
An Integrated Framework for
Simulation-Based Software Process Improvement

Mercedes Ruiz1, Isabel Ramos2, Miguel Toro2

Department of Computer Languages and Systems
1University of Cádiz 2Univeristy of Seville

Spain
1mercedes.ruiz@uca.es

2{isabel.ramos, miguel.toro}@lsi.us.es

Abstract

In this paper we present an integrated framework for
software process improvement according to CMM. The
framework is double-integrated. First, it is based on the
systematic integration of dynamic modules to build a
dynamic model to model each maturity level proposed in
the reference model. As a consequence, a hierarchical set
of dynamic models is developed following the same
hierarchy of levels suggested in CMM. Second, the
dynamic models of the framework are integrated with the
use of different static techniques commonly used in
planning, control, and process evaluation.

The paper describes the reasons found to follow this
approach, the integration process of models and
techniques, the implementation of the framework, and
shows an example of how it can be used in a software
process improvement regarding the cost of software
quality.

1. Introduction

Software process modeling and simulation is known to
be a useful tool for software process improvement,
providing important benefits for organizations no matter
their maturity level. Although it is relatively simple to
build and simulate a process model, we consider that it
could be very useful to accomplish the task of modeling
under a systematic approach and a set of regular practices
or methodologies.

Having in mind that current frameworks for software
process assessment and improvement present a defined
and hierarchical structure, our approach consists on using
the same structure followed by a process improvement
framework to guide the development of another process:
the development of a set of dynamic models to help in the
software process improvement field.

The Dynamic Integrated Framework for Software
Process Improvement (DIFSPI) has been developed with
the aim of creating both a conceptual framework and a
working environment to help in the achievement of
higher maturity levels according to CMM. The conceptual

ideas underlying the framework are focused on the
integration of dynamic models and, then, the integration
of dynamic simulation and static techniques. Using the
process of model building, a metrics collection program is
triggered in order to get the numerical drivers for the
model parameters and functions. Besides, this metrics
collection program has an important effect as it
contributes to an increase in the knowledge the
organization has about its processes. This knowledge
increase together with the use of dynamic models have
three main effects: they lead to better prediction activities,
more accurate cost predictions, and more effective
process improvement initiatives. Factors which are
known to drive organizations towards higher maturity
levels according to CMM.

The structure of the paper is as follows. Section 2
describes the reasons found to develop a dynamic
integrated framework. Section 3 and 4 relate,
respectively, the approach we have followed to integrate
first the dynamic models and then the static techniques
inside the proposed framework. The principles underlying
DIFSPI implementation are discussed in Section 5.
Section 6 shows an example of how the framework can
be used to analyze the effect of a software process
improvement initiative using both, the dynamic models
and their integration with a technique to determine the
cost of software quality. Finally, Section 7 summarizes
the paper and draws the conclusions.

2. Reasons found to develop a dynamic

integrated framework

Dynamic modeling and simulation as process
improvement tools have been intensively used in the
manufacturing area. Current research has also
demonstrated their effectiveness as an approach to
analyze complex business and solve policy questions in
the software process improvement field.

In previous works [1], we attempted to apply the
dynamic modeling and simulation approach to support
process improvement in small and low mature local

software development organizations. In these attempts,
we always found the same problem. These organizations
sometimes lacked of measurement practices, so that they
did not have historical databases, or when they had them,
the information available was poor or inaccurate so that it
did not supply the numerical drivers required to initialize
the parameters and functions of the dynamic models.
Finding that the dynamic models had a significant
complexity and required an amount of information which
was not available in these organizations, we then decided
to apply Eberlein’s work [2] about understanding and
simplification of models to obtain a reduced dynamic
model capable of reproducing the software process
dynamics, yet with the necessity of less initial
information. Nevertheless, simulation is only effective if
both the model and the data used to drive the simulations
accurately reflect the real world. So, no matter how
simple or complex the model is, it will not be of much
usefulness if the organization is not able to provide
accurate data to initialize and drive the parameters and
functions used in the model.

It becomes apparent that there is a strong relationship
between the availability of accurate data and the benefits
obtained of using dynamic simulation of the software
process. It is also known that the availability of quality
data is associated with the maturity of the software
process executed inside the organization, as this maturity
can be thought of the level of knowledge the organization
has about its own processes.

Having these ideas in mind, our approach was to
develop a set of dynamic models to help organizations
improve their software processes according to the
Capability Maturity Model [3]. The initial lack of
historical data can be solved helping organizations to
define and implement metrics collection programs. Come
to this point, it is useful to remember that literature is full
of good and bad examples of these types of programs. In
our proposal, we decided to use the own development
process of the dynamic models to point out what data
should be collected, thus helping as a clear guideline on
what to collect.

On the other hand, knowing the defined structure of
CMM, we thought it could be useful to apply the same
ideas to develop a hierarchical set of dynamic models.
This set is based on principles of abstraction, reusability,
flexibility, and extensibility which have been successfully
used in the programming field. According to this idea,
the framework is made of a set of dynamic models, each
of them corresponding to each level of CMM. Generally
speaking, each dynamic model is made of a set of basic
dynamic modules. The integration of these basic modules,
together with certain coupling structures, that allow this
integration, makes it possible to obtain the dynamic
model for a certain level. This way, what considered to be
a dynamic model for, say, level 1 organizations, can be

(and if fact is) considered as a dynamic module to build
the dynamic model for the following level of maturity.

This is the first reason to use the word integrated with
this dynamic framework, because it is mainly made of the
integration, at different levels of abstraction, of different
dynamic modules. But there is another reason for this:
the integration of traditional static techniques with the
dynamic simulation approach. Although traditional
methods for software process management have revealed
their weaknesses during the last decades, there is common
agreement that they are still useful. These two types of
techniques have different approaches and work under
different perspectives. It is this feature, which was
pointed out by Rodrigues [4], what makes each of them
the complement of each other, and what has made us
considered their joint utilization.

3. Integration of dynamic models

Once the approach to the elaboration of the dynamic
models has been described, this section offers a
description of the hierarchical structure of the framework
presented in this work.

Figure 1 illustrates this hierarchy. The dynamic model
for organizations in level 1 progressing to level 2 is
composed of four main dynamic models. Each of them
devoted to the modeling and simulation of each of the
four main subsystems of the software process: plan,
human resource management, control, and development
activities. These four subsystems form an initial dynamic
model. This initial model is intended to be used in level 1
organizations progressing to level 2.

In order to obtain a dynamic model to model and
simulate the software process of level 2 organizations,
new dynamic modules are added to the initial model.
These new modules model and simulate the new key
process areas of the following level of maturity. The new
dynamic modules model the following key process areas:
- Requirement management. This module helps to

determine the impact of the requirement variability
over software development projects.

- Outsourcing management. With this module it is
possible to analyze the influence of outsourcing over
the life cycle of the project.

- Quality assurance. In this module, the necessary
structures to model and analyze the cost and state of
the quality assurance activities are implemented.

- Personnel experience. Although this is not a key
process area of CMM level 2, the human resource
management module of the initial model has been
enhanced so that it can reflect the influence of the
experience factor over the progress and cost of the
project.
The next step towards the following level of maturity

does imply an important structural change. This change is

determined by the special emphasis on the engineering
activities that CMM suggests beginning from level 3. If in
the initial levels of maturity CMM recommends the
development of good plan and management practices, it is
in level 3 when the engineering process acquires a key
importance. To reflect this idea, the principle of model
replication is used. Thus, to model organizations in level
3 progressing to level 4, the model developed for the
previous level is replicated as many times as generic
phases compose the work breakdown structure of the
project. In our particular case, we considered the four
main characteristic phases of a traditional life cycle:
analysis, design, code, and test. To simulate each phase, a
complete dynamic model is used. Each of these dynamic
models can be used, in isolation, to simulate the whole
project on organizations with the previous level of
maturity. In order to get all these models working
together to simulate a higher maturity organization,
coupling structures need to be defined. These coupling
structures must allow the inter-module communication as
well as serving as support structures for the sharing of
information.

The last model of the hierarchy is made of the model
developed for the previous level plus the required
modules to model and simulate the new key process
areas. In this case, the new modules are focused on the
specific aspects of the key process of quantitative
management and software quality management.

4. Integration of techniques

The following techniques and methods are currently

successfully implemented in DIFSPI:
Traditional estimation techniques. Traditional
algorithmic estimation models have been implemented
inside this framework with the aim of providing an initial
baseline for software projects carried out in low maturity
level organizations. Algorithmic models such as
COCOMO [5], COCOMOII [6] and others (Basily, Doty,
and Waslton) are used to drive an initial estimation of
effort and time, especially in models for low maturity
organizations.
SEI Core Measures. Recent studies and experiences
highlight the benefits of the application of these four core
measures to the software life cycle. The main aspects of
the product and process (quality, time, size and cost) are
monitored and tracked to facilitate project success and
higher maturity achievement. Inside this framework, these
four measures constitute the basics for both, the dynamic
models and the graphical representation of the process
performance [7]. Although this set of metrics is available
for all the levels of maturity, models developed for the
lower levels have it as the main source of reliable
information about the software process under simulation.
Metrel Rules. Given the dynamical nature of the DIFSPI
proposed, we consider it could be useful to integrate a
taxonomy of software metrics which is derived from the

CMM 2 - 3

CMM 1 - 2

Personnel
Experience

Requirement
Management

Outsourcing
Management

Quality
Assurance

CMM 3 - 4

CMM 2 - 3

CMM 2 - 3

CMM 2 - 3

CMM 2 - 3

C
O
U
P
L
I
N
G

CMM 4 - 5

CMM 3 - 4

Cuantitative
Management

Quality
Management

CMM 1 - 2

Human
Resource

 Plan

 Control Development

Figure 1. Hierarchical structure of the integrated dynamic framework

needs of users, developers, and management. Among all
the advantages that can be obtained with the use of this
system of metrics, we would like to point out the dynamic
performance of these metrics, that is, how their accuracy,
precision, and utility changes over the duration of a
project, the life of a product or the strategic plan of an
organization. In DIFPSPI Metrel rules have been used as
an efficient method for depicting on one graph the
information needed for management, staff, and customers
to view or predict process performance results. We
consider that Metrel rules are particularly important in the
field of software process modeling as their application
provides a formal procedure for the expansion and
transformation of models. By employing simple
mechanisms as derivative or integration (over time,
phases or even projects), a mathematical model for one
level can be transformed into another for another level,
providing a simple but powerful extension for the analysis
processes [8]. Metrel rules can be used to evaluate a
specific software process improvement, as well, as
quantifying the return on investment of tackling this SPI
and its benefits. [9] shows an example of application of
the Metrel taxonomy to analyze the evolution of the
percentage of detected and corrected errors (which is the
process metric in that example) when the parameter
“percentage of people assigned to inspection” is varied.
This SPI is suitable for level 3 organizations in which
CMM gives a special importance to formal inspections.
For that reason, a dynamic module to simulate the process
of formal inspections was developed and “plugged” in the
structure of the dynamic model for level 3 organizations.
The results of the simulations of the joint structure were
then analyzed under the Metrel taxonomy.
CoSQ. The basis for the Cost of Software Quality (CoSQ)
is the accounting of two kinds of costs: those which are
due to a lack of quality and those which are due to the
achievement of quality. These costs have an inverse
relationship that is normally shown as a set of two-
dimensional curves that plot costs against a measure of
quality [10], [14]. Section 6 of this paper shows an
example of the combined use of this technique with
dynamic simulations.
Earned value analysis. Earned value analysis has been
chosen as the method for performance measurement as it
integrates scope, cost, and schedule measures to help
managers assess process performance. The three main
values and the derived efficiency indexes are used in
combination to provide measures of whether or not work
is being accomplished as planned. Furthermore, the
earned value analysis is used to evaluate the performance
of different software process improvements inside DIFSPI
[11].
Statistical process control. Current software process
models (CMM, SPICE, etc.) strongly recommend the
applications of statistical control. In the framework,

Statistical Process Control (SPC) is used to obtain run
charts and control charts with the aim of helping software
managers to find an answer for questions such as "How
do I know if my software development process is in
control?" SPC is also used to test the capability of the
process. In order to do that, SPC and earned value
techniques have been merged in the way [12] suggests.
Data mining. Using data mining processes it is possible
to obtain useful information from the volume of data
generated by model simulation. Genetic algorithms are
fed with the databases resulting from simulations, and
then executed to obtain management rules to guide in the
process of maturity improvement [13].

5. DIFSPI implementation

The former conceptual ideas were initially

implemented using VenSim®. The initial use of this tool
let us develop, test and analyze each one of the basic
dynamic modules. For the first initial models (level 1 and
2), it was necessary to duplicate the effort of coding, as
the final model had to join together the different dynamic
modules. To obtain the more complex models, the
subscripting capability of the mentioned environment was
used.

However, this simulation environment offers a crude
way of modularization and does not make it easy to
overlay objects for abstraction. It does not supply an easy
way to generate generic sub-models which can be
instantiated multiple times. Other important aspect that it
lacks of, is the absence of a scoping mechanism, so that
all elements are global to each other.

Like in traditional programming languages, a
mechanism to allow data encapsulation and modularity is
essential to handle the complexity in large and complex
systems. Due to the problems encountered, the complete
framework has been re-engineered using JavaTM
technology with the purpose of developing a library of
classes. This way, the abstraction aspect may be taken to
the point where it is possible to “plug-in” the dynamic
modules that form the main model and those regarding
the software process improvement intended to be
analyzed.

Using this technology, a tool for designing and
analyzing software process improvements to help in the
achievement of higher maturity levels is under
development. A fully functional initial version has been
developed, and the results obtained have been
encouraging, so far.

Using this tool, three groups of initial parameters are
required to drive a simulation run: parameters related to
the organization (delays, average accepted overwork,
etc.), parameters related to the project (size, quality
objective, initial staff, etc.) and parameters to drive the
simulation run. With these initial data, it is possible to run

a first simulation to establish a baseline to the project.
The results obtained can be graphically displayed in order
to merge in a single view the static data offered by the
traditional models with the dynamic data provided by the
simulation runs. After this, it is possible to experiment
different process improvements and alternative plans by
changing the values of the parameter(s) required and
running the new simulations. All the results obtained are
saved in a database of simulations. It is important to
notice that the saved data is not only the data resulting of
simulating the equations of the model, but the results of
applying the metrics program (initially developed for the
organization) to the dynamic model itself. This database
may then be used to feed some machine learning
algorithms in order to automatically obtain management
and process improvement rules.

6. Utilization of DIFSPI

In this section we provide an example of the joint
utilization of the dynamic models of DIFSPI and one of
the integrated techniques. In this example, CoSQ has
been used to initially obtain the cost of software quality in
a certain project, and then to investigate the effect of
different timing management policies over CoSQ. Using
simulation to determine the effect of software process
improvement initiatives has also been studied by Houston
and Keats [14]. In their work, simulation is used to
evaluate the effect of developing inspection activities on
the overall cost of the software quality.

6.1. Principles of Cost of Software Quality

As it has been previously mentioned, the value for the
CoSQ is determined by the sum of the costs due to both
the lack of quality and the achievement of quality in a
software project.

Table 1 [14] provides the definition of the four CoQ
categories in which CoSQ can be divided with typical
costs of software quality. The costs of achieving quality
and the costs due to the lack of quality have an inverse
relationship: as the investment in achieving quality
increases, the costs due to lack of quality decrease. While
costs of quality assurance and process improvement have
been a topic of concern for over 20 years, very limited
data has been available in the open literature for
discussing the cost of software quality [10], [14] and [15].

Houston and Keats outline the following benefits of
using CoSQ:

Table 1. Definition of Cost of Quality Categories

Category Definition Typical Costs for
Software

Internal
failures

Quality failures
detected prior to
product shipment

Defect
management,
rework, retesting

External
failures

Quality failures
detected after
product shipment

Technical support,
defect notification

Appraisal
Discovering the
condition of the
product

Testing and
associated
activities, product
quality audits

Prevention Efforts to ensure
product quality

SQA
administration,
inspections,
process
improvement,
metrics collection
and analysis

- CoSQ can be used to compare process improvements

and identify the most effective one. Hence, it results
a very appropriate technique to be integrated in a
software process improvement framework.

- CoSQ can be used to identify quality improvement
candidates. Examination of the CoSQ components
often reveals higher quality costs in a particular area.
For example, high appraisal costs due to integration
testing, may indicate a lack of consideration for
interfaces during design, or it may indicate late
design changes. Analysis of the causes of these costs
can provide the basics for quality initiatives in
development processes.

- CoSQ provides a measure to compare the success of
projects. Even within a given organization, the
software process may vary from one project to
another. The many factors, tangible and intangible,
that characterize a project make it difficult to
compare projects. CoSQ can be measured within and
across projects and provides a means of comparison.

- CoSQ can provide a basis to budget the quality
operation. Rather than allocating the quality
operation a percentage of the total development
budget, management can budget the quality operation
based on expected returns.

6.2. Specific dynamic modules

In order for the simulations to provide the required
data for the CoSQ analysis, two modules gain a special
importance. The main features of these modules, devoted
to the modeling and simulation of the quality assurance
and testing activities, are further explained in the
following subsections.

6.2.1. Quality Assurance Subsystem

The Quality Assurance Subsystem models the
activities of detection and correction of the defects in the
development project. In a software development project
there are two sets of factors that affect both, the
generation of defects and the capability to their detection.
The first set is integrated by some features of the
organization (use of structured or object-oriented
techniques, personnel experience, etc.) and the second set
contains those aspects that are related to the project itself
(complexity, languages used, size, etc.).

 These two sets of factors can vary from one
organization to another and also between projects of the
same organization, but they remain stable in one project.
The effect of these two sets of factors determines a
nominal capacity to the generation of defects inside a
given project. By the other hand, the volume of defects
that can be generated inside a project is also influenced
by others factors of a dynamic nature such as the schedule
pressure (as the pressure grows, the number of defects
that people commit will be larger) and the experience of
the personnel (the lack of experience of a technician not
only diminishes his/her productivity, but it increases the
number of defects in his/her activities). These last factors
together with those of static nature determine the real
capacity to defect generation in a project. The capability
to detect the defects of a project is determined by the
effort assigned to the software quality assurance, the
experience of personnel and the effort required to correct
an error. The effort assignment to the quality activities
can be done in two different ways. The first way consists
on assigning a fixed value of effort for all the life cycle.
This value is a percentage of the available effort for the
development activities. The alternative way assigns a
variable effort along the whole life cycle that will
fundamentally depend on the pressure under which the
project is in every moment. The capability to correct the
defects of a project is a function of both, the assigned
effort to the correction activities and the required effort to
correct a defect.

6.2.2. Testing Subsystem

The defects that have not been detected by the quality
assurance activities or those owed to bad corrections,
must be detected by the testing activities. The propagation
and reproduction of the defects and the cost of detecting
and correcting them is gathered in the model. The
capability for testing tasks is determined by the effort
assigned to these activities, the effort required to test a
task, and the efficiency of the personnel assigned. The
testing activities end when all the developed tasks have
been tested. The model considers that in this moment, the
project has ended because it does not consider the
maintenance phase.

6.3. Determination of CoSQ

For this study we properly calibrated the dynamic
model to reproduce the medium size real project proposed
in [15]. We used this project because of the large amount
of information available of it and also because the model
has been completely validated with these data.

Table 2. Costs of a medium size project

PC
 (t-d)

ICF
 (t-d)

AC
(t-d)

CoSQ
 (t-d)

Total
Cost
 (t-d)

480.26 266.50 258.09 1,004.85 1,950

The metrics used to evaluate the different costs of CoSQ
are:
1. Costs due to lack of quality:
- Internal Costs of Failure (ICF): Effort employed in

correction.
- External Costs of Failure (ECF): Effort required to

correct defects when the product has been shipped.
This value is computed using the number of defects
in the product when the testing phase has finished.
We have not been able of evaluate this metric with
the simulation of the dynamic model because it does
not contemplate the maintenance phase as we
mentioned before.

2. Cost of achieving quality:
- Appraisal Costs (AC): Effort invested in testing

activities.
- Prevention Costs (PC): Effort invested in inspections

of software quality.
 With these metrics we define the cost of software
quality as:

CoSQ = ICF + ECF + AC + PC

The costs obtained by the simulation of the model
(measured in technician-day) for a medium size project in

normal conditions are shown in Table 2 and graphically
in Figure 2.

Figure 2. Cost of software quality evolution

6.4. Impact of different management policies over

CoSQ

To study the effect of different management policies
that affect the severity of the deadline of the project over
the CoSQ, we propose using simulation and:
- Determine the influence of policy with a restricted

deadline of finalization over the cost of quality.
- Discover the influence of a combination of

management policies over the cost of quality. This
combination of management policies is determined
by a policy with a restricted date of finalization and
different policies of effort assignment to the
development activities.

The results obtained are:
1. Policy with a restricted date of finalization: We

simulated the model twice: the first time to reproduce
the situation of working without an important
schedule pressure (non fixed date) and the second to
contemplate the scenario of the same project with a
very important restriction in its final deadline (fixed
date). The results obtained are shown in Table 3.

When the project has a fixed deadline, the cost of
quality represents 57.3% of the total cost of the
project face to the 51.5% of the case in which the
project does not have fixed date. Curiously, the
number of defects by KLDC is very similar in both
scenarios, but we discover that this is due to the large
inversion in prevention activities (PC) and appraisal
ones (AC) face to the case in which the project does
not have a fixed date.

Table 3: Effects of the restricted date policies
over CoSQ

 Fixed Date Non Fixed
Date

Number of defects by
KLDC 6.54 6.45

Total Cost (technicians-day) 3,234.00 1,950.00
PC (technicians-day) 678.86 480.26
ICF (technicians-day) 314.24 266.50
AC (technicians-day) 861.12 258.09
CoSQ (technicians-day) 1,854.22 1,004.85

2. In this case, we simulated the model and found out

the influence of a combination of a policy of fixed
date and different policies of effort assignment to
development activities, over the cost of software
quality. The effort assignment to the project is done
in the following way: First, you must subtract the
effort dedicated to train new personnel from the total
effort estimated for the project. The resulting effort is
distributed between the activities of the project as it
follows: a percentage is assigned to the production
activities (design, code and quality assurance) and
the rest is assigned to the testing activities. The
required effort for quality assurance is obtained as a
percentage of the effort assigned to production
activities. In the simulations performed, the
assignment of effort to the software quality assurance
activities was done attending to the actual state of the
project. The results obtained are shown in Table 4.

Table 4: Results obtained combining different

policies

 Restrictions in
the Date of

Finalization

% of Effort
Assigned to
Production

CoSQ

Nº of
Defects

by
KLDC

Total
Cost

%
CoSQ
over
Total
Cost

Low
Assignment 972.29 5.33 2,098 46.3%Non Fixed

Date High
Assignment 970.49 5.45 1,903 51%

Low
Assignment 1,012.36 5.34 2,189 46.2%

Fixed Date
High

 Assignment 1,703 5.53 3,020 56.4%

With these results two conclusions can be obtained:

First, from the point of view of the cost of software
quality, the policy with fixed dates is stronger than the
policy of effort assignment to production activities. We
know that the policy of fixed date increases the costs of a
project [16] as the management generally decides to

acquire more technicians to finish the project in the
planned date. This increase of personnel causes an
increase of the total cost of the project and, therefore, the
costs of the quality assurance and testing activities also
increase. However, it results curious that although this
increase of the CoSQ in projects that have fixed dates is
important, the effect over the quality of the final product
is not so important. In fact, if you look at the column
relative of the number of defects by KLDC, you see that
there are no significant differences between the projects
with higher CoSQ. The reason for this behavior can be
understood if we think about the fact that in projects with
fixed date, the personnel commit more defects due to the
whole pressure and to the accumulated fatigue. This rise
of committed defects requires a bigger amount of
activities of detection and correction, which are not able
to improve the quality, but guarantee a normal level of
quality. As far as the dedication of the personnel regards,
the results are not less interesting. In the cases where the
dedication of personnel to development activities is low,
CoSQ is situated round 46% of the total cost of the
project. This percentage is smaller than the value obtained
in projects with a higher assigned effort. Among the three
components of CoSQ evaluated, the one that more
contributes to the final value are the appraisal costs, as in
projects with this distribution of effort, testing activities
result improved. Nevertheless, if you focus on the
nominal values, you discover that the policy of low effort
assignment to development activities, always increments
the final cost of the project and the quality cost of it,
independently of the policy of deadline restriction used.

7. Conclusions

With the main objective of assessing project managers
and members of the SEIG to define, evaluate, and
implement different process improvements to achieve
higher maturity levels, a dynamic integrated framework
for software process improvement has been initiated. This
framework is double integrated. First, it integrates the use
of dynamic modeling and simulation with other static and
traditional techniques. Second, the dynamic models built
in the framework are obtained by the integration of
different dynamic modules previously generated.
Dynamic modules that may have been generated
themselves by the integration of other previously
developed dynamic modules.

The framework has a defined architecture that follows
the same hierarchical structure of CMM. The
methodology followed to obtain each of the dynamic
models of the framework (each for a different maturity
level achievement) relies on the principles of
aggregation/decomposition, and extensibility of dynamic
models.

With the application of DIFSPI some important
benefits are expected to be obtained. First, during the
process of model building, the project manager may gain
much new insight into those aspects of the development
process that mostly influence the success of the project
(time, cost, and quality). Second, having the possibility of
gaming with the DIFSPI, it allows project managers to
better understand the underlying dynamics of the software
process. As a consequence, several process improvement
suggestions may easily be designed and, most
importantly, analyzed using simulation of scenarios.
Third, templates and guidelines for a metrics collection
program may be almost automatically derived from the
requirements of the dynamic modules. Fourth, the
approach of abstraction and encapsulation followed to
develop the dynamic modules makes it possible to easily
instantiate a dynamic model using different dynamic
modules which can be plugged in the final model. Finally,
the combination of the dynamic approach with other
techniques allows project managers to perform complete
analysis and quantification of the effects and the benefits
of different software process improvements. All these
features combined in the framework intend to help
organizations to design and execute more mature
processes and, therefore, to increase their maturity level.

As far as the joint utilization of the dynamic models of
the framework with the CoSQ technique is concerned, the
following specific conclusions can be obtained:

According to [14], CoSQ is a proven technique in
manufacturing and service industries both for
communicating the value of quality initiatives and for
indicating quality initiatives candidates. CoSQ offers the
same promise to software process improvements but it
has not been widely used by the software development
community. Initial uses of CoSQ show that software
quality constitutes a very large percentage of the
development costs (60% and higher for organizations
which have not yet undertaken process improvement
programs).

 In our opinion, this technique together with the
simulation of dynamic models offers three important
benefits:
1. It provides a mechanism to evaluate the effect of an
initial quality investment, allowing to experiment with
different effort assignments.
2. It offers an objective measure for the comparison of
different scenarios of a given project, different projects of
a same organization, or even different projects of
different organizations.
3. CoSQ and simulation used together allow the
obtaining of metrics values during the project execution.
Therefore, it is not needed to wait until the end of the
project to obtain the evolution of the CoSQ, and, what is
more important, it is totally possible to simulate any of
the phases of the life cycle, for instance the design phase,

and observe the evolution of the product and its quality.
Therefore, different alternative policies aimed to the
optimization of the results can be tried. In conclusion, the
combination of the techniques described before, will
allow to try different management alternatives and
analyze the results obtained.

Our future work is mainly oriented towards the full
development and implementation of some key process
areas in DIFSPI, the study of its adaptation to other
software process models (such as CMMi, and SPICE),
and the study of what lessons can be learned from this
attempt, in order to develop a methodology to develop
dynamic models based on principles of integration,
abstraction, encapsulation, reusability, etc. of dynamic
modules.

8. References

[1] Ruiz M., I. Ramos, and M. Toro, A simplified model of

software project dynamics. Journal of Systems and
Software, Vol. 59, No 3 (2001) 299-309.

[2] Eberlein, RL, Simplification and understanding of models.
System Dynamics Review, 5, 1989;1:51-68. System
Dynamics Society.

[3] Paulk M., SM. Garcia, MB. Chrissis, and M. Bush., Key
practices of the capability maturity model. Version 1.1
Technical Report CMU/SEI-93-TR-25. Software
Engineering Institute, Carnegie Mellon University,
Pittsburg, PA (1993)

[4] Rodrigues A, and B. Bowers, System dynamics in project
management: a comparative analysis with traditional
methods. System Dynamics Review 12, 2.

[5] Boehm B., Software Engineering Economics. Prentice-
Hall Inc. (1981).

[6] Boehm B., E. Horowitz, R. Madachy, D. Reifer, BK.
Clark, B. Steece, AW. Brown, S. Chulani, and C. Abts,
Software Cost Estimation with COCOMO II. Prentice-Hall
Inc. (2000).

[7] Carleton A., RE. Park R.E., WB. Goethert, WA. Florac,
EK. Bailey, SL. Pfleeger, Software measurement for DoD
systems: recommendations for initial core measures.
Technical Report CMU/SEI-92-TR-19. Software
Engineering Institute, Carnegie Mellon University,
Pittsburg, PA (1992).

[8] Woodings T.L.: A Taxonomy of Software Metrics.
Software Process Improvement Network (SPIN) (1995).

[9] Ruiz, M., I. Ramos, M. Toro, Integrating Dynamic Models
for CMM-Bases Software Process Improvement. Oivo,M.,
and S. Komi-Sirviö (eds.) Proceedings of the 4th.
International Conference PROFES 2002. LNCS 2559.
Rovaniemi (Finland), 2002.

[10] Knox ST., Modeling the Cost of Software Quality. Digital
Technical Journal, Vol. 5, No 4 (fall 1993), 9-16.

[11] Fleming QW., JM. Koppelman, Earned Value Project
Management, 2nd Edition, Newton Square, Project
Management Institute (1999).

[12] Lipke W., M. Jennin, Software Project Planning, Statistics,
and Earned Value. Crosstalk, December 2000.

[13] Ramos, I., JC. Riquelme, and J. Aroba: Improvement in
the decisión making in software projects. Miranda, P., B.
Sharp, A. Pakstas, and J. Gilipe (eds.) Proceedings of the
3rd. International Conference on Enterprise Information
Systems (ICEIS 2001), 2001.

[14] Houston, D., and JB Keats, Cost of Software Quality: a
Means of Promoting Software Process Improvement.
Quality Engineering, 10(3), 563-573, 1998.

[15] Hersch, A., Where’s the Return on Process Improvement.
IEEE Software, July, 1993.

[16] Abdel-Hamid, T., and E. Madnick, Software Project
Dynamics: an Integrated Approach. Prentice-Hall, Inc.
1991.

Acknowledgements

The authors wish to thank the Comisión
Interministerial de Ciencia y Tecnología, Spain, (under
grant TIC2001-1143-C03-02) for supporting this research
effort.

