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Abstract. The long-time behavior of solutions (more precisely, the existence
of random pullback attractors) for an integro-differential parabolic equation
of diffusion type with memory terms, more particularly with terms containing
both finite and infinite delays, as well as some kind of randomness, is analyzed
in this paper. We imposed general assumptions not ensuring uniqueness of
solutions, which implies that the theory of multivalued dynamical system has
to be used. Furthermore, the emphasis is put on the existence of random
pullback attractors by exploiting the techniques of the theory of multivalued
nonautonomous/random dynamical systems.

1. Introduction

In our paper [5] we analyzed the long-time behavior of solutions (more precisely,
the existence of pullback attractors) for an integro-differential parabolic equation
of diffusion type with memory terms, expressed by convolution integrals involving
infinite delays and by a forcing term with bounded delay, which represent the past
history of one or more variables. In particular, we focused on the following non-
autonomous reaction-diffusion equation with memory

(1)
∂u

∂t
− ∆u+

∫ t

−∞

γ (t− s)∆u (x, s) ds+ g (x, t, u (x, t)) = h (x, t, u (x, t− r)) ,

with Dirichlet boundary condition, where x belongs to a bounded domain O ⊂ R
N

with smooth boundary, t ∈ R, the functions h and g satisfy suitable assumptions,
and γ is given in a standard way as γ(t) = −γ0e

−d0t with d0, γ0, r > 0. Instead of
analyzing directly equation (1), we developed in [5] an abstract theory for a more
general type of non-autonomous evolution equations which included as a particular
case the previous one. These types of equations are important in many physical
phenomena as it is assumed they are better described if one considers in the equa-
tions of the model some terms which take into account the past history of the
system (see, e.g. [15] and the references therein). Although, in some situations,
the contribution of the past history may not be so relevant to significantly affect
the long time dynamics of the problem, in certain models, such as those describ-
ing high viscosity liquids at low temperatures, or the thermomechanical behavior
of polymers (see [11], [15] and the references therein) the past history may play a
nontrivial role.
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However, it is also reasonable to think that certain models from the real world
are more realistic if some random or stochastic terms are also considered in the
formulation. In this respect, in the paper [2] the asymptotic behavior of a stochas-
tic version of equation (1) (with an additive noise) and with conditions ensuring
uniqueness of the Cauchy problem was analyzed. Namely, the problem

∂u

∂t
− ∆u+

∫ t

−∞

γ (t− s)∆u (x, s) ds+ g (x, u (x, t))

= h (x, u (x, t)) + ∂tW (t, x),(2)

is considered, where W (t, ·) is an appropriate Hilbert valued Wiener process (see
[2]) and the functions h and g are independent of time and delay. The technique
used in [2] is based in the well-known Dafermos transformation (see [9]) and the
existence of a random attractor is also proved.
In this paper we aim to consider a more general case in which the terms in the
equations do not necessarily ensure uniqueness of solutions (and henceforth we will
have a multivalued dynamical system), they may contain some kind of delay and
randomness can be present as well. In fact, we are interested in studying a random
problem which can come from a genuine stochastic model after having performed
a conjugation procedure. In the cases of additive or multiplicative linear noise, the
so-called Ornstein-Uhlenbeck (O-U) process plays a key role in this conjugation
(see, e.g. [3] for more details). However, we will not focus on performing such
transformation explicitly in this paper. Instead, we will consider a rather general
abstract evolution equation containing delay (both bounded and unbounded) and
some random terms, which will have the special structure provided when one uses
the aforementioned change of variable by means of the (O-U) process. Further-
more, our objective is to tackle our problem by exploiting the techniques from the
theory o multivalued non-autonomous/random dynamical systems without using
the Dafermos transformation. We intend to apply the results of this work to a
stochastic perturbation of equation (1) in a forthcoming paper.
It is worth mentioning that the problem in which we are interested in (see equation
(5)) has a non-autonomous character, which means that for each fixed random
parameter we can study a non-autonomous dynamical system and we can analyze
the existence of a pullback attractor. However, when we are interested in the
random problem, the significant concept to worry about is the concept of random
pullback attractor. But this requires of more technicalities and the analysis of
measurability properties which make a big difference between the current paper
and [5].
The content of the paper is the following. In Section 2 we recall some basic con-
cepts and results from the theory of pullback and random attractors in the set-
valued or multivalued set-up. The description of the problem to be analyzed in
the paper is included in Section 3, in particular, we consider a random evolution
equation with delays with very general coefficients. The existence of solutions to
our random problems as well as the existence of absorbing sets for the multivalued
non-autonomous/random dynamical system generated by the problem is proved in
Section 4, while the compactness of the dynamical system is proved in Section 5,
ensuring the existence of a non-autonomous pullback attractor. But, to prove that
this pullback attractor and the multivalued non-autonomous dynamical system are
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random ones, it is necessary to prove extra measurability properties of both the
dynamical system and the attractor. This is carried out in Section 6.

2. General theory of pullback and random attractors

We will recall the general theory of pullback attractors for set–valued non–autonomous
and random dynamical systems.
A pair (Ω, θ) where θ = (θt)t∈R is a flow on Ω, that is,

θ : R × Ω → Ω,

θ0 = idΩ, θt+τ = θt ◦ θτ =: θtθτ for t, τ ∈ R,

is called a non–autonomous perturbation.
Let P := (Ω,F ,P) be a probability space. On P we consider a measurable non–
autonomous flow θ :

θ : (R × Ω,B(R) ⊗F) → (Ω,F).

In addition, P is supposed to be ergodic with respect to θ, which means that every
θt-invariant set has measure zero or one for t ∈ R. Hence P is invariant with respect
to θt. The quadruple (Ω,F ,P, θ), which is the model for a noise, is called a metric
dynamical system.
We also assume that Ω is a Polish space with the metric dΩ and that F is the Borel
σ-algebra of Ω.
If we replace in the definition of a metric dynamical system the probability space P
by its completion Pc := (Ω, F̄P, P̄) the above measurability property is not true in
general (see Arnold [1, Appendix A]). But for fixed t ∈ R we have that the mapping
θt : (Ω, F̄P) → (Ω, F̄P) is measurable.
Let X = (X, dX) be a Polish space and let us denote by P (X) (Pf (X)) the set of all
non-empty (non-empty closed) subsets of the space X . Let D : ω → D(ω) ∈ P (X)
be a multivalued mapping describing a family of sets parameterized by ω. Such
family is said to be closed if D(ω) ∈ Pf (X) for any ω ∈ Ω.
Let D : ω → D(ω) ∈ Pf (X) be a multi–valued mapping in X over P . This mapping
is called a random set if

ω 7→ inf
y∈D(ω)

dX(x, y)

is a random variable for every x ∈ X. It is well known that a mapping is a random
set if and only if for every open set O in X the inverse image {ω : D(ω) ∩ O 6= ∅}
is measurable, i.e., it belongs to F , see [14, Proposition 2.1.4].
Clearly, all this is also valid if we replace P by Pc. It is also evident that if D is a
random set with respect to P , then it is also random with respect to Pc.
We now introduce non–autonomous and random dynamical systems.

Definition 1. A multi–valued map G : R
+ × Ω × X → Pf (X) is called a multi–

valued non–autonomous dynamical system (MNDS) if:

i) G(0, ω, ·) = idX ,
ii) G(t + τ, ω, x) ⊂ G(t, θτω,G(τ, ω, x)) (cocycle property) for all t, τ ∈

R
+, x ∈ X,ω ∈ Ω.

It is called a strict MNDS if, moreover, G(t + τ, ω, x) = G(t, θτω,G(τ, ω, x)) for
all t, τ ∈ R

+, x ∈ X,ω ∈ Ω.
An MNDS is called a multi–valued random dynamical system (MRDS) if the multi–
valued mapping (t, ω, x) → G(t, ω, x) is B(R+)⊗F⊗B(X) measurable, i.e. {(t, ω, x) :
G(t, ω, x) ∩O 6= ∅} ∈ B(R+) ⊗F ⊗ B(X) for every open set O of X.
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Our first aim is to formulate a general sufficient condition ensuring that an MNDS
defines an MRDS. To do that, we introduce an adequate concept of continu-
ity for multivalued mappings: we say that G(t, ω, ·) is upper–semicontinuous at
x0 if for every neighborhood U of the set G(t, ω, x0) there exists δ > 0 such
that if dX(x0, y) < δ then G(t, ω, y) ⊂ U . In general G(t, ω, ·) is called upper–
semicontinuous if it is upper–semicontinuous at every x0 in X . It is not difficult to
extend this definition and obtain upper–semicontinuity with respect to all variables.

Lemma 2. If the mapping (t, ω, x) 7→ G (t, ω, x) is upper–semicontinuous, then it
is measurable in the sense of Definition 1, see [4].

In order to define the concept of attractor (both pullback and random) we need to
recall some definitions.
A multivalued mapping D : ω → D(ω) ∈ P (X) is said to be negatively (resp.
strictly) invariant for the MNDS G if D(θtω) ⊂ G(t, ω,D(ω)) (resp. =), for ω ∈
Ω, t ∈ R

+.
Let D be a family of multivalued mappings D : ω → D(ω) ∈ Pf (X). We say that
a multivalued mapping K is pullback D-attracting if for every D ∈ D,

lim
t→+∞

distX(G(t, θ−tω,D (θ−tω)),K(ω)) = 0, for all ω ∈ Ω,

where by distX(A,B) we denote the Hausdorff semi-distance of two non-empty sets
A, B:

distX(A,B) = sup
x∈A

inf
y∈B

dX(x, y).

The family B : ω → B(ω) is said to be pullback D-absorbing if for every D ∈ D
and ω ∈ Ω there exists t̄ = t̄(ω,D) > 0 such that

G(t, θ−tω,D (θ−tω)) ⊂ B(ω), for all t ≥ t̄.

Throughout this work we always consider a particular system of sets as in [16].
Namely, let D be a set of multivalued mappings D : ω → D(ω) ∈ Pf (X) satisfying
the inclusion closed property: suppose that D ∈ D and let D′ ∈ Pf (X) be a
multivalued mapping such that D′(ω) ⊂ D(ω) for ω ∈ Ω, then D′ ∈ D. The reason
to consider such a system of sets is that then we will have a unique attractor in D.
An example of a family satisfying this property is the so-called familty of tempered
sets. Let us consider the system D given by the multi–valued mappings D : ω →
D(ω) ∈ Pf (X) with D(ω) ⊂ BX(0, ̺(ω)), the closed ball with center zero and
radius ̺(ω), which is supposed to have a subexponential growth (̺ is tempered),
i.e.

lim
t→±∞

log+ ̺(θtω)

t
= 0 for ω ∈ Ω.

D is called the family of subexponentially growing (or tempered) multi–functions.
It is obvious that this family is inclusion closed.

Let us give the definition of global random pullback D-attractor.

Definition 3. The family A ∈ D is said to be a global pullback D-attractor for the
MNDS G if it satisfies:

i) A (ω) is compact for any ω ∈ Ω;
ii) A is pullback D-attracting;
iii) A is negatively invariant.
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A is said to be a strict global pullback D-attractor if the invariance property in the
third item is strict.
If, moreover, G is an MRDS and A is a random set with respect to Pc, then A is
called a random global pullback D-attractor.

Now we can formulate the following theorem, proved in [4].

Theorem 4. Suppose that the MNDS G(t, ω, ·) is upper–semicontinuous for t ≥
0 and ω ∈ Ω. Let B ∈ D be a multi–valued mapping such that the MNDS is
D-asymptotically compact with respect to B, i.e. for every sequence tn → +∞
and ω ∈ Ω, we have that every sequence yn ∈ G(tn, θ−tnω,B(θ−tnω)) is relatively
compact in X. In addition, suppose that B is pullback D–absorbing. Then, the set
A given by

(3) A (ω) :=
⋂

s≥0

⋃

t≥s

G (t, θ−tω,B (θ−tω))

is a pullback D-attractor. Furthermore, A is the unique element from D with these
properties. In addition, if G is a strict MNDS, then A is strictly invariant.
Moreover, assume that G is an MRDS, ω → G(t, ω,B(ω)) is a random set with
respect to F̄P (respectively F) for t ≥ 0, and also that G(t, ω,B(ω)) is closed for
all t ≥ 0 and ω ∈ Ω. Then the set A defined by (3) is a random set with respect to
Pc (respectively P).

3. Setting of the problem

Let O ⊂ R
N be an open bounded set with C∞–smooth boundary. Denote, as usual,

H = L2 (O), V = H1
0 (O), that is, the closure of the sapce C∞

0 (O) with respect
to the Sobolev space W 1,2(O). The norms of these spaces are denoted by ‖·‖ and
‖·‖V , respectively, and the scalar products by (·, ·) and ((·, ·)). We shall use 〈·, ·〉
for the pairing between the spaces V ′ (the dual space of V ) and V , and 〈·, ·〉q,p for

the pairing between Lp (O) and Lq (O), where 1
p + 1

q = 1 with p ≥ 2.

Let A be a positive symmetric operator on H with compact inverse. Then the
eigenfunctions of A, denoted by {wi}i∈N, form a complete orthonormal system on
H . By a bootstrap argument these elements are sufficiently smooth, in particular
included in Lp(O). The associated eigenvalues, denoted by 0 < λ1 ≤ λ2 ≤ · · · → ∞,
have finite multiplicity. We consider the space

D(A
1
2 ) = {u =

∞
∑

i=1

ûiwi ∈ H : ‖u‖2
1/2 =

∞
∑

i=1

|ûi|
2λi <∞},

where ûi = (u,wi). In the sequel, A will be −∆, where ∆ is the Laplacian operator

endowed with homogeneous Dirichlet boundary conditions. Hence, D(A
1
2 ) = V

and A : V → V ′ is linear and continuous. Hence, for u ∈ V it is well known that

(4) (Au, u) = ‖u‖2
V = ‖u‖2

1/2.

Next we define the different phase spaces that will have an important role in our
investigations. We consider the space L2 (−∞, r;V ), r ∈ R, of square integrable
functions with values in V and with the measure eλ1sLeb, where Leb is the standard
Lebesgue’s measure. The space L2 (−∞, r;V ) is equipped with the following norm

‖ψ‖2
L2(−∞,r;V ) =

∫ r

−∞

eλ1s ‖ψ (s)‖2
V ds.
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This Banach space is separable, see e.g. [13]. From now on, we denote L2
V :=

L2 (−∞, 0;V ). Furthermore, for h > 0 we consider the space Ch := C([−h, 0], H)
of continuous functions on [−h, 0] with values in H and with the supremum norm.
Let us finally consider the space

H = {ψ ∈ L2
V such that Phψ ∈ Ch}

1,

where Ph is the operator of restriction to the interval [−h, 0]. H is a Banach space
endowed with the norm ‖ψ‖H = ‖ψ‖L2

V
+ ‖ψ‖Ch

. It can be proved easily that H is

separable.
In this paper we are interested in studying the existence of solutions, as well as the
longtime behavior of the following random delay system











du

dt
+Au(t) = f (θtω, ut) + h (θtω, ut) − g (θtω, u(t)) , for t ∈ [0, T ],

u (t) = ψ (t) , for t ≤ 0,

(5)

where T > 0, and the initial condition ψ ∈ H. That u agrees with the initial
condition ψ in the system (5) means that

(6) u (t) = ψ (t) , for t ∈ [−h, 0] but almost everywhere when s < −h.

By ut (·) we denote as usual the segment function on H defined by ut (s) = u (t+ s),
for t ∈ R

+ and s ∈ [−h, 0].
It is worth mentioning that equation (5) includes, as a particular case, the random
evolution equation obtained from equation (2) if we perform a suitable change of
variable involving an (O-U) process (see [2] for more details on this Hilbert valued
(O-U)).
The assumptions on the different functions appearing in (5) are the following.
First, g : Ω×Lp (O) → Lq (O), q = p/ (p− 1) , h : Ω×Ch → H and f : Ω×L2

V → V ′

are such that the mappings

(7) v 7→ g (ω, v) , (ω, ξ) 7→ h (ω, ξ) , ζ 7→ f (ω, ζ)

are continuous in their respective spaces (ω is fixed for g and f), and for arbitrary
fixed v ∈ Lp (O), ξ ∈ Ch, ζ ∈ L2

V we have that

(8) ω 7→ g (ω, v) , ω 7→ h (ω, ξ) , ω 7→ f (ω, ζ)

are measurable. Since L2
V , Ch, L

p(O), V ′ and H are separable, the functions

(ω, v) 7→ g (ω, v) , (ω, ξ) 7→ h (ω, ξ) , (ω, ζ) 7→ f (ω, ζ)

are jointly measurable with respect to their arguments, see Castaing and Valadier
[8], Chapter 3. We observe also that since Ω is separable, for the function h condi-
tion (7) implies (8).
Moreover, assume the following inequalities

〈g (ω, v) , v〉q,p ≥ η ‖v‖pLp(O) − c1 (ω) , for v ∈ Lp (O) ,(9)

‖g (ω, v)‖qLq(O) ≤ ν ‖v‖pLp(O) + c2 (ω) , for v ∈ Lp (O) ,(10)

‖h (ω, ξ)‖ ≤ c3 (ω) + c4 (ω) ‖ξ‖Ch
, for ξ ∈ Ch,(11)

2‖f(ω, ζ)‖2
V ′ ≤ c5 (ω) +K‖ζ‖2

L2
V
, for ζ ∈ L2

V ,(12)

1
H consists of functions of L2

V
whose restriction to [−h,0] has a version in Ch.
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where η, ν,K > 0 and ci : Ω → R
+ are measurable with respect to F . Also, the

functions t 7→ c1 (θtω), t 7→ c23 (θtω) are assumed to be integrable on any finite
interval and subexponentially growing (that is, tempered), whereas t 7→ c2 (θtω),
t 7→ c5 (θtω) are integrable on any finite interval. For c4 we suppose that E

(

c24
)

<∞
(and then t 7→ c24 (θtω) is integrable on any finite interval by the ergodic theorem),
so that

lim
t→±∞

1

t

∫ t

0

c24 (θsω) ds = E
(

c24
)

on a (θt)t∈R
-invariant set of full measure.

On the other hand, and as a consequence of the Young inequality, we have

(13) ‖u‖pLp(O) ≥ µ ‖u‖2 − Cµ,

where µ > 0 can be chosen arbitrarily and Cµ denotes a positive constant. In
particular, we take µ such that

(14) E(c24) <
ηµλ1

4eλ1h
.

Note that from (12) it is straightforward that

2

∫ t

r

eλ1s‖f(θsω, us)‖
2
V ′ds ≤

∫ t

r

eλ1sc5(θsω)ds+K(t− r)

∫ t

−∞

eλ1τ‖u(τ)‖2
V dτ.

(15)

For f and t > 0 we also assume the following inequalities

(16) 2

∫ t

0

eλ1s‖f(θsω, us)‖
2
V ′ds ≤

∫ t

0

eλ1sc6(θsω)ds+
d

2

∫ t

−∞

eλ1s‖u(s)‖2
V ds,

2

∫ t

0

eλ1s‖f(θsω, us) − f(θsω, vs)‖
2
V ′ds ≤

∫ t

0

eλ1sc7(θsω, θsω)ds

+
b

2

∫ t

−∞

eλ1s‖u(s) − v(s)‖2
V ds,

(17)

for u, v ∈ L2(−∞, t;V ), ω, ω ∈ Ω, where d, b < 1, and c6 : Ω → R
+, c7 : Ω×Ω → R

+

are measurable with respect to F and F ⊗ F , respectively, and the functions t 7→
c6 (θtω), t 7→ c7 (θtω, θtω) are integrable on any finite interval. Also, t 7→ c6 (θtω) is
subexponentially growing. Moreover, for any t ∈ R, ε > 0 there exists δ > 0 such
that if dΩ(ω, ω) < δ, then

(18)

∫ t

0

eλ1sc7(θsω, θsω)ds < ε.

Additionally, we assume that the maps

(19) ω 7→

∫ t

0

ci(θsω)ds, i = 1, 3, 4, 5,

are continuous for any fixed t ∈ R, and that for every ω0 ∈ Ω, t ∈ R there exists a
neighbourhood U of ω0 and a constant C(t, ω0) such that

(20)

∫ t

0

c2j (θsω)ds ≤ C,

∫ t

0

ci(θsω)ds ≤ C for any ω ∈ U ,

where j = 3, 4, i = 1, 2, 5, 6. It is obvious that for i = 1, 5 the property (19) implies
condition (20).
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Finally, let us assume that if ωn → ω, un → u in L2 (0, T ;H) , un → u weakly in
Lp (0, T ;Lp (O)) and un → u weakly in L2 (−∞, T ;V ) then

f(θ·ω
n, un· ) → f(θ·ω

n, u·) weakly in L2 (0, T ;V ′) ,(21)

g (θ·ω
n, un(·)) → g (θ·ω, u(·)) weakly in Lq (0, T ;Lq (O)) ,(22)

and

lim inf
n→∞

∫ T

0

e−λ1(T−s) 〈g (θsω
n, un(s)) , un(s)〉q,p ds

≥

∫ T

0

e−λ1(T−s) 〈g (θsω, u(s)) , u(s)〉q,p ds.

(23)

We would like to point out that, comparing with the nonautonomous case [5], we
have introduced the new conditions (18), (19) and (20). Also, assumptions (17),
(21), (22) and (23) have been changed, as now the parameter ω is not fixed. These
stronger conditions are needed in order to prove the measurability of the global
pullback attractor, but not for checking its existence.

4. Existence of solutions and absorbing set

Our first aim is to prove the existence of weak solutions for the problem (5).

Definition 5. Given T > 0, the function u(t) = u(t, ω, ψ) ∈ L2(−∞, T ;V ) ∩
C ([−h, T ], H)∩Lp(0, T ;Lp(O)) is called a weak solution of (5) on (0, T ) with initial
data ψ ∈ H, if for arbitrary v ∈ V ∩ Lp(O),

(24)
d

dt
(u, v)+ < Au, v >= 〈f(θtω, ut), v〉 + (h(θtω, ut), v) − 〈g (θtω, u(t)) , v〉q,p ,

and u agrees with the initial condition ψ according to (6).

From this definition and the above conditions, it follows that
du

dt
∈ L2 (0, T ;V ′) +

Lq (0, T ;Lq (O)). Then, see [17], ‖u‖ : [0, T ] → H is absolutely continuous and
〈〈

du

dt
, u

〉〉

=
1

2

d

dt
‖u(t)‖2 for a.a. t ∈ (0, T ), where 〈〈·, ·〉〉 denotes the pairing

between V ∩Lp(O) and its conjugate space V ′+Lq(O). Therefore, (24) is equivalent
to

(25) u(t) +

∫ t

0

Au(s)ds = u(0) +

∫ t

0

(f(θsω, us) + h(θsω, us) − g(θsω, u(s))) ds

in V ′ + Lq (O), for t ∈ [0, T ].

In what follows we shall obtain some a priori estimates in the spaces Ch and L2
V ,

that will be very useful when proving the existence of a weak solution by using
Galerkin approximations, and the existence of an absorbing set as well.
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Lemma 6. Every weak solution of (5) satisfies, for t ∈ [h, T ], the estimate

‖ut‖
2
Ch

+
1 − d

2

∫ 0

−t

eλ1s‖ut(s)‖
2
V ds

≤ e−λ1(t−h)+eλ1h
R

0
−t

4
ηµ
c24(θs+tω)ds

(

2‖ψ(0)‖2 + d‖ψ‖2
L2

V

)

+ 2eλ1h

∫ 0

−t

eλ1τ+e
λ1h

R

0
τ

4
ηµ
c24(θs+tω)dsc(θτ+tω)dτ,

(26)

where

(27) c (ω) = ηCµ + c6(ω) + 2c1(ω) +
2

ηµ
c23 (ω) .

Remark 7. If we replace ‖ψ(0)‖2 by ‖ψ‖2
Ch

in the right-hand side of (26), then

the inequality is true for all t ∈ [0, T ].

Proof. Using (4), (9), (11) and (13) we derive the following energy equality

d‖u(t)‖2

dt
+ λ1‖u(t)‖

2 + ‖u(t)‖2
V + 2η ‖u(t)‖pLp(O)

≤ 2 < f(θtω, ut), u(t) > +2c1 (θtω) + 2
(

c3 (θtω) + c4 (θtω) ‖ut‖Ch

)

‖u(t)‖

≤ 2‖f(θtω, ut)‖
2
V ′ +

1

2
‖u(t)‖2

V + 2c1 (θtω) +
2c23 (θtω)

ηµ
+

2c24 (θtω)

ηµ
‖ut‖

2
Ch

+ η ‖u(t)‖pLp(O) + ηCµ.

(28)

Hence, by using Gronwall’s lemma we obtain

‖u(t)‖2+
1

2

∫ t

0

e−λ1(t−s)‖u(s)‖2
V ds ≤ e−λ1t‖ψ(0)‖2+2

∫ t

0

e−λ1(t−s)‖f(θsω, us)‖
2
V ′ds

+

∫ t

0

e−λ1(t−s)

(

2c1 (θsω) +
2c23 (θsω)

ηµ
+

2c24 (θsω)

ηµ
‖us‖

2
Ch

+ ηCµ

)

ds.

By (16) it follows immediately that

2

∫ t

0

e−λ1(t−s)‖f(θsω, us)‖
2
V ′ds ≤

∫ t

0

e−λ1(t−s)c6(θsω)ds

+
d

2
e−λ1t‖ψ‖2

L2
V

+
d

2

∫ t

0

e−λ1(t−s)‖u(s)‖2
V ds,

thus we have

‖u(t)‖2 +
1 − d

2

∫ t

0

e−λ1(t−s)‖u(s)‖2
V ds

=‖u(t)‖2 +
1 − d

2

∫ 0

−t

eλ1s‖ut(s)‖
2
V ds

≤e−λ1t‖ψ(0)‖2 +
d

2
e−λ1t‖ψ‖2

L2
V

+

∫ t

0

e−λ1(t−s)

(

c(θsω) +
2c24 (θsω)

ηµ
‖us‖

2
Ch

)

ds,

where c (ω) is given by (27). From this expression, for t ≥ h we obtain

‖ut‖
2
Ch

≤ e−λ1(t−h)
(

‖ψ(0)‖2+
d

2
‖ψ‖2

L2
V

)

+

∫ t

0

eλ1he−λ1(t−s)

(

c(θsω) +
2c24 (θsω)

ηµ
‖us‖

2
Ch

)

ds,
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and then, denoting for v ∈ H

(29) χ(v)(t) = ‖v‖2
Ch

+
1 − d

2

∫ 0

−t

eλ1s‖v(s)‖2
V ds

we have

χ(ut)(t)

≤ e−λ1(t−h)
(

2‖ψ(0)‖2 + d‖ψ‖2
L2

V

)

+

∫ t

0

eλ1he−λ1(t−s)

(

2c(θsω) +
4c24 (θsω)

ηµ
‖us‖

2
Ch

)

ds

≤ e−λ1(t−h)
(

2‖ψ(0)‖2 + d‖ψ‖2
L2

V

)

+

∫ t

0

eλ1he−λ1(t−s)

(

2c(θsω) +
4c24 (θsω)

ηµ
χ(us)(s)

)

ds,

or equivalently,

eλ1tχ(ut)(t) ≤ eλ1h
(

2‖ψ(0)‖2+d‖ψ‖2
L2

V

)

+eλ1h

∫ t

0

(

eλ1s2c(θsω)+
4c24 (θsω)

ηµ
eλ1sχ(us)(s)

)

ds.

Then, applying again Gronwall’s lemma we get

χ(ut)(t) ≤ e−λ1(t−h)+eλ1h
R

t

0
4

ηµ
c24(θsω)ds

(

2‖ψ(0)‖2 + d‖ψ‖2
L2

V

)

+ 2eλ1h

∫ t

0

e−λ1(t−s)+eλ1h
R

t

s
4

ηµ
c24(θτω)dτc(θsω)ds

≤ e−λ1(t−h)+eλ1h
R

0
−t

4
ηµ
c24(θs+tω)ds

(

2‖ψ(0)‖2 + d‖ψ‖2
L2

V

)

+ 2eλ1h

∫ 0

−t

eλ1τ+e
λ1h

R 0
τ

4
ηµ
c24(θs+tω)dsc(θτ+tω)dτ.

�

Lemma 8. Let B be a bounded set of H and let T > 0, ω0 ∈ Ω be fixed. Then
there exists a neighborhood U of ω0 such that every weak solution u(·) = u(·, ω, ψ)
of (5) with ψ ∈ B and ω ∈ U satisfies the inequality:

(30) ‖u(t)‖2 ≤ ‖u(r)‖2 + C

∫ t

r

(d (θsω) + 1) ds, for all 0 ≤ r ≤ t ≤ T,

where d (ω) =
∑

i∈{1,3,4,5} ci (ω) and C = C(B, T, ω0) > 0 is a constant.

Proof. First of all, note that thanks to (26) and the assumption (20) we obtain
that there exists a neighborhood U of ω0 such that ‖ut‖Ch

≤ C1 = C1(B, T, ω0) for

t ∈ [0, T ], ω ∈ U . Hence, arguing as in (28) we obtain

d‖u(t)‖2

dt
+ λ1‖u(t)‖

2 + ‖u(t)‖2
V + 2η ‖u(t)‖pLp(O)

≤2 < f(θtω, ut), u(t) > +2c1 (θtω) + 2C1‖h(θtω, ut)‖

≤2‖f(θtω, ut)‖
2
V ′ +

1

2
‖u(t)‖2

V + 2c1 (θtω) + 2C1‖h(θtω, ut)‖.
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Once again, by Gronwall’s lemma

‖u(t)‖2 +
1

2

∫ t

r

e−λ1(t−s)‖u(s)‖2
V ds ≤ e−λ1(t−r)‖u (r) ‖2

+ 2

∫ t

r

e−λ1(t−s)‖f(θsω, us)‖
2
V ′ds+ 2

∫ t

r

e−λ1(t−s) (c1 (θsω) + C1 ‖h (θsω, us)‖) ds.

On the other hand, by Lemma 6 and (20) we have that
(

∫ t

−∞ eλ1s‖u(s)‖2
V ds+ 1

)

≤

C2 = C2(B, T, ω0) for t ∈ [0, T ], ω ∈ U . Therefore, in virtue of (11) and (15) we
obtain

‖u(t)‖2 +
1

2

∫ t

r

e−λ1(t−s)‖u(s)‖2
V ds

≤e−λ1(t−r)‖u(r)‖2 +

∫ t

r

e−λ1(t−s)c5 (θsω) ds

+KC2 (t− r) + 2

∫ t

r

e−λ1(t−s) (c1 (θsω) + C1 (c3 (θsω) + C1c4 (θsω))) ds

≤ ‖u(r)‖2 + C

∫ t

r





∑

i∈{1,3,4,5}

ci (θsω) + 1



 ds.

�

For our further purposes we will also need the following technical lemma, whose
proof can be found in [5].

Lemma 9. Let t → Jn (t), t → J (t), t ∈ [0, T ], be continuous non-increasing
functions such that Jn (t) → J (t) for a.a. t as n → ∞. Then for all t0 ∈ (0, T ]
and any sequence tn → t0 we have

lim sup
n→∞

Jn (tn) ≤ J (t0) .

If, moreover, Jn (0) → J (0), then the result is true also for t0 = 0.

Now we are ready to prove the existence of weak solutions by using the Galerkin
method.

Theorem 10. For every ψ ∈ H there exists at least one weak solution of (5).

Proof. Recall that {wj}∞j=1 ⊂ C∞(Ō) denotes the orthonormal basis consisting of
the eigenfunctions of A. We denote by Vn = [w1, ..., wn] the space spanned by
{wj}nj=1, and by Pn : D

(

Am/2
)

→ Vn, m ∈ N the orthoprojector defined by Pnu =
∑n
j=1(u,wj)wj . It is not difficult to check that Vn is complete in H1

0 (O) ∩ Lp (O).
For every fixed n we define

un(t) =

n
∑

j=1

γnj (t)wj ,

where the coefficients γnj are required to satisfy the following system:

d

dt
(un(t), wj) + (Aun(t), wj) = (f (θtω, u

n
t ) + h (θtω, u

n
t ) − g (θtω, u

n(t)) , wj),

un (t) = Pnψ (t) , for t ≤ 0,(31)
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for 1 ≤ j ≤ n. Let Xn = L2(−∞, 0; Rn) ∩ C([−h, 0]; Rn). Consider the map
Fn : [0, T ]×Xn × Ω → R

n given by

Fn (t, γ, ω) = Pn (−Aγ + f (θtω, ψ) + h (θtω, ψ) − g (θtω, ψ(0))) ,

where γ (t) = (γ1 (t) , ..., γn (t)) ∈ Xn. For the following we fix ω. It is easy to see
that ψ ∈ H and γm → γ in Xn implies ψm → ψ in H and ψm(0) → ψ(0) in Lp(O).
Hence, the above continuity conditions (7) for the maps f, g, h imply that for a.a.
t the map γ → Fn (t, γ, ω) is continuous. Also, the measurability condition (8)
together with the properties of θt give us the measurability of t → Fn (t, γ, ω) for
any γ. On the other hand, by (10)-(12) for every (t0, γ0) there is a neighborhood
Ut0,γ0,ω in R ×Xn and a Lebesgue integrable function m(t) such that

‖Fn (t, γ, ω)‖
Rn ≤ m(t) for all (t, γ) ∈ Ut0,γ0,ω.

Hence, Theorem 1.1 in [13, p.36] implies the existence of at least one local solution
for (31).

For the remainder of the proof, and in particular the compactness and the conver-
gence argument, we refer the reader to [5]. �

We observe here that every weak solution of (5) can be extended to a globally
defined one (i.e. for all t ∈ R) simply by concatenating solutions. Let then S (ψ, ω)
be the set of all globally defined solutions to (5) corresponding to ψ ∈ H and ω ∈ Ω.
We define the multivalued map G : R

+ × Ω ×H → P (H) as follows

G(t, ω, ψ) = {ut : u(·, ω, ψ) ∈ S(ψ, ω)}.

The next lemma can be proved in a similar way as in [7, Proposition 4] or [4, Lemma
5.1].

Lemma 11. G satisfies the strict cocycle property G(t+τ, ω, ψ) = G(t, θτω,G(τ, ω, ψ))
for all t,τ ∈ R

+, ψ ∈ H and ω ∈ Ω.

Let us prove the existence of an absorbing set in the space H. In what follows, we
denote by BH(0, R) a closed ball in H centered at 0 with radius R. We can assume
without lost of generality that c(ω) > 0 for all ω ∈ Ω.

In the following we need frequently (14).

Lemma 12. Let D = {D(ω)}ω∈Ω be the family of tempered sets in H. Then the
ball in H given by BH(0, R(ω)) is a D-absorbing set, where

(32) R2(ω) =
8eλ1h

1 − d

∫ 0

−∞

eλ1r+e
λ1h

R

0
r

4c24(θτ ω)

ηµ
dτc(θrω)dr,

and the random variable c(ω) has been defined in (27).

Proof. First of all, note that for u ∈ G(t, ω, ψ)

1 − d

2
‖u‖2

H ≤ χ(u)(t) +
1 − d

2
e−λ1t‖ψ‖2

L2
V
,
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where the definition of χ was given in (29). Let D ∈ D. Thanks to (26) we obtain

sup
u∈G(t,θ−tω,D(θ−tω))

χ(u)(t) ≤ 2e−λ1(t−h)+eλ1h
R 0
−t

4
ηµ
c24(θsω)ds sup

ψ∈D(θ−tω)

‖ψ‖2
H

+ 2eλ1h

∫ 0

−∞

eλ1τ+e
λ1h

R 0
τ

4
ηµ
c24(θsω)dsc(θτω)dτ,

where the last integral exists due to condition (14) and the temperedness of c(ω).
Hence

sup
u∈G(t,θ−tω,D(θ−tω))

‖u‖2
H ≤

1

2
R2(ω) +

(

4

1 − d

(

e−λ1(t−h)+eλ1h
R

0
−t

4
ηµ
c24(θsω)ds

)

+ e−λ1t

)

× sup
ψ∈D(θ−tω)

‖ψ‖2
H,

and R(ω) > 0. This estimate is true for any t ≥ 0. Hence, by (14) for any ω ∈
Ω, D ∈ D there exists t̄ = t̄(D,ω) such that for t ≥ t̄,

sup
u∈G(t,θ−tω,D(θ−tω))

‖u‖2
H ≤ R2(ω).

�

Lemma 13. The absorbing ball given in Lemma 12 belongs to D.

For the proof we refer to Caraballo et al. [6], Lemma 4.6.

5. Asymptotic compactness and the pullback attractor

Now, after an auxiliary lemma, we prove that the cocycle is pullback asymptotically
compact.

Lemma 14. Let ψn ∈ B, where B is bounded in H, and ψn → ψ weakly in L2
V ,

ψn (0) → ψ (0) weakly in H. Consider any sequence of weak solutions un(·) =
un(·, ωn, ψn) with initial data ψn corresponding to ωn, where ωn → ω. Then
there exists a subsequence unk and a function u such that unk converges to u in
C ([τ, T ] ;H) for all 0 < τ < T. Moreover, unk → u weakly in L2 (0, T ;V ) for all
T > 0. Also, the have the following property:

(33) lim sup
n→∞

‖unk

T − uT ‖
2
L2

V

≤
1

1 − b
e−λ1T lim sup

n→∞
‖ψn(r) − ψ(r)‖2

L2
V
.

Hence, if ψn → ψ in L2
V , then unk

T → uT in L2
V for any T > 0.

If, moreover, ψn → ψ in Ch, then unk → u in C ([−h, T ] ;H), for all T > 0, and
u(·) = u(·, ω, ψ) is a solution of (5) corresponding to the initial data ψ and the
parameter ω.

Proof. First fix 0 < τ < T . In view of inequality (26) and assumptions (20), the
sequence un is bounded in L∞ (0, T ;H) ∩ L2 (−∞, T ;V ), and the norm ‖unt ‖Ch

is

uniformly bounded in [0, T ]. Further, using (12) and (20), from (28) we easily obtain
that un is bounded in Lp (0, T ;Lp (O)), which implies, together with (10)-(12) and
(20), that f(θ·ω

n, un· ), h(θ·ω
n, un· ) and g (θ·ω

n, un(·)) are bounded in L2 (0, T ;V ),
L2 (0, T ;H) and Lq (0, T ;Lq (O)), respectively. Hence, the equality

dun(t)

dt
= −Aun(t) + f (θtω

n, unt ) + h (θtω
n, unt ) − g (θtω

n, un(t))
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implies that
dun

dt
is bounded in L2 (0, T ;V ′) + Lq (0, T ;Lq (O)). If we choose r ≥

max{1, N
(

1
q −

1
2

)

}, then
dun

dt
is bounded in Lq (0, T ;H−r (O)).

Hence, up to a subsequence, we have the convergences

un → u weakly star in L∞(0, T ;H),

dun

dt
→

du

dt
weakly in Lq

(

0, T ;H−r (O)
)

,

un → u strongly in L2 (0, T ;H) ,

un → u weakly in L2 (−∞, T ;V ) and Lp (0, T ;Lp (O)) ,

h(θ·ω
n, un· ) → ζh weakly in L2 (0, T ;H) .

(34)

In view of conditions (21)-(22), we have that g (θ·ω
n, un(·)) → g (θ·ω, u(·)) weakly

in Lq (0, T ;Lq (O)) , and f(θ·ω
n, un· ) → f(θ·ω, u·) weakly in L2 (0, T ;V ′).

In a standard way (see the proof of Lemma 17 in [5]) we can check that un (tn) →
u (t0) weakly in H for any sequence tn → t0, tn, t0 ∈ [0, T ]. Hence, u = ψ in (−∞, 0)
and u(0) = ψ(0).
Further, since u : [0, T ] → H is continuous, we will obtain that un → u in
C ([τ, T ], H) for any 0 < τ < T if we check that un (tn) → u (t0) strongly in H
for any tn, t0 ∈ [τ, T ]. As ‖u (t0)‖ ≤ lim inf ‖un (tn)‖, for this aim it is enough to
obtain that

(35) lim sup ‖un (tn)‖ ≤ ‖u (t0)‖ .

In view of Lemma 8 there exists a neighborhood U of ω such that for any ωn ∈ U
the continuous functions

Jn (t) = ‖un(t)‖2 − C

∫ t

0

(d (θsω
n) + 1)ds,

are non-increasing in [0, T ]. Passing to the limit we obtain that u (·) is a solution
of the following problem:

du

dt
+Au = f (θtω, ut) + ζh − g (θtω, u) ,

u(0) = ψ (0) , u = ψ in L2
V .

We note that h (θsω
n, uns ) → ζh weakly in L2 (0, T ;H) and assumption (19) implies

that ζh satisfies
∫ t

r

‖ζh(s)‖ ds ≤ lim inf
n→∞

∫ t

r

‖h(θsω
n, uns )‖ ds

≤ lim inf
n→∞

∫ t

r

(c3 (θsω
n) + C1c4 (θsω

n)) ds

=

∫ t

r

(c3 (θsω) + C1c4 (θsω)) ds,

where we have used that ‖unt ‖Ch
≤ C1 = C1(B, T, ω) for all n and t ∈ [0, T ]. Then

repeating the same steps as in Lemma 8 we obtain that the continuous function

J (t) = ‖u(t)‖2 − C

∫ t

0

(d (θsω) + 1) ds
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is also non-increasing in [0, T ]. Moreover, un → u strongly in L2 (0, T ;H) and (19)
implies, passing to a subsequence, that Jn (t) → J (t) for a.a. t ∈ (0, T ). Therefore,
using Lemma 9 we get (35).
Finally, we apply a diagonal argument to prove that the result is valid in an arbitrary
interval 0 < τ < T .
If, moreover, ψn → ψ in Ch, then arguing as before one can check that un → u
in C ([−h, T ] ;H) . Hence, it follows from (7) that h (θ·ω, u·) = ζh, and then u is a
solution of (5) corresponding to the initial data ψ.
Finally, we shall obtain (33), which implies that if ψn → ψ in L2

V , then unT → uT
in L2

V for any T > 0. Indeed, the difference vn = un − u satisfies

d

dt
‖vn(t)‖2 + λ1 ‖v

n(t)‖2 + ‖vn(t)‖2
V ≤ 2‖f (θtω

n, unt ) − f (θtω, ut) ‖
2
V ′ +

1

2
‖vn(t)‖2

V

+ 2(h(θtω
n, unt ) − h(θtω, ut), v

n(t))

− 2〈g (θtω
n, un(t)) − g (θtω, u) , v

n(t)〉q,p.

Applying Gronwall’s lemma and taking into account assumption (17), we deduce

‖vn(T )‖2
+

1 − b

2

∫ T

0

e−λ1(T−s) ‖vn(s)‖2
V ds

(36)

≤ e−λ1T ‖vn(0)‖2
+
b

2

∫ 0

−∞

e−λ1(T−s) ‖vn(s)‖2
V ds+

∫ T

0

e−λ1(T−s)c7(θsω
n, θsω)ds

+ 2

∫ T

0

e−λ1(T−s)(h(θsω
n, uns ) − h(θsω, us), v

n(s))ds

− 2

∫ T

0

e−λ1(T−s)〈g(θsω
n, un(s)) − g(θsω, u(s)), v

n(s)〉q,pds.

Using ψn (0) → ψ (0) in H , condition (18) and (34) we obtain that

lim
n→∞

e−λ1T ‖vn(0)‖2 = 0,

lim
n→∞

∫ T

0

e−λ1(T−s)c7(θsω
n, θsω)ds = 0,

lim
n→∞

∫ T

0

e−λ1(T−s)(h(θsω
n, uns ) − h(θsω, us), v

n(s))ds = 0,

lim
n→∞

∫ T

0

e−λ1(T−s)〈g(θsω, u(s)), v
n(s)〉q,pds = 0.

Further, by (11), (20), (22) and (23) we have

lim sup
n→∞

∫ T

0

e−λ1(T−s)〈−g(θsω
n, un(s)), vn(s)〉q,pds

=

∫ T

0

e−λ1(T−s)〈g(θsω
n, un(s)), u(s)〉q,pds

− lim inf
n→∞

∫ T

0

e−λ1(T−s)〈g(θsω
n, un(s)), un(s)〉q,pds

≤ 0.
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Finally, from (36) we derive

lim sup
n→∞

∫ T

0

e−λ1(T−s) ‖vn(s)‖2
V ds

≤
b

1 − b
lim sup
n→∞

∫ 0

−∞

e−λ1(T−s) ‖vn(s)‖2
V ds

=
b

1 − b
e−λ1T lim sup

n→∞

∫ 0

−∞

eλ1s ‖ψn(s) − ψ(s)‖2
V ds,

and since

‖vnT ‖
2
L2

V
=

∫ 0

−T

eλ1s ‖vnT (s)‖2
V ds+

∫ −T

−∞

eλ1s ‖vnT (s)‖2
V ds

=

∫ T

0

e−λ1(T−s) ‖vn(s)‖2
V ds+ e−λ1T

∫ 0

−∞

eλ1r ‖vn(r)‖2
V dr

we finally arrive at

lim sup
n→∞

‖vnT ‖
2
L2

V
≤

1

1 − b
e−λ1T lim sup

n→∞

∫ 0

−∞

eλ1r ‖ψn(r) − ψ(r)‖2
V dr.

�

As a consequence of Lemmas 11 and 14 we obtain the following result.

Corollary 15. The map G has compact values. The map ψ 7→ G (t, ω, ψ) has
closed graph in H and is upper semicontinuous for fixed ω ∈ Ω, t ≥ 0. Hence, G is
a strict MNDS.

The next step is to prove the asymptotic compactness.

Lemma 16. The MNDS G is pullback D-asymptotically compact.

Proof. Let yn ∈ G (tn, θ−tnω,D (θ−tnω)), where D ∈ D and tn → +∞. Then we
have to prove that the sequence yn is precompact in H. Observe that for T > 0,

G(tn, θ−tnω,D (θ−tnω)) = G(T, θ−Tω,G(tn − T, θ−tnω,D (θ−tnω)))

= G(T, θ−Tω,G(tn − T, θ−tn+T θ−Tω,D (θ−tn+T θ−Tω)))

⊂ G(T, θ−Tω,B (θ−Tω)),

if tn−T ≥ t (D, θ−Tω) , where B is the absorbing ball. Then yn ∈ G(T, θ−Tω, ξ
T
n ),

where ξTn ∈ B (θ−Tω). Let un be a sequence of solutions with initial condition ξTn
and unT = yn. Observe that yn (s− T ) = ξTn (s) for a.a. s ≤ 0. Also, it is clear that
un depend on T , but we omit this for simplicity of notation.
Since B (θ−Tω) is bounded in H we can assume (up to a subsequence) that ξTn → ξT

weakly in L2(−∞, T ;V ). Also, since yn ∈ B (ω) for n large enough, we have that
yn → y weakly in L2(−∞, T ;V ), and y (s− T ) = ξT (s) for a.a. s ≤ 0. Also, as
the sequence ξTn (0) is bounded in H , we can suppose without loss of generality that
ξTn (0) → ξT (0) weakly in H.
From the proof of Lemma 14 it follows that un converges to some function u in the
sense of (34). Also, it is clear from the above convergences that u (s) = y (s− T ) ,
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for a.a. s ≤ T, and then uT = y in L2(−∞, 0;H). Lemma 14 implies, moreover,
that

(37) un → u in C ([τ, T ], H) , for all 0 < τ < T.

Hence, if we take T > h, then we obtain that yn = unT converges to y = uT in Ch,
so uT = y in H.
Finally, we need to prove that, up to a subsequence, yn → y strongly in L2

V . Using
(33) and ξTn ,∈ B (θ−Tω),

∥

∥ξT
∥

∥

L2
V

≤ lim inf
∥

∥ξTn
∥

∥

L2
V

we have

lim sup
n→∞

‖yn − y‖L2
V
≤

1

1 − b
e−λ1T lim sup

n→∞

∫ 0

−∞

eλ1s
∥

∥ξTn (s) − ξT (s)
∥

∥

2

V
ds

≤
4

1 − b
R2 (θ−Tω) e−λ1T ,

where R (ω) is the radius of B (ω) given by (32).
Using a diagonal argument one can prove that this inequality is true (passing to a
subsequence) for every T > 0. Since B ∈ D, for any ε > 0 there exists Tε such that

4

1 − b
R2 (θ−Tω) e−λ1T < ε if T ≥ Tε.

Thus, limn→+∞ ‖yn − y‖L2
V

= 0. �

As a consequence of Lemmas 11, 12, 16, Corollary 15 and Theorem 4 we can ensure
the existence of a pullback attractor for our problem.

Theorem 17. The MNDS generated by (5) posseses a pullback D-attractor A in
H, which is strictly invariant.

Remark 18. This theorem is true without conditions (18), (19), (20) and writing
assumptions (7), (17), (21), (22) and (23) just for ω fixed (see the non-autonomous
case in [5]). In such a case Lemma 14 would be correct for ω fixed. These condi-
tions are needed in the next section in order to prove that the pullback attractor is
measurable.

6. The random attractor

We need to prove now that the MNDS G is in fact an MRDS, and that the pullback
D-attractor is a random attractor.

Lemma 19. The map (t, ω, ψ) → G(t, ω, ψ) is B(R+) ⊗F ⊗ B(H) measurable.

Proof. It is enough to check that (t, ω, ψ) → G(t, ω, ψ) is upper semicontinuous (see
[4, Lemma 2.5]), and this is true if we prove that for any sequence yn ∈ G(tn, ωn, ψn)
such that tn → t, ωn → ω, ψn → ψ, there exists a subsequence ynk converging in
H to some y ∈ G(t, ω, ψ).
Take a sequence of solutions un (·) = un(·, ωn, ψn) satisfying yn = untn . Let t < T .
In view of Lemma 14 there exists a subsequence unk (·) such that

(38)
unk → u in C ([−h, T ] ;H) ,
unk → u in L2 (−∞, T ;V ) ,

where u(·) = u (·, ω, ψ) is a solution with the initial data ψ.
Therefore,

yn = untn → ut = y ∈ G(t, ω, ψ) in Ch.
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It remains to prove that ynk → y in L2
V . Let tn = t+ τn < T , where τn → 0. We

observe that

‖ynk − y‖2
L2

V

=

∫ 0

−∞

eλ1s ‖unk

t (τnk + s) − ut(s)‖
2
V ds

≤ 2

∫ 0

−∞

eλ1s ‖unk

t (τnk + s) − ut(τ
nk + s)‖2

V ds

+ 2

∫ 0

−∞

eλ1s ‖ut(τ
nk + s) − ut(s)‖

2
V ds.

By (38) it is straightforward to check that
∫ 0

−∞

eλ1s ‖unk

t (τnk + s) − ut(τ
nk + s)‖2

V ds→ 0.

On the other hand, if v ∈ L2(−∞, T ;V ), then vτ (·) = v(·+τ) → v(·) in L2(−∞, T−
ε;V ) as τ → 0 for any ε > 0, see [12]. Hence, choosing ε > 0 such that t < T − ε
we obtain
∫ 0

−∞

eλ1s ‖ut(τ
nk + s) − ut(s)‖

2
V ds =

∫ t

−∞

e−λ1(t−s) ‖u(r + τnk) − u(r)‖2
V ds→ 0,

which concludes the proof. �

We will define now a new pullback D-absorbing family K(ω) given by

K(ω) =

{

y : ∃ωn, yn ∈ G(2h, θ−2hω
n, B(θ−2hω

n)) such that
ωn → ω, yn → y in H

}

.

We note that

G(2h, θ−2hω,B(θ−2hω)) ⊂ K(ω) for all ω ∈ Ω,

and then for any ω ∈ Ω, D ∈ D, there exists T (ω,D) such that

G(t, θ−tω,D(θ−tω)) ⊂ G(2h, θ−2hω,G(t− 2h, θ−tω,D(θ−tω)))

⊂ G(2h, θ−2hω,B(θ−2hω)) ⊂ K(ω),

if t ≥ T . Therefore, the family K(ω) is pullback D-absorbing.

Lemma 20. Assume that the radius R(ω) of the absorbing family B(ω) defined in
Lemma 12 is locally bounded, that is, for any ω0 ∈ Ω there exists a neighborhood U
of ω0 and a constant C(ω0) such that

(39) R(ω) ≤ C ∀ω ∈ U .

Then for any fixed t ≥ 0 the map ω 7→ G(t, ω,K(ω)) has closed values and is a
random set with respect to F̄P.

Proof. We shall prove that ω 7→ G(t, ω,K(ω)) has closed graph. We consider the
sequence yn ∈ G(t, ωn,K(ωn)), where ωn → ω, yn → y in H. Then there are
solutions un(·, ωn, xn) such that yn = unt and xn ∈ K(ωn).
Since xn (s) = yn(s− t) for a.a. s ≤ 0 and yn → y in L2

V , we deduce that xn → x
in L2

V , where x(s) = y(s− t) for a.a. s ≤ 0.
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We will check further that, up to a subsequence, xn → x in Ch. In view of the
definition of the set K(ω) one can choose ωn, xn ∈ G(2h, θ−2hω

n, B(θ−2hω
n)) such

that

(40) dΩ(ωn, ωn) <
1

n
, ‖xn − xn‖H <

1

n
.

There exist ψn ∈ B(θ−2hω
n) and solutions vn(·) = vn(·, ωn, ψn) such that xn = vn2h.

In view of condition (39), ψn is bounded in H. Thus, passing to a subsequence we
have that ψn → ψ weakly in L2

V and ψn(0) → ψ(0) weakly in H . Lemma 14 implies
then that vn → v in C([τ, 2h];H) for any 0 < τ < 2h. Hence, xn = vn2h → v2h in
Ch. This, together with (40), gives

xn → v2h = x in Ch,

and therefore

xn → x in H.

Moreover, from (40) we have xn → x in H, ωn → ω as well, so by the definition of
K(ω) it is obvious that x ∈ K(ω).
Now, using again Lemma 14 we obtain the existence of a solution u(·) = u(·, ω, x)
such that y = ut, thus y ∈ G(t, ω,K(ω)), proving that the graph is closed. This
fact immediately implies that the map ω 7→ G(t, ω,K(ω)) has closed values and
also that Gr(G(t,·,K(·)) ∈ F̄P ⊗ B(H).
Finally, applying well known results (see [8, Chapter III]) it follows that ω 7→
G(t, ω,K(ω)) is a random set with respect to F̄P. �

Let us establish now some sufficient conditions ensuring that (39) is fulfilled.

Lemma 21. Let the functions c1, c3, c6 satisfiy the following assumption: for any
ω0 ∈ Ω there exist a neighborhood U1 of ω0, 0 < δ(ω0) < λ1 − eλ1h 4

ηµE(c24) and

C(ω0), t0(ω0) > 0 such that

(41) ci(θtω) ≤ C(ω0)e
δ(ω0)|t|, i = 1, 6,

(42) c23(θtω) ≤ C(ω0)e
δ(ω0)|t|,

for all ω ∈ U1, |t| ≥ t0. Moreover, for any ω0 ∈ Ω there exists a neighborhood U2

such that for any γ > 0 there exists r0(γ, ω0) < 0 such that

(43) (−E(c24) + γ)r ≤

∫ 0

r

c24(θτω)dτ ≤ (−E(c24) − γ)r,

for all ω ∈ U1 and r ≤ r0.
Then (39) holds.

Remark 22. Assumption (43) means that the ergodic property limt→−∞
1
t

∫ t

0
c24(θτω)dτ =

E(c24) is satisfied uniformly in a neighborhood of each ω0 ∈ Ω.

Proof. For an arbitrary ω0 ∈ Ω let U = U1 ∩ U2. Take γ ∈ (0, λ1ηµ
4eλ1h − E(c24) −

δ(ω0)ηµ
4eλ1h ) and denote δ = λ1 − eλ1h 4

ηµE(c24) − eλ1h 4
ηµγ > δ(ω0) > 0. Let t(ω0, γ) =
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max{t0(ω0),−r0(ω0, γ)}. Conditions (41)-(43) imply

8eλ1h

1 − d

∫ −t

−∞

eλ1r+e
λ1h

R 0
r

4c24(θτ ω)

ηµ
dτc(θrω)dr

≤
8eλ1h

1 − d

∫ −t

−∞

e(λ1−e
λ1h 4

ηµ
E(c24)−e

λ1h 4
ηµ
γ)rc(θrω)dr

≤
8eλ1h

1 − d

∫ −t

−∞

eδr(ηCµ + (3 +
2

ηµ
)C(ω0)e

−δ(ω0)r)dr ≤ D1(ω0),

for any ω ∈ U . On the other hand, from condition (20) we obtain easily that

8eλ1h

1 − d

∫ 0

−t

eλ1r+e
λ1h

R 0
r

4c24(θτ ω)

ηµ
dτc(θrω)dr ≤ D2(ω0),

for any ω ∈ U . Hence, assumption (39) follows. �

In the sequel we strengthen conditions (41)-(42) and condition (20) (for the function
c4(ω)) to ensure that the family K(ω) is tempered.

Lemma 23. Assume that (43) is satisfied and that for any ω0 ∈ Ω and k > 0 there
exist a neighborhood U of ω0 and C(ω0, k), t(ω0, k) > 0 such that

(44) ci(θtω) ≤ C(ω0, k)e
k|t|, i = 1, 6,

(45) c23(θtω) ≤ C(ω0, k)e
k|t|,

for all ω ∈ U , |t| ≥ t. Also, assume that for every ω0 ∈ Ω, t0 ∈ R there exists a
neighbourhood U of ω0 and a constant D(t0, ω0) such that

(46)

∫ t+t0

t

c24(θsω)ds ≤ D, for any ω ∈ U , t ∈ R.

Then K ∈ D.

Proof. First, we ought to establish that the absorbing family B(ω) is locally uni-
formly tempered. We shall prove that for any ω0 there exists a neighborhood U0 of
ω0 such that for any δ > 0,

(47) lim
t→+∞

sup
ω∈U

e−δtR2(θ−tω) = 0.

Using assumption (43), the proof is quite similar to that in Lemma 4.6 from Cara-
ballo et al. [6], so we omit it.
Further, we need to prove that for any δ > 0,

(48) lim
t→+∞

e−δt sup
y∈K(θ−tω)

‖y‖2
H = 0.

For any y ∈ K(θ−tω) there exist yn ∈ G(2h, θ−2h−tω
n, zn), zn ∈ B(θ−2h−tω

n),
ωn ∈ Ω, such that ωn → ω, yn → y in H. From (26) we have

‖yn‖2
Ch

+
1 − d

2

∫ 0

−2h

eλ1s ‖yn(s)‖2
V ds

≤ e−λ1h+eλ1h
R 0
−2h

4
ηµ
c24(θs−tω

n)ds(2 ‖zn(0)‖2 + d ‖zn‖2
L2

V
)

+ 2eλ1h

∫ 0

−2h

eλ1τ+e
λ1h

R

0
τ

4
ηµ
c24(θs−tω

n)dsc(θτ−tω
n)dτ.
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We observe that (46), (44)-(45) imply that for any k > 0 there exist a neighborhood
U1 of ω and constants D(ω), C(ω, k), t(ω, k) > 0 such that

e−λ1h+eλ1h
R 0
−2h

4
ηµ
c24(θs−tω

n)ds

= e−λ1h+eλ1h
R

−t

−2h−t
4

ηµ
c24(θsω

n)ds ≤ e−λ1h+eλ1h 4
ηµ
D(ω)

and
∫ 0

−2h

eλ1τ+e
λ1h

R 0
τ

4
ηµ
c24(θs−tω

n)dsc(θτ−tω
n)dτ

=

∫ 0

−2h

eλ1τ+e
λ1h

R

−t

τ−t
4

ηµ
c24(θsω

n)dsc(θτ−tω
n)dτ

≤

∫ 0

−2h

eλ1τ+e
λ1h 4

ηµ
D(ω)(ηCµ + (3 +

2

ηµ
)C(ω, k)e−kτekt)dτ,

whenever ωn belongs to the neighborhood U1 and t ≥ t. Therefore, there exist
constants D1(ω), D2(ω), D3(ω, k) > 0 such that

‖yn‖2
H = ‖yn‖2

Ch
+

∫ 0

−2h

eλ1s ‖yn(s)‖2
V ds+

∫ −2h

−∞

eλ1s ‖yn(s)‖2
V ds

= ‖yn‖2
Ch

+

∫ 0

−2h

eλ1s ‖yn(s)‖2
V ds+ e−2hλ1

∫ 0

−∞

eλ1s ‖zn(s)‖2
V ds

≤ D1(ω) ‖zn‖2
H +D2(ω) +D3(ω, k)e

kt

if ωn ∈ U1 and t ≥ t. Now, for any δ > 0, choosing k < δ and using (47) we obtain
that for any ε > 0 there exists T (ε) such that

e−δt ‖yn‖2
H ≤ e−δt(D1(ω)R2(θ−2h−tω

n) +D2(ω)) +D3(ω, k)e
−(δ−k)t ≤ ε

if ωn ∈ U1 ∩ U0 and t ≥ T .
Passing to the limit as n→ ∞

e−δt ‖y‖2
H ≤ ε ∀t ≥ T (ε), y ∈ K(θ−tω).

Then, (48) follows.
The case where t→ −∞ is treated similarly. Hence, K ∈ D. �

We are ready to prove that the pullback D-attractor A defined in Theorem 17 is a
random pullback D-attractor.

Theorem 24. Assume that conditions (43)-(46) are satisfied. Then A is a random
D-attractor.

Proof. From Lemmas 23, 19 we know that the family of absorbing sets K belongs to
D and that the map (t, ω, ψ) → G(t, ω, ψ) is B(R+)⊗F ⊗B(H) measurable. Also,
from Lemmas 20, 21 we have that for any fixed t ≥ 0 the map ω 7→ G(t, ω,K(ω))
has closed values and is a random set with respect to F̄P.
Hence, Theorem 4 implies that

A (ω) :=
⋂

s≥0

⋃

t≥s

G (t, θ−tω,K (θ−tω))

and this set is random with respect to Pc. �
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