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Role of the continuum in reactions with weakly bound systems: A comparative study between the
time evolution of a break-up wave function and its coupled-channel approximation
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We exploit a model describing the breakup of weakly bound nuclei that can be used as a laboratory for testing
different prescriptions that have been advanced in the literature to take into account the nearby presence of
continuum states. In the model, we follow the evolution of a single-particle wave function in one dimension,
initially bound by a Woods-Saxon type potential and then perturbed by a time- and position-dependent external
field. Proper choices of this potential can simulate the effect of the interaction between reaction partners in a
nuclear collision. These processes generate inelastic excitation probabilities that—distributed over the bound and
continuum states of the system—lead to either a partial or a total fragmentation of the final wave function.
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I. INTRODUCTION

For well over a decade, we have witnessed a sustained
interest in reactions involving weakly bound nuclear systems,
in particular, those with projectiles or targets close to the
nucleon evaporation lines. Under such conditions, a sudden
ejection of one (or more) of their constituent nucleons may take
place. These so-called breakup processes are very important,
and they have forced us to reexamine closely the role played
by the continuum of asymptotically open states that lie close
to the particle-emission threshold.

From the point of view of reaction theory, we are no longer
talking about a simple binary process but of a quite complex
situation that, if strictly approached, would put to a severe
test anyone’s expertise in the handling of nuclear reaction
formalisms.

It is in the nature of things, however, that people im-
mediately made simplifying assumptions and proceeded to
implement detailed calculations for the process; for a review of
the continuum-discretized coupled-channel (CDCC) method,
see, e.g., Ref. [1]. These studies did not just aim to yield
simple estimates of the cross sections but have led to
quantitative predictions as well [2]. In retrospect—and with
benevolence—one can argue that such early analyses fulfilled
the double purpose of identifying ingredients of interest and
testing the possibilities of different formalisms to reproduce
the orders of magnitude shown by the measured cross
sections.

In this type of study, one should not, however, be guided
exclusively by the ability of a given prescription to produce
good fits to the experimental data. To stress this point, we can
recall here some experience gained in the area of subbarrier
fusion phenomena [3–5]. Over the years, a variety of proposals
have been made in the literature, invariably supported by an
excellent reproduction of the experimental data at very low
bombarding energies. This was so in spite of the fact that it had
been established practically from the beginning of the research
activity in this field that the highly forbidden character of the
tunneling mechanism left enormous room to comply with this
requirement [6]. Equally dangerous has been a tendency to

“forget”—just by force of custom—the very idealized nature
of certain concepts (distribution of fusion barriers comes to
mind) and the quite strictly limited range of validity of many
approximations of everyday use.

The lesson drawn from that story is that certain crucial
issues have to be discussed and understood on their own merits
and adopted or rejected by the pure power of reasoning. When
unfamiliar approximations are involved (even if they appear
obvious and reasonable), it is imperative to check the extent
to which they are suitable to function within the new context.
To this end, one must construct alternative solutions of the
problem that are far less objectionable and test thoroughly the
consequences of their implementation.

One certainly wishes to avoid in the study of breakup
phenomena some of the mistakes incurred in the subbarrier
fusion field, which took (or, rather, are taking) quite long
to eliminate. By the incontestable fact that the number of
continuum states is indeed infinite, every single calculation
performed so far with a coupled-channel formalism has had to
resort to some discretization (better or worse) of the space of
scattering states. The computing power available at present has
normally limited the positive energy states to be accounted for
by at most a double-digit number of channels. Is this enough?
What can we expect to believe of the results obtained from
a calculation performed in a such a restricted space? The
shape of the wave function representative of the process? The
predicted Q-value distribution? Can we develop some feeling
about the size of the energy bins that may be appropriate? And
what about the effective truncation of the basis to a maximum
energy value?

These are too many questions, and it may be difficult to
provide satisfactory general answers for all of them. But one
thing is clear. We cannot go forward with the current state
of affairs without taking a pause to judge how firm is the
ground upon which we stand. Otherwise we could go forever
producing and believing irrelevant numbers! (Clearly, by the
time this paragraph is being written we already know the
conclusions reached in this study. Just to give the reader some
incentive to continue further, let us say that one has good
reasons to argue that the number of channels used so far by
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different authors has been in general too small to generate
reliable breakup wave functions.)

The present contribution is motivated and elaborated in the
spirit of the considerations sketched above. The model we shall
soon describe is rather simple. Yet, we trust that it incorporates
enough of the correct ingredients to allow the extrapolation of
its findings to other realistic situations. We rush to state that
this is not by any means the first time that a time-dependent
approach has been used in the context of nuclear breakup
processes [7–10]. But we have deliberately restricted ourselves
to examining the results extracted from this scheme in close
correspondence with those of its coupled-channel counterpart
in a totally equivalent problem. This has provided us with
a solid tool for judging the reliability of the latter technique.
After all, that is—unavoidably and for the foreseeable future—
the only formulation that will be systematically used for
the actual interpretation of experimental data. It is precisely the
possibility of investigating any aspect of the problem from the
two distinct perspectives (and under controlled circumstances)
that lends true value to our exercise.

We hope to be able to keep the following presentation at
a somewhat pedagogical level. It would be indeed satisfac-
tory if we managed to give to the experimentalists enough
background to follow what their theoretical colleagues are
struggling through when they cover these topics in either
manuscripts or seminars.

Following this Introduction, we describe, in Sec. II, the
basic model that will be at the center of our comparative study.
Section III deepens our understanding of the time-dependent
approach, where the breakup rate is directly associated with the
probability flow out of the potential well where the nucleon or-
bitals are initially localized. Partial and total breakup situations
are discussed, and a number of illustrations are presented to
familiarize the reader with what are to become our “reference”
results. In fact, there are no specific approximations involved
in this part of the study. To implement the coupled-channel
approach one has, on the other hand, to introduce a discretized
basis for the continuum states; just as the research community
has been striving to do in connection with the analysis of real
experiments. This is discussed in detail in Sec. IV, where we
take time to consider different discretization procedures that
mimic those already proposed in the literature. The availability
of a reference calculation allows us, in Sec. V, to explore
systematically, and through a series of examples, different
aspects of the accuracy limitations imposed on the coupled-
channel formalism. The results obtained question the chances
of constructing meaningful coupled-channel wave functions
within the framework of the approximations currently in use.
A brief summary and some conclusions close the presentation
in Sec. VI.

Some of these results have been previously covered in two
conference reports [11,12].

II. FORMULATION OF THE MODEL

In this section, we look for a model that can provide an
adequate representation of a one-nucleon breakup process.
Let us briefly review some of the elements that guide our
search.

The problem posed should admit solutions in terms of a
coupled-channel formalism that resorts to a discretization of
the continuum. This is, after all, the situation whose soundness
we set out to test and have listed as the main motivation of
the whole exercise. But, clearly, it should nevertheless be
possible to generate the evolution of the wave function in
an alternative manner, unaffected by a questionable handling
of the continuum. To such solutions, one could then assign
the label of “exact” and they would become the standards of
reference to compare with coupled-channel results.

Just in pondering on the initial and final characteristics that
the single-particle breakup wave function should incorporate
it becomes clear that we need to formulate a time-dependent
problem. Indeed, at the very beginning of the process, we
envision a stationary situation where the probability of finding
the nucleon must be stable and localized in the vicinity of
the breakup nucleus. We take that to be our target and place
there the origin of the coordinate system. Later—and as a
consequence of the increasing interaction with the incoming
projectile—the wave function would start modifying its shape
and acquiring excitation energy. Under favorable conditions,
the wave function may eventually extend its components into
the continuum, whereupon a leakage of probability outside
of the target area begins to occur. Finally, as the distance
between projectile and target grows again very large and
their coupling subsides, the collision process will settle into a
third phase. This one should not be judged truly stationary
in the sense that the fragment of the wave function that
has escaped confinement near the origin continues forever
traveling outward. The fraction of probability that it carries
away, however, does stabilize. This number is expected to
be a number anywhere between 0 (no breakup) and 1 (total
breakup).

The model should also be simple, so that its solutions turn
out to be fast and easy to construct. This is because we intend
to use it as the basic source for the numerous checks required
to explore different aspects of the two alternative schemes.

Incorporating all the elements listed above, in what follows
we set to describe the evolution of a single-particle wave
function �(x, t), initially a bound eigenstate of the one-
dimensional Woods-Saxon potential

V (x) = V0

1 + exp[(|x| − R)/a]
, (1)

and perturbed by a space- and time-dependent interaction

Vcoup(x, t) = VC exp
( − t2/2σ 2

t

)
exp

[ − (x − x0)2/2σ 2
x

]
,

(2)

assumed to be factorized in a time-dependent part V t
coup(t) =

VC exp(−t2/2σ 2
t ) and a position-dependent part V x

coup(x) =
exp[−(x − x0)2/2σ 2

x ]. As we can see, the coupling is for
simplicity assumed to be of Gaussian shape. We note, however,
that this is not really essential, and the expression (2) can
be easily changed—within the present implementation of the
model—to any other functional dependence as long as it stays
separable. The potential Vcoup(x, t) is meant to simulate the
inelastic excitation fields resulting from a collision between
two heavy ions. In particular, adjusting the widths σt , σx ,

064620-2



ROLE OF THE CONTINUUM IN REACTIONS WITH . . . PHYSICAL REVIEW C 79, 064620 (2009)

the asymmetry parameter x0 and the overall strength VC ,
one is able to mockup realistic situations that arise from
different collision times, bombarding energies, interaction
ranges, distances of closest approach, impact parameters, etc.

A word about the one-dimensional character of our model
Hamiltonian. It may at first appear as too much of a
simplification to reduce the three dimensions of the ordinary
space to just one. However, the standard way to solve coupled-
channel problems in three dimensions is by decomposing the
spacial wave functions in angular momentum components.
The radial wave functions are defined over a one-dimensional
space r , much as the one taken into account by the variable
x in our model (of course, 0 < r < ∞ while −∞ < x <

∞). The polar angles enter the formalism through angular
momentum algebra coefficients that affect both wave functions
and form factors but do not add essential complexities to
the problem. In short, handling the three-dimensional case
amounts to manipulating matrices involving a collection of
coupled operations with functions of the radial variable r . This
is technically similar to the situations that we will exploit in
our model space and is not expected to impair any conclusions
regarding the validity of the approximation schemes.

Having specified our model, in the following sections we
proceed to construct solutions of the common problem in
terms of (a) the time-dependent Schrödinger equation and
(b) a coupled-channel formalism with discretization of the
continuum.

III. TIME-DEPENDENT APPROACH

We discuss first the time-dependent approach. In this
segment of the paper, we should be able to appreciate,
materialized in selected numerical solutions for the breakup
wave function �(x, t), the characteristic features anticipated
in Sec. II.

In this case, the evolution of the wave function follows,
naturally, from the time-dependent Schrödinger equation

ih̄
∂�(x, t)

∂t
= [H0(x) + Vcoup(x, t)]�(x, t), (3)

where

H0(x) = − h̄2

2µ

∂2

∂x2
+ V (x) (4)

can be identified as our “unperturbed” Hamiltonian. The
equation has to be solved supplying, as an initial condition
at time t = t0, the wave function �(x, t = t0). According to
what was previously stated, we take as the initial state for
the time-dependent integration precisely one of those bound
eigenstates of the unperturbed Hamiltonian H0(x), identified
by the index N , i.e.,

�(x, t = t0) ≡ �N (x) exp[−ieN (t − t0)/h̄]. (5)

Note that we have taken the arbitrary time-dependent phase of
the bound-state wave functions to vanish for t = t0. Naturally,
this time is chosen so that t0 � −σt .

In Fig. 1, we show the profile of our potential V (x), for V0 =
−50 MeV, R = 4 fm, and a = 0.65 fm. The mass corresponds
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FIG. 1. (Color online) Profile of the Woods-Saxon potential used
in the calculations. The parameters chosen are V0 = −50 MeV, R =
4 fm, and a = 0.65 fm and are kept fixed for all the illustrations
presented in this paper. In the diagram are also shown (in arbitrary
scale) the bound-state wave functions �N (x), mounted in the ordinate
(in MeV) of the corresponding eigenvalue, eN . The index N is
indicated to the right of the frame.

approximately to that of a neutron, that is, µ = 1 u. The actual
values of these constants are of no relevance to the purpose
of our comparative study, and we will leave these numbers
unchanged for the rest of the presentation. Superimposed onto
the figure to constant values equal to the (negative) values of
the binding energies eN , the bound-state wave functions �N (x)
are plotted, in arbitrary units. These are the solutions to the
eigenvalue problem

H0(x) �N (x) = eN �N (x). (6)

We can see in the plot that for the parameters chosen, there
are just five bound eigenstates. Notice also that the depth of
the well, V0, was chosen so that the fifth of the neutron states
lies very close to the edge of the well. It is, in other words, a
“weakly bound state.”

As previously stated, the particle is taken initially to be
in one of the bound states �N (x) of the Hamiltonian H0(x)
shown in Fig. 1. Our first example refers to a case in which
one starts with the particle in the lowest energy bound level
(N = 1) and applies a symmetric perturbation (x0 = 0).

The strength of the coupling is here chosen sufficiently
weak so that the probabilities of excitation to the upper levels
at the end of the collision distribute exclusively within the set
of bound states.

Three snapshots of the time evolution of the wave function
are shown in Fig. 2. As we can observe, the final wave function
is confined to the region of the potential well but is no longer
stationary. (Note that we use the term “final” because it is
the time tf when we have arbitrarily stopped the calculation.
Since—as we said—the wave function is no longer stationary,
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FIG. 2. (Color online) Time evolution of the wave function square
(upper part) and final distribution of probability over the discrete
bound states (lower part). A symmetric perturbation has been used
(x0 = 0), starting from the initial N = 1 state.

it will in fact display a changing pattern forever after the
interaction Vcoup has ceased to exist; clearly tf must satisfy
tf � σt ). The probability distribution over the set of bound
states can be obtained by projecting the final wave function,
PN = |〈�N |�(t → +∞)〉|2, as shown in the lower part of
the figure. Since in this case the perturbation is spatially
symmetric, only bound states of the same parity as the initial
state can be populated.

When an asymmetric perturbation is used (x0 �= 0), as in
the example shown in Fig. 3, states with both parities can be
populated. Yet, also here the external coupling is weak enough
so that only the bound states of the eigenvalue spectrum are
involved (and, consequently, the sum of the probabilities for
these discrete states satisfies

∑
N PN ≈ 1).

The situation qualitatively changes if a stronger external
field is used. Or, alternatively, if one starts from an initial
state closer to the separation threshold. One such example
is shown in Fig. 4, where the N = 3 state is now chosen
as the initial configuration. It can be immediately seen that,
evolving in time, a major fraction of the wave function
“escapes” the potential well by populating unbound states
in the continuum. This can be interpreted as describing final
breakup events. As the now stronger perturbation was chosen
asymmetric (x0 �= 0), breakup probabilities are different in
one direction or the other. We can also see that a fraction of
the wave function remains localized in the potential region,
corresponding to some finite probability of populating only
bound states. The situation can therefore be interpreted as
describing a partial breakup process. Going toward the “left”
or toward the “right” is the equivalent, in one dimension, to
breaking up by emitting the fragment into different orientation
angles. The actual situation in the ordinary three-dimensional
space is reconstructed—as previously mentioned—from the
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FIG. 3. (Color online) Same as Fig. 2, but for an asymmetric
perturbation (x0 �= 0).

expansion of the incident flux in angular momentum (partial
wave) components.

A better insight into the continuum part of the wave
function can be obtained by inspecting, besides the modulus
square of the wave function, the time evolutions of the
probability current and the momentum distribution. One can
conclude directly from Fig. 5 that, in fact, the two external
wave packets do correspond to fragments moving in opposite
directions. One could also show that the two wave packets
have momentum distributions with opposite signs. The parts
of the wave function associated with the left fragment, the
central part, and the right fragment will therefore yield the
probability of breakup to the left, no breakup, and breakup to
the right, respectively. These quantities are directly related to
experimentally measurable quantities.

The situation changes again as one starts the calculation
from the last bound orbital (N = 5), a condition that one
expects to encounter in the vicinity of the drip lines. It is
apparent from the evolution of |�(x, t)|2 (shown in Fig. 6)
that no appreciable part of the wave function remains in this
case within the potential region. Notice the expanding scale
of the abscissas in the subsequent frames. This is necessary
to accommodate the leaking character of the probability out
of the finite-size potential range V0(x). There is practically
no final overlaps with the bound states, and the situation thus
corresponds to a nearly total breakup process. Once again, the
characteristics of the process can also be visualized by looking
at the current and momentum distributions. These are shown
in Fig. 7.

The solution of the problem so far has not involved an
expansion of the time-dependent wave function into any basis
of single-particle states. In particular, it has not yet been
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FIG. 4. (Color online) Time evolution of the
square of the wave function. An asymmetric
perturbation has been used, and the initial config-
uration corresponds to that of the N = 3 bound
state. Note the increasing range of the abscissas
in the different frames; this is necessary to
accommodate a distribution of probability that
has began to expand outward, both to left and
right. As earlier, “final time” means an arbitrary
time at which the calculation was stopped.

necessary to introduce explicitly any scattering states, since
continuum effects are automatically incorporated in |�(x, t)|2.

In those cases involving emerging fragments, however, one
might like to not only predict the total breakup probability
but also learn about the Q-value distribution of the emitted
nucleons. This amounts to extending to the positive energy

axis the probability distributions that in our first two examples
(cf. Figs. 2 and 3) were restricted—by the weak character
of the coupling—to the bound states only. To this end, one
needs to expand the final wave function into a complete set of
energy eigenstates of H0 including, of course, those lying in
the continuum.
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The continuum states used in our calculations need to be
orthogonal to the bound states and orthonormal (in a Dirac
δ-function sense) between themselves. These conditions by
themselves do not define uniquely a basis of eigenstates of
H0(x), in particular those with positive energy eigenvalues E.

Critical points in this regard are the asymptotic boundary
conditions to be imposed. For each positive energy E, we
have two possible independent solutions whose selection is
a priori arbitrary. But the basis of continuum states could
also—as an alternative—incorporate any two independent
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FIG. 7. (Color online) Same as Fig. 5, but for the case displayed in Fig. 6.
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FIG. 8. Contours of the modulus square of
the eigenfunctions of H0(x) when they have been
chosen and normalized as the scattering states
from the right (left frame)and from the left (right
frame). Note the different energy scale in the
bound and in the continuum sectors, as well as
the different normalizations of the bound and
continuum wave functions.

linear combinations between the couple of states originally
selected.

A possible choice is to take the two solutions corresponding
to the scattering process from the right and left sides. Contours
corresponding to the modulus square of the scattering wave
functions incident from the right are displayed to the left of
Fig. 8. Those for incident flux from the left are essentially the
same, obtained from Fig. 8 by reflecting the contours by the
transformation x into −x. Another obvious possible choice
could have been to take the symmetric and antisymmetric
combinations of these two frames.

The projections and distribution of probabilities of the time-
dependent solutions of the Schrödinger equation in the basis of
eigenstates of the Hamiltonian H0(x) is something that touches
closely upon the subjects of our two following sections, and
we shall return to the matter—and show many examples—later
on.

IV. COUPLED-CHANNEL APPROACH

As an alternative to the direct numerical solution of the
time-dependent Schrödinger equation, one can resort to the
familiar coupled-channel formalism, in which the Schrödinger
equation is solved by expanding the total wave function on
a basis of eigenstates �n(x, t) of the Hamiltonian H0. This
is the preferred approach in most situations, where the direct
numerical solution of the full time-dependent many-body wave
function is very complicated. For these reasons it is also the
conventional approach used in most of the currently available
computer codes. We will use here a simplified version of
the coupled-channel scheme, adapted to our one-dimensional
problem.

On a discrete basis, the expansion of the full wave function
is of the form

�(x, t) =
∞∑

n=1

an(t)�n(x, t), (7)

where the wave functions �n(x, t) are bound eigenstates
of the Hamiltonian with the potential V (x) that correspond
to the eigenenergy En. The solution of the time-dependent
Schrödinger equation reduces in this approach to the solution
of the discrete set of coupled equations for the expansion

amplitudes an(t), that is,

ih̄ȧn =
∞∑

m=1

e−i(En−Em)t 〈�n|Vcoup(t)|�m〉am(t), (8)

which involves the matrix elements of the perturbation
potential Vcoup(x, t) between the stationary states. The initial
conditions for the amplitudes at t = −∞ are fixed by the initial
state of the system.

If the basis states are identified with the eigenstates of a
finite potential, the complete set of states necessarily includes
the discrete bound states and also the continuum states at
positive energies. This is indeed the case of the potential (1)
considered in this work. In our context—and using the positive
energies E as a label for the continuum states, �(E, x)—the
expansion of the full wave function does in fact incorporate
continuum amplitudes a(E, t) in the form

�(x, t) =
∞∑

N=1

an(t)�n(x) +
∫

dE[a−(E, t)�−(E, x)

+ a+(E, t)�+(E, x)]. (9)

Note: An important word about the units of these continuum
wave functions �±(E, x) and reaction amplitudes a±(E, t).
Although the notation is deliberately analogous to the one used
for their discreet counterparts, one has to be very careful. The
nature of the space we are using is such that we are referring to
densities in energy. To make things even more confusing, the
probabilities are actually obtained from the modulus square
of either the �’s or the a’s, so that the units of �±(E, x)
are [length]−1/2× [energy]−1/2. In this way, |�±(E, x)|2 dE is
associated with the probability of finding the energy in the
interval of energy [E,E + dE]. Analogous considerations
apply to the amplitudes a±(E, x). According to this discussion,
a figure like Fig. 8 has to be studied for a while to realize that
the units for the displayed function are actually different for
E > 0 or E < 0. The same is true for Figs. 9–11.

Besides the standard orthonormality conditions between the
discrete bound states, we need to consider also those for the
positive and negative continuum states. These wave functions
�(E, x) are normalized “δ,” namely,

〈�(E)|�(E′)〉 = δ(E − E′). (10)
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Observe that in the expansion (9) it is explicitly taken
into account that for each positive energy E, there are
two independent solutions. We have chosen these, quite
naturally, as the solutions of the scattering problem at energy
E with boundary conditions of incoming plane wave from
the left (�−) and from the right (�+). For a symmetric
potential, the case of our V (x), the two solutions satisfy the
condition �−(x) = �+(−x). But we could have also chosen
any other linear combination of these two independent states.
For instance, their sum and difference, a choice that yields
symmetric and antisymmetric basis states.

With the full (bound plus continuum) basis, the coupled
equations for the discrete part of the amplitudes, an(t) will
now include terms that couple not only to the other discrete
amplitudes but also to the continuum ones. In addition, we
have other coupled equations for the continuum amplitudes
a±(E, t), analogous to those of Eq. (8).

All these terms, old and new, are coupled through the matrix
elements of the interaction Vcoup(x, t). Some of them involve
two bound states (bound-bound matrix elements)

Vn,m(t) = V t
coup(t)〈�n|V x

coup(x)|�m〉; (11)

others are associated with one bound and one continuum state
(bound-continuum matrix elements)

Vn,±(E)(t) = V t
coup(t)〈�n|V x

coup(x)|�±(E)〉; (12)

and, finally, the remaining couplings involve two continuum
states (there are four types, ++,+−,−+, and −− of these
continuum-continuum matrix elements)

V±,±(E,E′)(t) = V t
coup(t)〈�±(E)|VcoupX(x)|�±(E′)〉. (13)

The strengths of the coupling form factors [having fac-
torized out the time-dependent part V t

coup(t)] are shown as
color contour plots in Fig. 9. The phases of the bound states
have been chosen so that the corresponding wave functions are
real. As a consequence, the bound-bound matrix elements have
vanishing imaginary parts. On the other hand, continuum wave
functions (and associated matrix elements) are complex, and in

bound (+)(-) (-)

(-
)

(+
)

bo
un

d

bound

imaginary partreal part

(+)

FIG. 9. (Color online) Matrix elements of the coupling interaction
V x

coup(x) in the stationary basis. Note the different energy scale in
the bound and in the continuum sectors, as well as the different
normalizations of the bound and continuum wave functions. Real
and imaginary parts of the matrix elements are displayed in the left
and right frames.
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FIG. 10. (Color online) The same five bound eigenstates of the
potential V (x) seen in Fig. 1, but on the left, they are shown with
a shaded area for the positive energies that represents the infinitely
dense set of continuum states. On the right, this same area of positive
energy scattering states is replaced by a finite number of states at
energies E1, E2, E3, etc. These excitation energies are the ones of the
representative channels, which are meant to accumulate (according
to two different prescriptions, see method 1, method 2) the excitation
strength corresponding to all the states within the bands. One such
band is indicated at energy E3 with the hatched area.

the figure we separately plot the real and imaginary parts of the
couplings. The nine sectors represent different combinations of
the bound and the two (±) continuum sets. In the bound-bound
sector—having only five bound states—there is a total of
5 × 5 = 25 matrix elements (naturally, hardly visible points).
In the bound-continuum (and continuum-bound) sectors, the
relevant matrix elements lie on horizontal and vertical lines,
parallel to the axes. Finally, in the remaining continuum-
continuum sectors, both energies are positive and the matrix
elements densely cover the entire sectors.

So far we have not performed any sort of energy discretiza-
tion. But to solve the continuum differential set of equations,
it is imperative to reduce the channels to a finite (preferably
small) number. Different prescriptions have been proposed to
provide a discrete basis. A first simple procedure (hereafter
called method 1) consists in slicing the energy continuum
in equally spaced bands, as it is pictorially shown in Fig. 10.
Each slice, assumed to be associated with a single state, is then
chosen to be represented by the true continuum wave function
corresponding to the central energy of the band. The norm of
each of those effective discrete “states” must be weighted by a
factor

√
�E to restore the correct units for the distribution of

continuum probabilities over the chosen energy mesh of size
�E.

Note that one could have also started with an alternative
expansion to Eq. (9) but in momentum k, instead of energy E,
and thus exploited reaction channels equally spaced in momen-
tum bands. Such a procedure introduces a comparatively larger
number of channels in the lower part of the energy spectrum
and, for this reason, it is a quite common prescription used in
CDCC codes. In either case, the discretized states so defined
keep oscillating all the way out to infinity and are not integrable
in the usual sense.
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In a second procedure (method 2), again each slice is made
to correspond to a single state. But this time the effective
configuration is obtained by averaging over the continuum
states in the interval �E with some weighting function w(E).
Formally,

�n(x) = 1√
�E

∫ En+�E/2

En−�E/2
dEw(E) �(E, x). (14)

Advocates of the CCDC program implemented with this
particular prescription are always ready to take out a piece
of paper and briefly demonstrate how this averaging proce-
dure yields a basis of states normalized to a Kronecker δ

(i.e., 〈�n|�m〉 = δnm). However, the situation is not entirely
satisfactory on at least two accounts.

First, it is motivated by a wish to restrict the spatial range
of the wave functions in the basis. (A feature that is not so
obvious to impose!) Sometimes this is justified by statements
such as “otherwise, how could one treat long-range couplings
like the Coulomb ones?” It is never very wise to recast a
formulation so that, without changing the physics, the problem
at hand simply “disappears.” This provides a false sense of
security and may lead to the construction of form factors
that are no doubt easier to compute but perhaps also to the
evaluation of incorrect probability amplitudes. The long range
of the Coulomb couplings is certainly a true, real feature of the
interaction, and it may be safer to invest some effort—even at
the cost of longer computing times and reduced accuracy—to
improve the numerical procedures used for such class of slowly
converging integrands.

Secondly, the demonstration mentioned above is not actu-
ally correct unless the average is extended over the infinite set
of states in the interval. This is as impossible to implement as
the coupled-channel formalism in the full continuum space.
However large the number of states employed to construct the
average function for the energy bin, they nevertheless represent
a set of zero measure compared to the one associated with
the states left out, and thus the Kronecker δ will not actually
emerge from the operation.

Examples of the discretized wave functions obtained by
methods 1 and 2 are shown in Fig. 11. These have to be
compared with the ones shown earlier in Fig. 8, which were
constructed with a practically invisible energy mesh. Different
band widths have been used to cover the energy interval up to
10 MeV. One can see how the second procedure (method 2)
indeed leads to an apparent decay of the wave function for large
distances that becomes faster as the relative admixture of wave
numbers gets richer. Notice, however, that by construction
these functions are, strictly speaking, periodic functions.

With the adoption of a continuum discretization pre-
scription, the form factors involving positive-energy basis
states also become discrete. However, approaching the true
continuum through more and more precisely defined bands
(i.e., decreasing the value of �E), the overall patterns of the
couplings (and their numerical values) should remain stable.
This is shown as an example in Fig. 12 for an asymmetric
coupling.

twenty energy bands five energy bands

10

-100

0

10

-100

0

-60 -6060 600 0

FIG. 11. (Color online) Contours of the modulus square of the
bound and continuum discretized wave functions. For the latter,
method 1 is used in the two top frames, method 2 in the two lower
frames. For both cases we have chosen two different band widths (0.5
and 2.0 MeV). Note the different energy scale in the bound and in the
continuum sectors.

FIG. 12. (Color online) Real part of the coupling form factors
of the interaction V x

coup(x) in the stationary basis. Note the different
energy scale in the bound and in the continuum sectors. The different
frames correspond to different (and increasing) energy meshes in
the definition of the discretized continuum states. The top left
frame corresponds to the matrix elements in the true continuum
basis.
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V. SYSTEMATIC COMPARISONS

In this section, we compare the results obtained from the
direct evaluation of the breakup wave function, as described
in Sec. III, with those obtained in its coupled-channel
approximation. The comparison will focus on the Q-value
distribution of the final breakup wave function. In the former
case, this is obtained by projecting the final wave function on
the set of basis states (bound plus continuum). For the positive
energy part, this gives rise to a continuum Q-value distribution,
without the need of actually implementing a continuum
discretization. In all subsequent figures, these continuum
Q-value distributions are reported as the solid yellow curves.
In the coupled-channel approach, on the other hand, the
projection is done over the discretized states we consider and
are directly constructed from the final amplitudes an. The
corresponding Q-value distribution will therefore consist of
discrete lines, whose number and position will depend on the
parameters chosen for the discretization procedure.

A. Size of the space

The first relevant parameter is the energy mesh to define
the discretized continuum states. The comparison to the
reference calculation with the coupled-channel results for the
two considered cases is given in Figs. 13 and 14, for different
choices of the energy mesh (and consequently different number
of basis states). In the comparison, the maximum energy Ecut

is kept fixed. We can see from the figures that even in this

FIG. 13. (Color online) Case of partial breakup starting from a
well-bound orbital (N = 3). Comparison of final Q-value distribution
obtained in the exact calculation and with the discretized continuum
(method 1). In the latter case, different energy meshes are used in the
different frames. The energy cutoff was fixed at 20 MeV.

FIG. 14. (Color online) Same as Fig. 13, but starting from the
weakly bound orbital N = 5 and with Ecut = 5 MeV.

unidimensional case, dozens of channels are needed to give a
proper account of the process.

B. Truncation of the space

An essential parameter in the calculation—besides the
value of the energy mesh �E—is the value of the maximum
considered energy Ecut. This is a delicate matter insofar as
one does not know a priori how high into the continuum the
probabilities of excitation will go, depending on the established
couplings. Furthermore, just as it is the case in the excitation
of a rotational band, there is not always a clear signature
that the results are affected by an underestimation of the
extent of the calculational space. The obtained results in a
multiple-step situation may appear entirely “legal.” There
is no easy alternative to checking regularly the stability of
the probabilities with respect to a further enlargement of
the coupled-channel space. Ironically, it is also problematic
to exaggerate the range of energies considered, since the
inclusion of highly forbidden channels does introduce serious
numerical difficulties. An example of the major change in the
quality of the results caused by a poor choice of this cutoff
energy is shown in Fig. 15.

C. Discretization method

The Q-value distribution obtained in the coupled-channel
calculations with the two methods for the discretization
procedure are compared against the exact calculation in
Fig. 16. We can see that in the example proposed in the
figure, there is no substantial difference in the quality of either
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FIG. 15. (Color online) Case of breakup starting from a weakly
bound orbital. In the two cases, the exact Q-value final distribution is
compared with that obtained in the coupled-channel calculation using
different energy cutoff for the continuum discretization.

FIG. 16. (Color online) Case of breakup starting from a weakly
bound orbital. The exact Q-value distribution is compared with those
obtained with different prescriptions for the continuum discretization
(methods 1 and 2). An energy mesh of 0.5 MeV and an energy cutoff
of 10 MeV were used.

FIG. 17. (Color online) Case of breakup starting from a weakly
bound orbital, as in Fig. 14. In the upper frame the continuum-
continuum couplings between continuum states are neglected in the
coupled-channel calculation.

approximation. This indicates that there is no major problem
handling longer range radial wave functions, as done in
method 1.

D. Role of multistep and continuum-continuum couplings

Within the coupled-channel approach, one can easily
test different truncations for the coupling matrix elements.
There has been speculation on the importance of continuum-
continuum couplings. The importance of these couplings is
illustrated in Fig. 17. It is clear from the figure that calculations
that exclude the couplings among the discretized continuum
states are unable to provide a good description of the process.

In a similar way, one can test the importance of higher
order scattering processes by solving just the first-order
time-dependent coupled equations. The results, shown in
Fig. 18, clearly indicate the inherent multistep character of the
excitation mechanism. We would like to emphasize here that
some of the conclusions we present in this section have been
previously reached in the literature by independent means. For
instance, the ones just mentioned in this subsection about the
relevance of multistep and continuum-continuum couplings
were already discussed in Ref. [13] years ago.

E. Reproduction of the wave function

Aside from its Q-value distribution, it is important to
compare directly the evolving exact wave function with
its coupled-channel expansion. To this effect we show, in
Fig. 19, a comparison between the quality of agreement
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FIG. 18. (Color online) Case of breakup starting from a weakly
bound orbital, as in Fig. 14. To study the effect of multistep processes,
in the upper frame, we consider the perturbation limit by including
in the coupled-channel calculation only the matrix elements between
the initial state and all the final states.
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FIG. 19. (Color online) Exact final breakup wave function com-
pared with the one obtained in the discretized coupled-channel
calculation. Three cases are shown, corresponding to different choices
of the energy mesh in the discretization procedure (and hence different
number of effective calculation channels). These correspond to 19,
25, and 45 channels from top to bottom. In all cases, the energy cutoff
is 10 MeV.

obtained when the expansion is over 19, 25, or 45 reaction
channels. One expects that the precision of the results in the
coupled-channel representation will depend on how accurately
the derived form factors incorporate all the information that
is necessary to follow the evolution of the wave functions
as they move over the spatial range of the couplings. For a
calculation space with 19 channels, the agreement is quite
unacceptable. Only with the larger coupled-channel basis
involving 45 channels is the result just beginning to become
reasonable. For these plots, we employed method 2 which—as
discussed in connection with Fig. 16—is likely to lead to
eigenfunctions that display an artificially short spacial range.
The consequences that poorly constructed form factors would
have in the time evolution of wave functions that do go (in due
time) over the incorrectly represented region of x are not so
easy to anticipate.

F. Long-range interactions

Long-range interactions are of interest mostly with regards
to choosing the most convenient procedure between methods
1 and 2. A close examination of the agreement for 46 channels
shown in Fig. 16 near the threshold shows, if anything, a
slightly better result for method 1. But we should not forget
that the range of the interaction used for this illustration
was exponentially short. Following the remarks made in the
previous section, one could argue that the advantage in favor
of method 1 would increase for the case of a long-range
interaction like the Coulomb one. This remains here at the
level of speculation. But given the fact that most of the
early attention in this class of problems was motivated by
calculations for S factors of astronomical interest (long-range
interactions), learning about the topic may be of more than
purely academic interest.

VI. SUMMARY AND CONCLUSION

In this communication, we have tried to gain a more
precise understanding of the limitations that a discretization of
the continuum by currently employed methods imposes on the
quality of the solutions of a coupled-channel approach to the
breakup of weakly bound nuclei. Here we refer to “limitations”
in the accuracy of results that are strictly associated with the
implementation of the discretization procedure itself and not

to the accuracy of the integrating prescriptions that may be
exploited to construct the numerical solutions of the problem.

To achieve this task, we have considered it essential to
pose a coupled-channel problem that admits the possibility of
discretizing the continuum with techniques that are entirely
analogous to those used in the literature so far. Let us recall
that a breakup process is seen as the inelastic excitation of a
nucleon from an initially bound projectile state into any of a
set of asymptotically open channels. In this way, a probability
flux is established that moves the amplitude of the nucleon
motion away from the vicinity of the nucleus and into far
away distances.

The microscopic description of such process requires us
to follow the evolution in time of a “breakup wave function”
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whose behavior for t → ∞ specifies different quantities of
interest that relate to experimental observables.

At the same time, however, we must have at our disposal an
alternative procedure for following the time evolution of the
breakup wave function, one that does not rely in any way on
a discretization of the continuum. This is what is required to
have a reliable standard of comparison to appraise the validity
of the coupled-channel approach.

In Sec. II, we introduced a simple model that fulfills the
requirements listed above. In Secs. III and IV, we learned how
a solution to exactly the same problem can be constructed
from either the time-dependent Schrödinger equation or from
a coupled-channel formalism.

Our conclusions can be drawn from the series of examples
considered in Sec. V, where we compared the results of the
discretization of the continuum states exploited in the coupled-
channel formalism with the time-dependent formalism, not
affected by this approximation.

It is apparent from these illustrations that the reproduction
of the breakup wave function is extremely poor if the number
of channels is of the orders of magnitudes so far covered in
the literature. The distribution of Q values in the continuum
is, on the other hand, somewhat better than what could be
expected in view of the previous statement. This is somewhat
understood for short-range interactions, as it can be argued
that the distribution of energies in the continuum has assumed
its final form while the colliding nuclei are in close contact.

There is no substantial difference, in our examples, in the
quality of the approximations obtained by (method 1) choosing
a single representative eigenstate at the middle of the interval
or (method 2) averaging many exact wave functions over the
intervals of discretization. If anything, method 1 seems to
function slightly better. This indicates that there is no major
problem handling longer range radial wave functions. The

loss of information already at rather short distances artificially
created by the averaging method may have, on the other
hand, more serious consequences in the case of long-range
interactions.

We find the conclusions of this analysis disturbing enough
to cast a serious doubt on the indiscriminate use of coupled-
channel calculations in the context of nuclear breakup pro-
cesses. Of course it can be argued that the understanding
derived from our model may not be sufficiently strong to
abandon altogether the use of this formalism. Specially
since—as we already stated earlier—there is no alternative
to a coupled-channel formalism to approach this class of
continuum problems in the near future.

One could, on the other hand, suspect that the steps
necessary to take to make the description more realistic are
likely to emphasize the shortcomings already revealed in
this preliminary study. Complete CDCC calculations must be
posed for each partial wave coupled to a range of transferred
angular momenta, with the result of a rapid increase of the
dimentionality of the problem and the number of channels
involved. Thus, we feel that a more critical approach to the
use of these techniques is absolutely imperative and that many
more checks along the lines of the ones performed here are
necessary to reaffirm our trust in what is being published.
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