‘e.s negli.gible and a
gime. This correspondito the so-called noninteracting blip rate process will be obtained. For sufficiently high-frequency

approximatiofi (NIBA), in the absence of the external field. fields, where @/hﬂ is small, the correspondlng average'd
The inclusion of the external field should not invalidate thisrate_ I_oecomes mdependgnt of the external f'eld' as ane might
approximation scheme, as its effect tends to decrease the siggticipate. Thu_s, scanning from low to high frequ_ency

of the dissipative terms that contribute to the perturbationCOUId also prov!de a method of controlling the tunne!lng rate.
[cf. Egs.(AL)]. Furthermore, as the external field does not The comparison of.the temperature dependgnmes of the
appear inV, the assumed smallness éfis not affected by averaged rate, for a t|me-dependent extgrnal field, and the
the external field. It is possible to extend the analysis to théate for a constant exteral field, relative to the field-
regime of lower temperature in the sense tB&V is not independent value, shows that the tu_nnel rate can _be en-
small, as we did previously for nondriven systems, by choos.hanced. or .suppressed. The external field becomes increas-
ing an appropriate projection operaffrFor T=0, recent ingly significant as the temperature decreases because the

work by Chakravarty and Rudnitkcast some doubt on the energy parameters andb(t) are scaled relative to the tem-

validity of NIBA-type solutions to describe the dynamics of perature. The value we have chosendoin the 1-K range,

the equilibrium time-correlation function in the sense that its!> typlczlztl)g enlerglesf f%und '3 the impurity '; ametal expen-l
time behavior is different than that of the populatiqif). m?gt' . Vg uefo bt IS i)gogr\f/orres_?or? sd.to Ian externa
As we are concerned with finite temperature, and our focus id€!d magnitude of about cm, it the dipole’s magni-

on the population’s time evolution, in contrast to the corre-tUdIf. IS "1 D'ebyr?. K h ied id v
lation function, such problems do not arise here. inally, in this work we have tried to provide analytic

A difficulty that arises from the use of a time-dependenteXpreSSionS that illustrate the principals that can be found for
external field is the lack of commutativity of this term with the con'FroI of tun_nelmg with e>.<terna| fields. Thls.reqw.res the
the system Hamiltonian. However, as noted above E use of fields of simple form, either constant or sinusoidal. At
(2.16), the neglect of this noncommutativity should only in- he expense of some numerical analysis, our results can also

troduce a small error. Then, as long as the interaction Hamil2ccommodate the use of fields of arbitrary shape.
tonian can be written as a product of system and medium
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APPENDIX =V (t)—iG(t). (A4)

In this appendix we evaluate the elements of the relaxnote thatw(t=0)/2 is the exponent in the Franck-Condon
ation tensorR. Equatlons(.2..20b,.(2.2]), and (2.5—-(2.8)  factor renormalizing the tunnel splittingf. Egs.(2.7) and
show that t+he basic quantities of interest that must be evaILt-Z_g)]_ It arises from the overlap of the medium wave func-
ated arel'jj,. They are obtained from Eq42.200 and  tions centered around the left and right local states of the
(2.21). As wj in our model are proportional t/, these  tynneling system. The quantum equilibrium time-correlation
frequencies are very small and may be neglected in the eX¥ynctions in Eqgs(A2) and(A3) are evaluated by expressing

pressions foil"j,,. With this approximation, we find the time evolution of the momentum operafx{t) appearing
N N . N in EQ. (2.4 in terms of its initial valuegy(0) and p(0) ac-
F1100= P oo™ —Tiap= —Toons cording to the medium harmonic-oscillator dynamics of Eq.
= (D (t— D )cosA(t, 7), (2.4b. The resulting Gaussian average over these initial-time

coordinate and momentum operators can then be obtained by
standard techniqués.It is conventional to expres#/(t) as
an integral over a spectral densitl{w) of the medium
—(®~(t— N®)coSA(t,7), modes>® as

(Ala)

+ _p+ ot
r 1212~ F2121_ 1_‘2112_ r 1221

F+ :F+ — _F+ — _F+
12171 2122 21171 1222 ®max .
W(t)=J (J(w)! w?)[coth Bhw/2)coswt—i sinwt]dw

=(® (t—7)P )i sinA(t,7), min
(A5a)

+ 1t Tt 1+
1112_F2221_ 1—‘1121_ 1-‘2212 with

=(O*(t—7)P")i sin2(t,7)
and J(w)s; (2921t w) S w—w)). (ASh)

I'13157 00005 = T110= —Toons .
Note that the spectral density reflects the nature of the cou-

=(® " (t—7))cosA(t,7), pling between the system and the medium.
With these averages and Ed\1), the elements of th&
I o= 1007110 tensor can be obtained from E@.20h. They are
=(d O (t—7))cosA(t,7),
(Alb) R1111= R1221= R2227= Ro112= — R112= = Roonn
rs..=Ts.=—T5.=—T". _
12171 2122 2111 1222 _ (V/ﬁ)zcoszx(t, T)[SinH\N(T—t)
=(D+ D (t—7))i SiNA(L,7), _
+siniwW(t—7)],
L1117 T o00= = Tiio= = Too12 L
=<(I)7(I)7(t— 7-)>| SinZ\(t,T). R1212: R2121: _2(V/h)2COS Zx(t,T)[COSI‘\N( T_t)
In obtaining these equations we have used the results +cosW(t—7) — 2]+ Ry,
(PTO7(t=7)=(P7 7 (t—7))=(P7(t—7)P7) Ry211= Ro120= — (V/)2i Sin2x (¢, 7){[SintW(t - 7)
— —(t_ +\ —
={®"(t-1)®")=0. (A2) — SinAW(7—t)]— 2[ cosh( 7—t) — 1]},
The nonzero correlation functions are (AB)
(@7 (t—7)®")=4e" "V cosiW(t—7)—1], Ro111= Rz — (VIH)2i SIN2A(t, 7){[ SintW(t— 7)

(DD (t— 7)) =4e WO coshW(7—t)—1], —sinhW(7—t)]+2[costW(t—7)— 1]},

A3
(@ (t— 1) ® )= — 4e"WOsinhn(t— 7) (A3) R1115= R2221= = R1121= —Roo12
= (VI%)2i sin2\(t, 7)[SINAW(t — 7) + SinAW( 7—t)].

-d (t— = — 4o WO0)gj _
(@@~ (t=7) 4e SinfV(r =), These are the explicit expressions for the five independent

where quantities characterizing that are used in Eq2.27).
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