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The connections between the E(5) models [the original E(5) using an infinite square well, E(5)-β4, E(5)-β6,
and E(5)-β8], based on particular solutions of the geometrical Bohr Hamiltonian with γ -unstable potentials,
and the interacting boson model (IBM) are explored. For that purpose, the general IBM Hamiltonian for the
U(5)-O(6) transition line is used and a numerical fit to the different E(5) models energies is performed, later
on the obtained wave functions are used to calculate B(E2) transition rates. It is shown that within the IBM
one can reproduce very well all these E(5) models. The agreement is the best for E(5)-β4 and reduces when
passing through E(5)-β6, E(5)-β8, and E(5), where the worst agreement is obtained (although still very good for
a restricted set of lowest-lying states). The fitted IBM Hamiltonians correspond to energy surfaces close to those
expected for the critical point. A phenomenon similar to the quasidynamical symmetry is observed.
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I. INTRODUCTION

Both the Bohr-Mottelson (BM) collective model [1–3] and
the interacting boson model (IBM) [4–7] have thoroughly been
used to study the same kind of nuclear structure problems.
Although very different in their formulation, both models
present clear relationships. In an approximate way, the IBM
can be interpreted as the second quantization of the BM shape
variables [8]. More detailed connections between both models
were studied during the 1980s by several authors [9–14] and,
more recently, by Rowe and collaborators [15]. Both models
have three particular cases that can be easily solved and
for which a clear correspondence can be done. These three
cases are (i) the BM anharmonic vibrator and the dynamical
symmetry U(5) IBM limit, (ii) the BM γ -unstable deformed
rotor and the dynamical O(6) IBM limit, and (iii) the BM
axial rotor and the dynamical symmetry O(6) IBM limit
including Q · Q · Q interactions [15,16]. Note that although it
is traditionally accepted the correspondence of the dynamical
symmetry SU(3) IBM limit to a submodel of the BM, this
fact has never been explicitly probed [15]. Each of these
cases are assigned to a particular shape using the Hill-Wheeler
variables (β, γ ) [17]: spherical, deformed with γ -instability,
and axially deformed, respectively. For transitional situations
the correspondence between the two models is difficult, as
Rowe stated, “what is simple in one model will be complicated
when expressed in terms of the observables of the other”
[15]. This situation suggests, for the case of transitional
Hamiltonians, to look for the connection between BM and
IBM through numerical studies.

Among the transitional Hamiltonians, an especially in-
teresting case occurs when it describes a critical point in
the transition from a given shape to another. In general,
for such a situation, where the structure of the system can
change abruptly by applying a small perturbation, both the
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BM and the IBM have to be solved numerically. However,
recently Iachello has proposed schematic Bohr Hamiltonians
that intend to describe different critical points and that can be
solved exactly in terms of the zeros of Bessel functions. The
first of these models is known as E(5) [18]. E(5) is designed
to describe the critical point at the transition from spherical to
deformed γ -unstable shapes. The potential to be used in the
differential Bohr equation is assumed to be γ independent and,
for the β degree of freedom an infinite square well is taken.
Similar models were proposed later on by Iachello, called
X(5) and Y(5) [19,20], to describe the critical points between
spherical and axially deformed shapes and between axial and
triaxial deformed shapes, respectively. All these models give
rise to spectra and electromagnetic transition rates that are
parameter free, up to a scale. In spite of their simplicity,
some experimental examples were found [21,22] just after
the appearance of these models.

In this work, we concentrate on E(5) and related models.
The corresponding study for X(5) models will be published
elsewhere [23]. The formulation of E(5) immediately attracted
attention both experimentally and theoretically. Soon after
the introduction of the E(5) model, the nucleus 134Ba was
proposed by Casten and Zamfir [21] as a realization of it. Other
experimental examples proposed are 104Ru [24], 102Pd [25],
and 108Pd [26]. Concerning theoretical extensions of E(5),
first, Arias [27] proposed a generalization of the E2 operator
to be used with the E(5) model, and then Caprio [28] checked
that a substitution of the original infinite well in the β variable
by a finite one, which makes the model not exactly solvable
anymore, provides similar results. It showed that the E(5)
description is “robust in nature,” i.e., the main features of the
model remain almost unchanged under strong modification
of the depth of the potential. Arias and collaborators [29,30]
were the first authors who tried to analyze in a quantitative
way the connection between the U(5)-O(6) IBM critical point
and the E(5) model. In particular, they established, looking to
few observables that the IBM, at the critical point, gives results
close to E(5) for a small (N ≈ 5) number of bosons. However,
the IBM results for large N nicely reproduce the spectra and
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electromagnetic transition rates of a Bohr Hamiltonian with
a β4 potential (in the following E(5)-β4). Once more, the
model is no longer analytically solvable. Lévai and Arias
[31] solved the Bohr equation with a sextic potential with
a centrifugal barrier [32], arriving to almost closed analytical
formulas for the energies and wave functions. Immediately
after, Bonatsos and collaborators explored the possibility
of getting numerical solutions for the γ -independent Bohr
Hamiltonian with potentials of the type β2n, with n � 1 [33].
These sequences of potentials allow to go from the vibrational
limit, n = 1, to E(5), n → ∞. In particular, in Ref. [33] spectra
and transition rates for the potentials β4, β6, and β8 are given
explicitly and compared with the original E(5) (infinite square
well potential) case. As mentioned above, all these models
are produced in the BM scheme and a natural question is to
ask for the corresponding equivalence in the IBM. Is the IBM
able to produce the same spectra and transition rates? If yes,
does the IBM Hamiltonian correspond to a critical point? This
work is intended to answer these questions for the E(5) and
related models (−β4,−β6, and −β8 potentials) and analyze
the convergence as a function of the boson number.

For that purpose, a large set of E(5) and related models
results for excitation energies and transition rates are taken
as reference for numerical fits of the general U(5)-O(6)
IBM transitional Hamiltonian. This procedure will allow to
establish the IBM Hamiltonian that best fits the different E(5)
models and their relation with the critical points.

The article is organized as follows: in Sec. II the fitting
procedure is described and the obtained results are presented.
Section III explains the energy surfaces of the fitted IBM
Hamiltonians and analyzes these in relation to the critical
point. In Sec. IV the connection between the present results
and the concept of quasidynamical symmetry is discussed.
Finally, in Sec. V the summary and conclusions of this work
are presented.

II. THE IBM FIT TO E(5) MODELS

A. The model

The most general, including up to two-body terms, IBM
Hamiltonian can be written in multipolar form as

Ĥ = εd n̂d + κ0P̂
†P̂ + κ1L̂ · L̂ + κ2Q̂ · Q̂

+ κ3T̂3 · T̂3 + κ4T̂4 · T̂4, (1)

where n̂d is the d boson number operator, and

P̂ † = 1

2
(d† · d† − s† · s†), (2)

L̂ =
√

10(d† × d̃)(1), (3)

Q̂ = (s† × d̃ + d† × s̃)(2) −
√

7

2
(d† × d̃)(2), (4)

T̂3 = (d† × d̃)(3), (5)

T̂4 = (d† × d̃)(4). (6)

The symbol · stands for the scalar product, defined as T̂L ·
T̂L = ∑

M (−1)MT̂LMT̂L−M , where T̂LM corresponds to the M

component of the operator T̂L. The operator γ̃�m = (−1)mγ�−m

(where γ refers to s and d bosons) is introduced to ensure the
correct tensorial character under spatial rotations.

The electromagnetic transitions can also be analyzed in the
framework of the IBM. In particular, in this work we will focus
on the E2 transitions. The most general E2 transition operator
including up to one-body terms can be written as

T̂ E2
M = eeff

[
(s† × d̃ + d† × s̃)(2)

M + χ (d† × d̃)(2)
M

]
, (7)

where eeff is the boson effective charge and χ is a structure
parameter.

The E(5) models are intended to be of use for γ -unstable
nuclei having O(5) as symmetry algebra. For the construction
of an IBM γ -unstable transitional Hamiltonian it is sufficient to
impose in Eq. (1) κ2 = 0 (this implies that no Casimir operator
from the SU(3) algebra is included) as can be observed if the
Hamiltonian (1) is rewritten in terms of Casimir operators
(the definition for the Casimir operators have been taken from
Ref. [34]):

Ĥ = κ0

4
N (N + 4) +

(
εd + 18

35
κ4

)
Ĉ1[U(5)]

+ 18

35
κ4 Ĉ2[U(5)]

+
(

κ1 − κ3

10
− κ4

14

)
Ĉ2[O(3)]

+
(

κ3

2
− 3

14
κ4

)
Ĉ2[O(5)] − κ0

4
Ĉ2[O(6)]. (8)

If, additionally, we want to construct an IBM transitional
Hamiltonian that preserves the O(5) symmetry, Casimir
operators for U(5), O(6), and O(5) can be included but not
the quadratic O(3) Casimir operator. This condition, translated
to the multipolar form language used in Eq. (1), leads to the
constraint κ1 − κ3/10 − κ4/14 = 0 [see Eq. (8)]. In addition,
the structure parameter, χ , in the T E2 operator is usually
taken as zero in the standard IBM calculations for γ -flat
Hamiltonians. In our calculations we will impose κ2 = 0, i.e.,
the γ flatness. To simplify the latter analysis, we will restrict
ourselves to the case κ4 = 0, leaving κ0, κ1, κ3 (plus εd that
fixes the energy scale) as free parameters. In practice, we do
not impose the constraint κ1 − κ3/10 = 0 but, as it will be
shown, the condition will be fulfilled in every fit.

B. The fitting procedure

In this section we describe the procedure for getting the
IBM Hamiltonian that best fits the different E(5) models.

The χ2 test is used to perform the fitting. The χ2 function
is defined in the standard way,

χ2 = 1

Ndata − Npar

Ndata∑
i=1

[Xi(data) − Xi(IBM)]2

σ 2
i

, (9)

where Ndata is the number of data, from a specific E(5) model,
to be fitted, Npar is the number of parameters used in the
IBM fit, Xi(data) is an energy level [or a B(E2) value] taken
from a particular E(5) model, Xi(IBM) is the corresponding
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TABLE I. States included in the energy fit.

Band Error τ States

ξ = 1 σ = 0.001 τ = 0 0+
1

σ = 0.0001 τ = 1 2+
1

σ = 0.001 τ = 2 4+
1 , 2+

2

σ = 0.001 τ = 3 6+
1 , 4+

2 , 3+
1 , 0+

3

σ = 0.001 τ = 4 6+
2 , 5+

1 , 4+
3 , 2+

4

ξ = 2 σ = 0.01 τ = 0 0+
2

σ = 0.01 τ = 1 2+
3

σ = 0.01 τ = 2 4+
4 , 2+

5

ξ = 3 σ = 1 τ = 0 0+
4

σ = 1 τ = 1 2+
7

calculated IBM value, and σi is an arbitrary error assigned to
each Xi(data).

To perform the fit, we minimize the χ2 function for the
energies, using εd, κ0, κ1, and κ3 as free parameters and κ2 and
κ4 fixed to zero. For doing this task we use MINUIT [35], which
allows us to minimize any multivariable function.

The labels for the energy levels follow the usual notation
introduced for the E(5) model: ξ enumerates the zeros of the
β part of the wave function and τ is the label for the O(5)
algebra, i.e., the O(5) seniority quantum number, which is a
good quantum number along all the transition from U(5) to
O(6). The selected set of levels included in the fit for the
different E(5) models are:

(i) For the ξ = 1 band, all the states with angular momentum
lower than 8 and τ < 5. An arbitrary σ = 0.001 is used
for these states except for the 2+

1 state for which σ =
0.0001 is used. This latter value allows to normalize all
the IBM energies to E(2+

1 ) = 1. Note that the energy
of the state 2+

1 is fixed arbitrarily to 1 (the spectrum is
calculated up to a global scale factor).

(ii) For the ξ = 2 band, all the states with angular momentum
lower than 5 and τ < 3. An arbitrary σ = 0.01 is used
for these states.

(iii) For the ξ = 3 band, just the states with (L = 0, τ = 0)
and (L = 2, τ = 1) are included. An arbitrary σ = 1 is
used for these states.

With this selection, the number of energy levels included
in the fit, Ndata, is equal to 17. Note that the state 0+

1 is not a

real datum to be reproduced because we are interested just in
excitation energies and therefore the ground state is naturally
fixed to zero in both E(5) models and IBM. In Table I the states
included in the fit are explicitly given.

Once the IBM Hamiltonian is fixed for each E(5) model by
fitting the energy levels, the χ2 function for the B(E2) values is
constructed without any additional fitting. The only parameter
in the E2 operator (7), eeff , is a global scale and is fixed to give
B(E2; 2+

1 → 0+
1 ) = 100 in all cases [the structure parameter

χ = 0 in the E2 operator for the transitional class going
from U(5) to O(6) studied here]. The transitions calculated
are enlisted in Table II.

C. The results

We have done fits of the IBM Hamiltonian (1) parameters
to reproduce as well as possible the energies of the states given
in Table I and generated by the different E(5) models: E(5)-β4,
E(5)-β6, E(5)-β8, and E(5). Calculations for the four cited E(5)
models as a function of the boson number, N , were performed.

As mentioned, κ2 and κ4 are set to zero in Eq. (1), whereas
εd, κ0, κ1, and κ3 are free parameters in a χ2 fit to the energy
levels produced by the different E(5) models. In Fig. 1 the
value of the χ2 for a best fit to the different E(5) models as
a function of N is shown. Different type of lines in Fig. 1
represent the fit to a different E(5) model as stated in the
legend box. It is clearly observed that for any N the agreement
between the fitted IBM and the E(5)-β4 model is excellent and
is getting worse for E(5)-β6, E(5)-β8, and E(5), which is the
worst case. In particular χ2[E(5) − β4] ≈ χ2[E(5)]/1000. It
is worth noting that these results change slowly with the boson
number and in all cases, except for E(5)-β4, for which the
agreement is always excellent, the χ2 value is an increasing
function of N .

In Fig. 2 the variation of the parameters fitted in the
Hamiltonian are shown. Note that the best fit parameters give
rise approximately to the cancellation of the quadratic Casimir
operator for O(3), i.e., κ1 ≈ κ3/10. This can be quantitatively
observed in Table III.

To have a clearer idea of the degree of agreement between
the fitted IBM results with the data from the E(5) models,
numerical comparisons are shown in Table IV for N = 60.
This table includes not only the states used in the fit, but also an
extra set of states not included in it. These allow us to control

TABLE II. B(E2) transitions to be calculated.

ξi ξf τi τf ξi ξf τi τf

B(E2 : 2+
1 → 0+

1 ) 1 1 1 0 B(E2 : 3+
1 → 4+

1 ) 1 1 3 2
B(E2 : 4+

1 → 2+
1 ) 1 1 2 1 B(E2 : 0+

3 → 2+
2 ) 1 1 3 2

B(E2 : 6+
1 → 4+

1 ) 1 1 3 2 B(E2 : 0+
3 → 2+

1 ) 1 1 3 1
B(E2 : 2+

2 → 2+
1 ) 1 1 2 1 B(E2 : 2+

3 → 0+
2 ) 2 2 1 0

B(E2 : 2+
2 → 0+

1 ) 1 1 2 0 B(E2 : 4+
4 → 2+

3 ) 2 2 2 1
B(E2 : 4+

2 → 2+
1 ) 1 1 3 1 B(E2 : 2+

7 → 0+
4 ) 3 3 1 0

B(E2 : 4+
2 → 2+

2 ) 1 1 3 2 B(E2 : 0+
2 → 2+

1 ) 2 1 0 1
B(E2 : 4+

2 → 4+
1 ) 1 1 3 2 B(E2 : 0+

4 → 2+
3 ) 3 2 0 1

B(E2 : 3+
1 → 2+

2 ) 1 1 3 2
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TABLE III. Parameters (in arbitrary units) of the IBM Hamilto-
nians used in table IV.

εd κ0 κ1 κ3

E(5) 3780.90 69.74 2.4308 24.4520
E(5)-β8 3319.20 58.26 1.4028 14.0770
E(5)-β6 3061.10 52.06 1.0753 10.7760
E(5)-β4 2561.50 40.24 0.6218 6.2157

the goodness of the obtained fit because they are predicted
states that, as we can see, have their counterpart in the E(5)
models. The agreement for E(5)-β4, E(5)-β6, and E(5)-β8 is
really remarkable for all the states. In the case of E(5), only
the ξ = 1 band is perfectly reproduced, whereas for the bands
with ξ = 2 and ξ = 3 the agreement is poor.

The IBM calculations presented are done with the usual
IBM codes and consequently are restricted, due to numerical
limitations, to N around 100. However, one should note that for
the transitional class studied in this work the O(5) seniority is a
good quantum number all along the transition. This allows us to
diagonalize easily matrices corresponding to large number of
bosons using the procedure described in Ref. [30] and explore
the quality of the fits in the large N limit. The results of the
χ2 fitting for such calculations are presented in Fig. 3 as a

function of N . Note that the curves presented in this figure do
not match exactly with the corresponding ones in Fig. 1 in the
common N range. This is because in the case in which the O(5)
symmetry is imposed the χ2 function is constructed with only
one state, of those appearing in Table I, per seniority. Then, the
number of states included in the fit is different, which results
in slightly different values for the χ2 fitted function. The main
conclusion to be extracted from Fig. 3 is that only the model
E(5)-β4 is exactly (at least for the states considered in this
work) reproduced by IBM Hamiltonians with O(5) symmetry
in the large N limit. For the rest of models the discrepancy in
the IBM fit slowly increases as a function of N .

As a test for the produced wave functions with the fitted
IBM Hamiltonian, they are used for calculating E2 transition
probabilities, B(E2). The effective charge (scale parameter) in
the E2 operator (7), is fixed so as to give B(E2; 2+

1 → 0+
1 ) =

100, thus no free parameters are left in this calculation. For
the B(E2)’s calculated (not a fit) a χ2 value has been obtained
for each E(5) model with an arbitrary σ = 10. In Fig. 4 the
corresponding χ2 value is plotted as a function of N for all the
E(5) models considered. Figure 4 shows a clear dependence of
χ2 on N . The χ2 value decreases monotonically as N increases
for all the E(5) models, except for E(5). In this last case, χ2

start increasing for N ≈ 20. For N < 20, E(5) provides the

TABLE IV. Comparison of energy levels for fitted IBM Hamiltonians, with N = 60, compared with those provided
by the E(5) models (see text). The asterisk marks states not included in the fitting procedure. In the states labeled with
two subindexes, the first one corresponds to E(5), whereas the second to the rest of models.

ξ, τ E(5) IBM E(5)-β8 IBM E(5)-β6 IBM E(5)-β4 IBM

0+
1 1,0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2+
1 1,1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4+
1 1,2 2.199 2.214 2.157 2.164 2.135 2.139 2.093 2.092

2+
2 1,2 2.199 2.214 2.157 2.164 2.135 2.139 2.093 2.092

0+
2 2,0 3.031 3.051 2.756 2.763 2.619 2.622 2.390 2.390

6+
1 1,3 3.590 3.608 3.459 3.467 3.391 3.395 3.265 3.265

4+
2 1,3 3.590 3.608 3.459 3.467 3.391 3.395 3.265 3.265

3+
1 1,3 3.590 3.609 3.459 3.467 3.391 3.395 3.265 3.265

0+
3 1,3 3.590 3.609 3.459 3.467 3.391 3.395 3.265 3.265

2+
3 2,1 4.800 4.509 4.255 4.148 4.012 3.961 3.625 3.632

6+
2 1,4 5.169 5.159 4.894 4.890 4.757 4.755 4.508 4.508

5+
1 1,4 5.169 5.159 4.894 4.890 4.757 4.755 4.508 4.508

4+
3 1,4 5.169 5.159 4.894 4.890 4.757 4.755 4.508 4.508

2+
4 1,4 5.169 5.160 4.894 4.890 4.757 4.755 4.508 4.508

4+
4 2,2 6.780 6.108 5.874 5.636 5.499 5.387 4.918 4.934

2+
5 2,2 6.780 6.109 5.874 5.636 5.499 5.387 4.918 4.934

0+
4 3,0 7.577 6.682 6.364 6.073 5.887 5.752 5.153 5.175

2+
7 3,1 10.107 8.511 8.269 7.754 7.588 7.348 6.563 6.604

6+
3 ∗ 1,5 6.930 6.850 6.456 6.421 6.225 6.207 5.813 5.817

5+
2 ∗ 1,5 6.930 6.850 6.456 6.421 6.225 6.207 5.813 5.817

4+
5 ∗ 1,5 6.930 6.850 6.456 6.421 6.225 6.207 5.813 5.817

2+
6 ∗ 1,5 6.930 6.850 6.456 6.421 6.225 6.207 5.813 5.817

6+
6,4∗ 2,3 8.967 8.669 7.607 7.222 7.075 6.895 6.266 6.295

4+
7,6∗ 2,3 8.967 8.669 7.607 7.222 7.075 6.895 6.266 6.295

3+
3,2∗ 2,3 8.967 8.669 7.607 7.222 7.075 6.895 6.266 6.295

0+
6,5∗ 2,3 8.967 8.669 7.607 7.222 7.075 6.895 6.266 6.295

4+
9 ∗ 3,2 12.854 10.437 10.274 9.509 9.363 9.007 8.015 8.078

2+
9 ∗ 3,2 12.854 10.437 10.274 9.509 9.363 9.007 8.015 8.078
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FIG. 1. (Color online) χ 2 for the IBM fit to the energy levels of
the different E(5) models as a function of N .

best agreement while E(5)-β4 is the worst. This fact changes
when N increases, and for N ≈ 75 already E(5)-β4, E(5)-β6,
and E(5)-β8 provide a similar (excellent) agreement while the
χ2 value for E(5) is clearly larger.

For a quantitative comparison, the B(E2) values for the
selected transitions with N = 60 are shown in Table V. In this
table, it is clear the remarkable agreement between the IBM
calculations and E(5) models. Note the 
τ = ±1 selection
rule. Thus, the wave functions produced by the fit to the energy
levels are giving roughly the correct B(E2)’s. However, it
should be noted that the calculated IBM B(E2) values always
increase as a function of N . Therefore, looking at the tran-
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FIG. 2. (Color online) Values of the fitted IBM parameters (see
text) as a function of N . Different panels correspond to the fit to
the different E(5) models: (a) E(5), (b) E(5)-β8, (c) E(5)-β6, and (d)
E(5)-β4.

sition rates B(E2 : 2+
3 → 0+

2 ), B(E2 : 4+
4 → 2+

3 ), B(E2 :
2+

7 → 0+
4 ), B(E2 : 0+

2 → 2+
1 ), and B(E2 : 0+

4 → 2+
3 ) in

Table V one observes that, already for N = 60, the IBM values
are larger than those provided by E(5) and E(5)-β8. This is
also observed for some transitions in the E(5)-β6 model, but
for none in the E(5)-β4 model. Thus, one expects for these
models to start giving larger χ2 values from a given N value
on. The IBM results are always lower that the E(5)-β4 ones
and both are approaching as N increases.

In view of the excellent agreement between E(5) models
and the IBM, we can state that it is impossible to discriminate,

TABLE V. B(E2) values obtained, for N = 60, for fitted IBM Hamiltonians (see text) compared with those provided
by the different E(5) models.

E(5) IBM E(5)-β8 IBM E(5)-β6 IBM E(5)-β4 IBM

B(E2 : 2+
1 → 0+

1 ) 100 100 100 100 100 100 100 100
B(E2 : 4+

1 → 2+
1 ) 167.4 165.2 173.3 170.7 176.6 173.9 183.2 180.5

B(E2 : 6+
1 → 4+

1 ) 216.9 215.4 231.6 227.0 239.8 233.9 256.4 248.7
B(E2 : 2+

2 → 2+
1 ) 167.4 165.2 173.3 170.7 176.6 173.9 183.2 180.5

B(E2 : 2+
2 → 0+

1 ) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B(E2 : 4+

2 → 2+
1 ) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

B(E2 : 4+
2 → 2+

2 ) 113.6 112.8 121.3 118.9 125.6 122.5 134.3 130.3
B(E2 : 4+

2 → 4+
1 ) 103.3 102.6 110.3 108.1 114.2 111.4 122.1 118.4

B(E2 : 3+
1 → 2+

2 ) 154.9 153.8 165.5 162.1 171.3 167.2 183.1 177.6
B(E2 : 3+

1 → 4+
1 ) 62.0 61.5 66.2 64.9 68.5 66.8 73.3 71.1

B(E2 : 0+
3 → 2+

2 ) 216.9 215.4 231.6 227.0 239.8 233.9 256.4 248.7
B(E2 : 0+

3 → 2+
1 ) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

B(E2 : 2+
3 → 0+

2 ) 75.2 90.2 91.2 95.9 99.0 99.6 112.6 107.9
B(E2 : 4+

4 → 2+
3 ) 124.3 152.3 156.1 163.5 172.0 170.5 197.9 186.5

B(E2 : 2+
7 → 0+

4 ) 65.7 89.3 91.6 97.9 103.7 103.4 126.6 115.9
B(E2 : 0+

2 → 2+
1 ) 86.8 81.6 107.6 100.8 119.0 112.1 141.8 135.4

B(E2 : 0+
4 → 2+

3 ) 123.2 155.0 178.5 182.0 205.3 198.5 257.9 235.6

054307-5
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FIG. 3. (Color online) χ 2 value for the IBM fit to the energy levels
of the different E(5) models, as a function of N (large N limit), for
an IBM Hamiltonian with O(5) symmetry (see text).

from a experimental point of view, between a E(5) model and
its IBM counterpart.

III. THE CRITICAL HAMILTONIAN

One of the most attractive features of the E(5) models
treated in this work is that they are supposed to describe,
at different approximation levels, the critical point in the
transition from spherical to deformed γ -unstable shapes.
Because they are connected to a given IBM Hamiltonian,

10 20 30 40 50 60 70
N

0.1

1

10

χ2

E(5)

E(5)-β8

E(5)-β6

E(5)-β4

FIG. 4. (Color online) χ 2 values for the E2 transition rates for the
different E(5) models, as a function of N , and an IBM electromagnetic
operator T (E2) = eeff (s†d̃ + d†s̃).

as shown in the preceding section, this should correspond
to the critical point in the transition from U(5) to O(6)
IBM limits, i.e., this Hamiltonian should produce an energy
surface with (d2E/dβ2)β=0 = 0. Is this the case for the fitted
IBM Hamiltonians obtained in the preceding section? Before
starting with the discussion it is necessary to establish a
measure on how close is a given IBM Hamiltonian to the
critical point.

An energy surface can be associated to a given IBM
Hamiltonian by using the intrinsic state formalism [9,10,12]
that introduces the shape variables (β, γ ) in the IBM. To define
the intrinsic state one has to consider that the dynamical
behavior of the system can be approximately described in
terms of independent bosons moving in an average field [36].
The ground state of the system is written as a condensate, |c〉,
of bosons that occupy the lowest-energy phonon state, �

†
c :

|c〉 = 1√
N !

(�†
c)N |0〉, (10)

where

�†
c = 1√

1 + β2

[
s† + β cos γ d

†
0 + 1√

2
β sin γ (d†

2 + d
†
−2)

]
.

(11)

β and γ are variational parameters related with the shape vari-
ables in the geometrical collective model [12]. The expectation
value of the Hamiltonian (1) in the intrinsic state (10) provides
the energy surface of the system, E(N, β, γ ) = 〈c|Ĥ |c〉. This
energy surface in terms of the parameters of the Hamiltonian
(1) and the shape variables can be readily obtained [37],

〈c|Ĥ |c〉 = Nβ2

(1 + β2)

(
εd + 6 κ1 − 9

4
κ2 + 7

5
κ3 + 9

5
κ4

)

+ N (N − 1)

(1 + β2)2

[
κ0

4
+ β2

(
−κ0

2
+ 4 κ2

)

+ 2
√

2 β3 κ2 cos(3 γ )

+β4

(
κ0

4
+ κ2

2
+ 18

35
κ4

)]
. (12)

The shape of the nucleus is defined through the equilibrium
value of the deformation parameters, β and γ , which are
obtained minimizing the ground-state energy, 〈c|Ĥ |c〉. A
spherical nucleus has a minimum in the energy surface at
β = 0, whereas a deformed one presents the minimum at a
finite value of β. The parameter γ represents the departure
from axial symmetry, i.e., γ = 0 and γ = π/6 stand for an
axially deformed nucleus, prolate and oblate, respectively,
whereas any other value corresponds to a triaxial shape.
An additional situation appears when the energy surface is
independent on γ but presents a minimum in β, with the
nucleus being γ unstable. It should be noted that for a general
IBM Hamiltonian including up to two-body terms the shape
is either axially symmetric or γ unstable. Moreover, the
Hamiltonians considered in this work correspond always to
the γ -unstable situation.

With the tools described above one can study phase
transitions in the IBM [9]. First, the parameters that define
the Hamiltonian are the control parameters and normally are

054307-6



RELATION BETWEEN E(5) MODELS AND THE . . . PHYSICAL REVIEW C 77, 054307 (2008)

chosen in such a way that only one of them is a variable,
whereas the rest remain constant. The deformation parameters
β and γ become the order parameters, although in our case
the only order parameter is β. Roughly speaking, a phase
transition appears when there exists an abrupt change in the
shape of the system when changing smoothly the control
parameter. The phase transitions can be classified according to
the Ehrenfest classification [38]. First-order phase transitions
appear when there exists a discontinuity in the first derivative
of the energy with respect to the control parameter. This
discontinuity appears when two degenerate minima exist in the
energy surface for two values of the order parameter β. Second-
order phase transitions appear when the second derivative of
the energy with respect to the control parameter displays a
discontinuity. This happens when the energy surface presents
a single minimum for β = 0 and the surface satisfies the
condition (d2E/dβ2)β=0 = 0. In a more modern classification,
second-order phase transitions belongs to the high-order or
continuous phase transitions [38].

To determine whether a given Hamiltonian corresponds to
a critical point, the flatness or the existence of two degenerate
minima in the energy surface should be investigated. For the
case of one parameter IBM Hamiltonian, e.g., consistent Q
(CQF) Hamiltonians [39], it is simple to find an analytical
expression for the critical control parameter in the Hamilto-
nian. However, for a general IBM Hamiltonian it is necessary
to rewrite the energy surface in a special way, as the one
presented in Ref. [40]. There, the authors manage to write the
energy surface of a general IBM Hamiltonian in terms of two
parameters. The authors make use of some concepts from the
catastrophe theory [41] to define the two essential parameters,
(r1, r2). In terms of these they find expressions for the locus,
in the essential parameter space, that give a critical point at the
origin in β, called bifurcation set, and for the locus that gives
rise to two degenerate minima, called the Maxwell set. For
the Hamiltonians considered in Sec. II, κ2 = 0 and κ4 = 0, in
these cases r2 = 0 and r1 can be written as,

r1 = a3 − u0 + ε̃/(N − 1)

2a1 + ε̃/(N − 1) − a3
, (13)

where

ε̃ = εd + 6 κ1 + 7

5
κ3,

a1 = 1

4
κ0,

a3 = −1

2
κ0,

u0 = κ0

2
. (14)

Note that in the large N limit, εd is proportional to N (see
Fig. 2) and therefore Eq. (13) can be approached by

r1 ≈ εd/N − κ0

εd/N + κ0
. (15)

This expression agrees with the use of an energy surface
derived through a Holstein-Primakoff expansion [42].

In this language, a critical Hamiltonian corresponds to
r1 = 0. In Fig. 5 the values of r1 as a function of N for the

10 20 30 40 50 60 70

N

0
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0.2

0.3

0.4

r 1

E5

E5-β6  

E5-β8 

E5-β4

FIG. 5. (Color online) Values of r1 (see text for definition) as a
function of N for the fitted IBM Hamiltonians.

IBM Hamiltonians obtained from the fit are presented for the
different E(5) models studied. For the E(5) model, the fitted
IBM Hamiltonian produces r1 = 0 for N ≈ 7. In the case of
the E(5)-β8 the value r1 = 0 is obtained for N ≈ 25, whereas
for E(5)-β6 it is obtained for N ≈ 70. For the E(5)-β4 model
it is known that r1 = 0 is reached for very large number of
bosons [29,30].

It is worth to show (see Fig. 6) that for all the fitted IBM
Hamiltonians, the resulting energy surfaces are quite flat in a
large interval of N values and, therefore, it is justified to say
that the fitted IBM Hamiltonians are very close to the critical
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FIG. 6. (Color online) IBM energy surfaces as a function of β,
for selected values of r1 (see text for definition).
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area. As a consequence, the E(5) models will be appropriated
to describe phase transition regions close to the critical point.

IV. QUASIDYNAMICAL SYMMETRIES

The concept of quasidynamical symmetry (QDS) was
introduced in Refs. [15,43–46] and has been used in the study
of phase transitions. This concept is very useful for working
with Hamiltonians that present two dynamical symmetries
(depending on the value of a control parameter) as limits. In this
situation, the system shows the tendency to hold onto a given
symmetry until the control parameter reaches a critical value,
passing the system, at this moment, onto the other symmetry.
The remarkable feature is that the system can present a set of
states that behave as belonging to irreducible representations
(irreps) of the corresponding symmetry group, although in fact,
they do not belong to a given irrep but to a mixture of them.

In mathematical terms, a QDS can be defined through the
embedded representations [45]: “If a subset of states of a
system are in one-to-one correspondence with the states of
an irrep of a group G and if all the properties of the subset
of states associated with observables in the Lie algebra of G
(including their relationships to one another but not necessarily
their relationships to states outside of the subset) are as they
would be if the states actually belonged to an irrep of the
group G, then the subset of states is said to span an embedded
representation of G.” Therefore, in the case of a QDS, there
exist a set of states that behave as belonging to a unique irrep
of G, although that is only apparent, because they correspond
to a superposition of irreps, but all their observables (up to
certain degree of accuracy) are identical to the ones of states
within a given irrep. In summary, the states can be expressed as
a coherent superposition of irreps that behave as a single one.
Note that to show that a QDS exists, one has to fix a subset of
states and the degree of accuracy for the comparison with the
observables of the dynamical symmetry.

In our comparison between the IBM and the E(5) models
we observe a phenomenon that resembles the QDS, i.e.,
part of the IBM spectrum behaves as having E(5) symmetry,
although, indeed they do not have such a symmetry. We should
emphasize that this is not a real QDS for two reasons: (i)
E(5) cases are not dynamical symmetry limits of the IBM
and (ii) the BM and the IBM have different Hilbert spaces.
Indeed, it is not possible to define irreps in E(5) models and
therefore embedded representations. We will call this situation
quasicritical point symmetry (QCPS) [47].

To study in detail the QCPS one has to fix the degree of
accuracy to be demanded to the observables. In our study, for
the energies an accuracy of 1% for all the states belonging to
a given ξ is set, whereas for the B(E2) values an accuracy of
10% for all the studied intraband transitions in a given ξ is
selected.

Tables IV and V, which correspond to N = 60 are analyzed
below,

(i) E(5): only the states in the ξ = 1 band present E(5)
QCPS.

(ii) E(5)-β8: only the ξ = 1 states present E(5)-β8 QCPS.
(iii) E(5)-β6: only the ξ = 1 states present E(5)-β6 QCPS.

(iv) E(5)-β4: all the studied states, ξ = 1, ξ = 2, and ξ = 3,
present E(5)-β4 QCPS.

These results, regarding the energies, can be extended to
larger values of N as well (see Fig. 1), i.e., the values of
the energies remain stable when N increases, whereas for
the B(E2) values the observed differences become larger,
especially in the E(5) case.

V. SUMMARY AND CONCLUSIONS

In this article, we studied the connection between the
E(5) models and the IBM on the basis of a numerical
mapping between models. To establish the mapping we have
performed a best fit of the general U(5)-O(6) transitional IBM
Hamiltonian to a selected set of energy levels produced by
several E(5) models. Later on, a check to the wave functions,
obtained with the best fit parameters, has been done by
calculating relevant B(E2) transition rates. All calculations
have been done as a function of the number of bosons. Once
the best fit IBM Hamiltonians to the different E(5) models are
obtained, their energy surfaces are constructed and analyzed
with the help of the catastrophe theory so as to know how
close they are to a critical point. Finally, the concept of
quasicritical point symmetry is introduced, as similar to the
idea of quasidynamical symmetry.

We have shown that it is possible, in all cases, to establish
a one-to-one mapping between the E(5) models and the IBM
with a remarkable agreement for both the energies and the
B(E2) transition rates. In general, the goodness of the fit to
the energies is independent on the number of bosons, but the
corresponding B(E2) transition rates are indeed sensitive to N .
This is so specially in the E(5), for which the χ2 value reaches
a minimum for N small (N ≈ 7) and from there on increases
notably as a function of N . Globally, the best agreement
is obtained for the E(5)-β4 Hamiltonian and the worst for
the E(5) case. For the case of very large number of bosons
and Hamiltonians with O(5) symmetry we have confirmed
the results of [29,30], i.e., the only E(5) model that can be
reproduced exactly by the IBM is E(5)-β4, corresponding such
a Hamiltonian with the critical point of the model (r1 = 0). A
consequence of this excellent agreement is that it is impossible,
from a experimental point of view, to discriminate between a
E(5) model and its corresponding IBM Hamiltonian when only
few low-lying states are considered (usually the four lowest
states in the ground-state band, plus 0+

2 and 2+
3 in the ξ = 2

band).
We have also proved that all the E(5) models correspond to

IBM Hamiltonians very close to the critical area, |r1| < 0.05.
Therefore, one can say that the E(5) models are appropriate
to describe transitional γ -unstable regions close to the critical
point.

We have found that the results presented in this article are
consistent with the existence of something similar to a quasi-
dynamical symmetry; we call this phenomenon quasicritical
point symmetry.

Finally, it should be noted that the use of a more general
U(5)-O(6) Hamiltonian, e.g., using κ4 as free parameter, do
not change the main conclusions of this work.

054307-8



RELATION BETWEEN E(5) MODELS AND THE . . . PHYSICAL REVIEW C 77, 054307 (2008)

ACKNOWLEDGMENTS

We are grateful to D. J. Rowe for a careful reading of the
manuscript and for his valuable comments. This work has been
partially supported by the Spanish Ministerio de Educación

y Ciencia and by the European regional development fund
(FEDER) under project numbers FIS2005-01105, FPA2006-
13807-C02-02, and FPA2007-63074 and by the Junta de
Analucı́a under project numbers FQM160, FQM318, P05-
FQM437, and P07-FQM-02962.

[1] A. Bohr, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 26(14), 1
(1952).

[2] A. Bohr and B. R. Mottelson, Mat. Fys. Medd. K. Dan. Vidensk.
Selsk. 27(16), 2 (1953).

[3] A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin,
Elmsford, NY, 1969), Vol. II.

[4] A. Arima and F. Iachello, Ann. Phys. (NY) 99, 253 (1976).
[5] A. Arima and F. Iachello, Ann. Phys. (NY) 111, 201 (1978).
[6] O. Scholten, F. Iachello, and A. Arima, Ann. Phys. (NY) 115,

325 (1978).
[7] F. Iachello and A. Arima, The Interacting Boson Model (Cam-

bridge University Press, Cambridge, 1987).
[8] D. Janssen, R. V. Jolos, and F. Dönau, Nucl. Phys. A224, 93

(1974).
[9] A. E. L. Dieperink, O. Scholten, and F. Iachello, Phys. Rev. Lett.

44, 1747 (1980).
[10] A. E. L. Dieperink and O. Scholten, Nucl. Phys. A346, 125

(1980).
[11] J. N. Ginocchio, and M. W. Kirson, Phys. Rev. Lett. 44, 1744

(1980).
[12] J. N. Ginocchio and M. W. Kirson, Nucl. Phys. A350, 31 (1980).
[13] M. W. Kirson, Ann. Phys. (NY) 143, 448 (1982).
[14] J. N. Ginocchio, Nucl. Phys. A376, 438 (1982).
[15] D. J. Rowe and G. Thiamanova, Nucl. Phys. A760, 59 (2005).
[16] P. Van Isacker, Phys. Rev. Lett. 83, 4269 (1999).
[17] D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).
[18] F. Iachello, Phys. Rev. Lett. 85, 3580 (2000).
[19] F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).
[20] F. Iachello, Phys. Rev. Lett. 91, 132502 (2003).
[21] R. F. Casten and N. V. Zamfir, Phys. Rev. Lett. 85, 3584 (2000).
[22] R. F. Casten and N. V. Zamfir, Phys. Rev. Lett. 87, 052503

(2001).
[23] J. E. Garcı́a-Ramos and J. M. Arias, in preparation.
[24] A. Frank, C. E. Alonso, and J. M. Arias, Phys. Rev. C 65, 014301

(2001).
[25] N. V. Zamfir, et al., Phys. Rev. C 65, 044325 (2002).

[26] Da-li Zhang and Yu-xin Liu, Phys. Rev. C 65, 057301
(2002).

[27] J. M. Arias, Phys. Rev. C 63, 034308 (2001).
[28] M. A. Caprio, Phys. Rev. C 65, 031304(R) (2002).
[29] J. M. Arias, C. E. Alonso, A. Vitturi, J. E. Garcı́a-Ramos,

J. Dukelsky, and A. Frank, Phys. Rev. C 68, 041302(R) (2003).
[30] J. E. Garcı́a-Ramos, J. Dukelsky, and J. M. Arias, Phys. Rev. C

72, 037301 (2005).
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