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Continuum discretization methods in a composite particle scattering off a nucleus:
Benchmark calculations
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The direct comparison of two different continuum discretization methods toward the solution of a composite
particle scattering off a nucleus is presented. The first approach—the continuum-discretized coupled-channel
method—is based on the differential equation formalism, while the second one—the wave-packet continuum
discretization method—uses the integral equation formulation for the composite-particle scattering problem. As
benchmark calculations, we have chosen the deuteron off 58Ni target scattering (as a realistic illustrative example)
at three different incident energies: high, middle, and low. Clear nonvanishing effects of closed inelastic channels
at small and intermediate energies are established. The elastic cross sections found in both approaches are very
close to each other for all three considered energies.
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I. INTRODUCTION

Historically, the main progress in studying elastic and
inelastic (breakup) composite projectile scattering off a heavy
target was made within the continuum-discretized coupled-
channel (CDCC) method [1–17] in the framework of the
Schrödinger coupled-channel scheme. In the CDCC approach,
the total three-body scattering wave function (initial versions
of the method assumed the projectile to be a two-fragment nu-
cleus) is expanded in a complete basis of the fragment relative
motion of the projectile, and the unknown three-dimensional
elastic and breakup channel wave functions of the projectile
c.m. motion are obtained by solving a set of coupled-channel
equations. This approach has been successfully applied in the
field of nuclear reactions to find the scattering amplitudes
of many particular processes for various types of projectiles
such as deuterons, 6Li, 6He, 7Li, 12C, etc. However, a strong
discussion about the validity of the method arose [16–18]
because of some unclear issues related to the treatment of
the total wave function breakup components in the asymptotic
region. So, to check the accuracy and reliability of the results
attained within this approach, the convergence of the elastic
and breakup amplitudes (with variation of the momentum bin
widths and their number) was studied in detail for various
approximation schemes [9]. That study demonstrated clearly
that the approach leads to convergent results for any reasonable
choice of the discretization scheme. In particular, it was shown
in Ref. [9] (for the test case of deuteron scattering off a
58Ni target) that the employment of a finite number of exact
two-body scattering wave functions as a basis for the internal
projectile motion with energies fixed at midpoints of the bins
(the midpoint method) leads unexpectedly in general to slower
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convergence for the elastic and breakup amplitudes than the
usage of the two-body wave functions averaged inside the
energy bins (the average method). This result seems rather
unnatural because the use of averaged wave functions (i.e.,
wave packets) as a basis for the internal projectile motion
leads to a wrong asymptotic behavior of the coupling potentials
and scattering wave functions in breakup channels, while the
employment of the exact wave functions of the projectile
internal sub-Hamiltonian seems at first glance to be more
adequate.

Thus, the energy averaging method for the projectile inter-
nal continuum wave functions seems to assist in getting faster
convergence in the CDCC calculations. The averaging leads to
normalized (i.e., of L2 type) wave functions φi(r), depending
on the relative coordinate between the two fragments. At the
same time, the motion along the second, projectile center-
of-mass coordinate R is considered in the CDCC approach
without any averaging on energy. So, the three-body wave
function for the ith excited channel has an outgoing asymptotic
behavior, i.e.,

�(r, R) −→
R→∞
r�R

φi(r)
exp(iKiR)

R
.

Therefore above the three-body breakup threshold, the total
wave function �(r, R) vanishes at r → ∞ (similar to the
bound-state function), while the dependence of the total
scattering wave function upon the projectile center-of-mass
coordinate has the pure outgoing wave asymptotic behavior.
Such an asymmetry for the motions along the two coordinates
at energies above the breakup threshold appears to be not
fully justified [16–18], because in this energy region the
proper asymptotic behavior over all spatial variables might
be important.

However, for the scattering of a weakly bound projectile
(e.g., deuteron or 7Li) at relatively high incident energies
(E >∼ 40 MeV), the motion along the projectile c.m. coordinate
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R proceeds much faster than the motion along the relative
coordinate r (if the projectile c.m. energy is much larger than its
binding energy). In this case, the breakup of the projectile takes
place mostly outside the nuclear field of the target. In other
words, the projectile is first excited into its internal-continuum
states, and then (already outside the reaction region) the excited
projectile breaks up into its fragments. Within this picture, the
breakup of the projectile in the target field can be treated
as a particular case of inelastic scattering into the projectile
continuum states. Then a proper averaging over energy bins
for the fragment motion in the discretized continuum gives
just a discrete representation of an exact spectral density
function of this subsystem. As a result, this discretized density
function enters all the elastic and breakup amplitudes. Thus,
the applicability condition for the treatment of the above
processes within the CDCC method should be E � Ebinding.
However, when the projectile kinetic energy E is comparable
to or even a bit larger than its internal binding energy Ebinding,

the other asymptotic channels should be considered, and thus
the coupled-channel Schrödinger equation formalism should
be replaced by the respective Faddeev approach.

Thus, within its scope of validity, the CDCC approach
can be considered as a rather useful and practical working
method to handle the realistic problems of composite projectile
scattering off a target. However it would be very important
to test carefully the accuracy and predictive power of the
CDCC results in some fully independent way based on a
different approach. The present paper is devoted just to a
careful comparison between the CDCC and one alternative
method for a typical problem in the field.

The alternative approach which we have chosen for our
study is a new integral equation approach based on a total
continuum discretization [19–23] which was developed by
two of the present authors some time ago. The approach is
based on the wave-packet continuum discretization (WPCD)
technique, which allows one to convert the three-body integral
equations into the respective matrix equation with the matrix
elements easily calculable in an analytical way. In the WPCD
method, the motion along both radial coordinates r and R is
considered symmetrically, i.e., the respective averaged wave
functions (stationary wave packets) vanishing at infinity along
both coordinates are used. Such a fully discretized integral
approach can be used because in the expression for the elastic
scattering amplitude, the total three-body resolvent operator
G(E) is bracketed from the left and from the right by fast
decaying factors over all the spatial coordinates:

Ael(E) = 〈φ0, ψ
(−)
C (E − ε0)|V̄ + V̄ G(E)V̄ |φ0, ψ

(+)
C (E − ε0)〉,

where |φ0, ψ
(±)
C (E − ε0)〉 is the initial (final) projectile three-

body wave function, so that the “external" interaction, V̄ ,
decaying along the c.m. coordinate R and the projectile
bound-state wave functions φ0(r) decaying along the internal
coordinate r cuts effectively the asymptotic parts of the total
resolvent G(E). Thus, instead of the exact three-body resolvent
operator G(E), its respective wave-packet finite-dimensional
approximation Ĝ(E) can be favorably used [21,23]. Therefore,
in this integral wave-packet approach, we do not need any
asymptotic parts of scattering wave functions. All that is

required is just the inner parts of the wave functions but with
the proper normalization, which can be well approximated via
the stationary wave packets in the WPCD approach. It should
be stressed that the effective cutoff of peripheral three-body
resolvent parts does not depend on the total energy. Hence, if
neglecting the stripping channels (similar to the conventional
CDCC method) and treating the elastic and breakup channels
only, the wave-packet method looks fully justified at low and
high energies as well.

Such a “totally discretized” integral technique has several
evident advantages over other formulations of the same
problem. In addition to offering a convenient matrix scheme
for calculating both the elastic and breakup amplitudes, it also
allows one to construct in an explicit form an optical (energy-
dependent and nonlocal) effective potential for the projectile-
target interaction which properly accounts for the intermediate
inelastic processes [21,23]. Another distinctive feature of the
integral approach is the proper and straightforward inclusion
of closed channels, which are treated in this approach on the
same footing as the open channels (see especially Sec. III).

So, to make the comparison between the two approaches
maximally broad, we considered the deuteron elastic scattering
by 58Ni at three different incident energies: high, intermediate,
and low, where closed-channel contributions are expected to
be quite different. This reaction has been also used to compare
the CDCC and Faddeev approaches in a recent work [24],
showing very good agreement between both methods. It will
be vividly demonstrated that the contribution of the closed
channels, which are commonly neglected in CDCC calcula-
tions [1–9,12], increases essentially when the projectile energy
gets low. In principle, closed channels can be incorporated
within the CDCC scheme; however, in this case the solution of
the coupled equations becomes numerically unstable. In this
situation, it is more convenient to solve the problem using the
R-matrix method [25]. This is an equivalent way of solving
the coupled equations, but with the advantage of being more
stable numerically than the traditional radial stepping methods.
However, this reformulation demands more computational
resources than the conventional coupled-channel scheme [11].
Thus, we made a comprehensive comparison for both open and
closed channel contributions between the R-matrix CDCC and
WPCD approaches at different energies.

The paper is organized as follows. In Sec. II, a brief
description of the CDCC and WPCD approaches is presented.
Section III contains numerical results obtained with these two
approaches, and the discussion is placed in Sec. IV. Finally,
the summary of the paper is given in Sec. V.

II. BRIEF DESCRIPTION OF THE CDCC AND WPCD
APPROACHES

The Hamiltonian describing the scattering of the two-
fragment composite particle {bc} off the target nucleus A is
taken in the form

H = hbc(r) + hC(R) + Vb−A(Elab/2) + Vc−A(Elab/2)

+�VC, (1)
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where hbc is the sub-Hamiltonian of the internal b-c motion
(acting on the fragment relative coordinate r), hC is the
sub-Hamiltonian of the projectile center-of-mass asymptotic
motion including the long-range point-like Coulomb interac-
tion (acting along the c.m. coordinate R), and Vc−A and Vb−A

are energy-dependent optical potentials for the fragment-target
system taken at half the incident particle energy Elab (for the
nearly equal mass fragments). Finally, �VC is the additional
short-range Coulomb interaction (acting along the c.m. coor-
dinate) which is caused by the finite charge radius of the target
nucleus (due to charge distribution in the target nucleus). To
obtain the elastic scattering and breakup amplitudes for the
above scattering problem with the three-body Hamiltonian (1),
one has to solve either the three-body Schrödinger equation
with proper asymptotic boundary conditions or the system of
the respective three-body Lippmann-Schwinger equations.

A. Continuum discretized coupled-channel method
(a differential equation formulation).

In the CDCC approach, the continuous spectrum of the
hbc sub-Hamiltonian is discretized by dividing the continuous
momentum distribution into a finite number of nonoverlap-
ping bins [ki−1, ki]Ni=1 with corresponding averaged (within
each bin) continuum wave functions {|φi〉}Ni=1 and respective
averaged “‘channel eigenenergy” values ε∗

i ≡ 〈φi |hbc|φi〉. To
simplify the notation, we omit here the angular variables, but
they are assumed to be included. Then, the total three-body
wave function of the Hamiltonian H is expanded over the set
of averaged wave functions describing the projectile internal
spectrum (including the projectile bound state |φ0〉 with the
binding energy ε∗

0 ):

|�(E)〉 =
N∑

i=0

|φi, χi〉, (2)

where 〈R|χi〉 ≡ χi(R) are the channel wave functions that
define the elastic (i = 0) and breakup (i 
= 0) amplitudes.
The bin wave functions {|φi〉}Ni=1 are typically constructed
by averaging the true continuum states, φ(k) within the bin
interval:

|φi〉 = 1√
�i

∫ ki

ki−1

f (k)|φ(k)〉 dk, i = 1, . . . , N, (3)

where �i is a normalization constant and f (k) is a weight
function. For a nonresonant continuum, the common choice
is f (k) ≡ 1, in which case �i = ki − ki−1. Applying the
expansion (2) to the initial Schrödinger equation for the
Hamiltonian (1), one gets a system of coupled differential
equations for the unknown functions χi(R):

[hC(R) + �VC(R) + Vii(R) − (E − εi)]χi(R)

=
N∑

i′=0
i′
=i

Vii′χi′(R), (4)

where Vii′(R) ≡ 〈φi |Vb−A + Vc−A|φi′〉1 are coupling poten-
tials. This system is solved with the following boundary
conditions [9]:

χi(R)∼I (Ki,R)δi0 −
√

Ki

K0
Si,0O(Ki,R), (5)

where I and O are the Coulomb incoming and outgoing waves,
Ki is the c.m. wave number, which is related to the channel

eigenenergy ε∗
i by energy conservation, i.e., E = ε∗

i + h̄2K2
i

2M

(here M is the deuteron-target reduced mass) and Si,0 are
S-matrix elements for the elastic (i = 0) and inelastic (i 
= 0)
scattering.2

B. Wave-packet continuum discretization method

In the WPCD approach, one applies an analogous dis-
cretization of the continuous spectrum of the hbc sub-
Hamiltonian but making use of energy bins: [εi−1, εi]Ni=1

3. In a
similar way, one defines a set of stationary wave packets (WPs)
as integrals of the exact scattering wave functions |φ(E)〉 of
the hbc sub-Hamiltonian over the respective energy bins:

|Zi〉 = 1√
Di

∫ εi

εi−1

|φ(E)〉 dE, i = 1, . . . , N, (6)

where Di ≡ εi − εi−1 are the bin widths, and the corre-
sponding channel eigenenergies are just the bin midpoints:
ε∗
i = 1

2 (εi−1 + εi). The set of these WP states should be
supplemented with the bound state |Z0〉 ≡ |φ0〉. The main
difference in this discretization procedure with respect to the
conventional CDCC method is that we use here a full set of
WP states which includes both open and closed channels.

Besides that, we build a partition of the continuous energy
spectrum of the Coulomb sub-Hamiltonian hC acting along the
projectile c.m. coordinate R and employ the corresponding
set of Coulomb stationary wave packets (CPs) constructed
by averaging the regular Coulomb continuum wave functions
|ψC(E)〉 over energy bins [Ej−1, Ej ]Mj=1:

∣∣XC
j

〉 = 1√
�j

∫ Ej

Ej−1

|ψC(E)〉dE, (7)

where �j ≡ Ej − Ej−1 are the bin widths. Finally, we con-
struct the three-body wave-packet (TWP) basis set for the
elastic channel asymptotic Hamiltonian,

Hbc = hbc ⊕ hC, (8)

1The integral is taken over the relative r coordinate only.
2For closed channels (εi > E) the wave functions will contain an

exponentially growing part and an exponentially decreasing part. The
former tends to destroy the initially generated linear independence
of the solution vectors. The longer the integration continues through
a classically forbidden region, the stronger this tendency will be.
Thus the closed channels are usually not taken into account in these
calculations. To avoid this problem, the combination of the CDCC
and R-matrix approaches can be used.

3It is possible to make just the same energy and momentum bins in

the WPCD and CDCC approaches using the interrelation εi = h̄2k2
i

2m
,

where m is the reduced mass of the two projectile constituents.
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as the direct product of the states |Zi〉 and |XC
j 〉 (including all

the required partial wave couplings):

|Sij 〉 ≡ |Zi,Xj 〉, i = 0, . . . , N ; j = 1, . . . , M. (9)

Such a three-body packet basis (which is also of the L2 type)
is very convenient for the subsequent investigations. One of
its main advantages is that the matrix of the channel resolvent
Gbc ≡ [E + i0 − Hbc]−1 is diagonal in this basis. Moreover,
the corresponding matrix elements of the three-body resolvent
operator have an explicit analytical form [21,23], and they
depend only on the spectrum discretization parameters (i.e., εi

and Ej values).
Because the interactions between the projectile constituents

and the target are given by complex optical-model potentials,
the contribution of the intermediate rearrangement (viz.
stripping) channels to the elastic scattering or breakup should
be of minor importance.4 Therefore, to treat the projectile
elastic scattering in the leading order, one needs to take
into account only those intermediate breakup states whose
asymptotic behavior are defined by the three-body channel
Hamiltonian Hbc.

5 So, the total three-body scattering wave
function |�(E)〉 in this case can be found from a single
Lipmann-Schwinger (LS) equation:

|�(E)〉 = |�d (E)〉 + Gbc(E)V̄bc|�(E)〉, (10)

where V̄bc ≡ Vb−A + Vc−A + �VC is the “external" short-
range interaction, and |�d (E)〉 ≡ |Z0, ψ

C(E − ε∗
0 )〉 is the

outgoing wave function for the projectile in its ground state.
The long-range Coulomb part for the point-like Coulomb
interaction between the projectile and target is included in the
Gbc operator. Next, we make the projection of Eq. (10) onto
the wave-packet subspace and expand the total wave function
in the three-body wave-packet basis for the Hamiltonian Hbc:

|�(E)〉 ≈ |�̂(E)〉 =
∑
ij

Cij |Sij 〉. (11)

Then Eq. (10) can be rewritten in the finite-dimensional form

|�̂(E)〉 = |S0j0〉 + Ĝbc(E)V̂ |�̂(E)〉, (12)

where |S0j0〉 ≡ |Z0, X
C
j0
〉 is the packet state corresponding to

the outgoing wave function |�d〉 (the index j0 is defined by
the energy rule: E ∈ [Ej0−1 + ε∗

0 , Ej0 + ε∗
0 ]). The interaction

operator V̂ is the wave-packet projection of the external
interaction V̄bc, that is,

V̂ ≡
∑
ij,i′j ′

|Si′j ′〉〈Sij |Vij,i′j ′, (13)

whose matrix elements in the TWP basis can be interpreted as
generalized coupling potentials

Vij,i′j ′ ≡ 〈Sij |Vb−A + Vc−A + �VC |Si′j ′〉, (14)

4Due to the imaginary potentials, there are no bound states in the
rearrangement channels, and the kinetic energy of the projectile is
assumed to be relatively high.

5This is the same assumption as in the CDCC approach.

and may be calculated either analytically or numerically. Thus,
in this approach, solving the three-body LS equation is reduced
to the solution of the simple matrix equation (12).6

The composite-particle elastic scattering amplitude can
now be written formally as the diagonal (on-shell) matrix
element

Ael ≈ [(V−1 − Gbc)−1]0j0,0j0

�j0

, (15)

where matrices of the respective operators in the three-body
WP basis are denoted by the bold letters, while �j0 is
the bin width of the hC continuum partition. Moreover, the
breakup amplitude can be readily found as a nondiagonal
(off-shell) matrix element of the same matrix[V−1 − Gbc]−1

in the WP basis [21,23]. The above matrix is essentially
a finite-dimensional analog of the exact transition operator
matrix.

Here it is appropriate to summarize the main distinctive
features that distinguish the wave-packet approach from the
conventional CDCC method:

(i) The wave-packet basis for the projectile bound and
continuum internal states is chosen to go up to high
excitation energies, so that not only open-channel but
also closed-channel contributions are fully included in
the WP three-body calculations.

(ii) The internal and external motions of the projectile are
considered in the WP technique on an equal footing,
i.e., using the bases of wave packets averaged over
the respective energy bins for the motions along both
independent radial coordinates. So the total three-
body resolvent in the transition matrix elements is
cut effectively at large distances by the interaction
potentials and also by the bound-state functions of the
projectile in the initial and final states.

(iii) The above-mentioned cutoff of the total three-body re-
solvent is intimately related to the integral formulation
of the WP approach, in which a proper asymptotic
behavior of coupling potentials and an explicit match-
ing procedure between inner and asymptotic wave
functions are not required.

(iv) The kernel of the respective matrix equation in the WP
approach includes rather smoothed (on energy) matrix
elements due to the integration over energy bins for the
motions along all active coordinates. This important
feature of WP matrix kernels can readily be extended
to the solution of the general Faddeev equations using
the WP technique [21].

(v) The integral formulation of the three- and few-body
scattering problem makes it possible to reformulate
easily the initial problem in terms of the Feshbach
projection operator technique [23]. This reformulation

6It should be stressed that the matrix equation (12) in our case is
strongly distinguished from that which can be deduced from a direct
matrix reduction of the three-body LS equation using some quadrature
mesh-points, because all the matrix elements in our case have been
averaged over energy bins corresponding to both active coordinates.

034603-4



CONTINUUM DISCRETIZATION METHODS IN A . . . PHYSICAL REVIEW C 78, 034603 (2008)

allows one to reduce the elastic scattering of a com-
posite projectile to a simple potential scattering by a
nonlocal and energy-dependent potential and moreover
to construct this potential in an explicit analytical form.

So, it would be very instructive to make a direct comparison
between the WPCD and the conventional CDCC results for
some standard test problem.

III. COMPARISON BETWEEN THE CDCC AND WPCD:
BENCHMARK CALCULATIONS AT DIFFERENT

INCIDENT ENERGIES

As a general numerical test of the two methods, we have
chosen the popular case of the elastic scattering of the deuteron
off a 58Ni target at three different incident energies, namely,
Elab = 80, 21.6, and 12 MeV. These detailed calculations
allow us to not only make a wide comparison between the
two approaches but also to deduce from this comparison the
role of the closed channels at different energies.

For the sake of simplicity, the neutron-proton (n-p) inter-
action is assumed here to have the Gaussian form [4]

V (r) = −V0 e−βr2
, V0 = 66.99 MeV,

β = 0.415fm−2. (16)

Also, keeping in mind the comparison purposes between the
two alternative methods, we restrict ourselves here to s waves
for the n-p relative motion.7

The nucleon-nucleus interactions are represented by local
optical-model potentials of Woods-Saxon type. In particular,
we employ here the potentials from the Koning-Delaroche
global fits [26] evaluated at half the deuteron incident energy.
The mass values mn = 1.0087 amu (for the neutron), mp =
1.0078 amu (for the proton), and mNi = 57.9353 amu (for the
target) are adopted here.

A. Choices for parameter values of the momentum distribution
in the CDCC method

Following the standard procedure, in the CDCC calcula-
tions the continuum was truncated by defining a maximum
excitation Emax, and divided into N energy bins, evenly spaced
in the linear momentum. For each bin, a representative wave
function was constructed according to Eq. (3) with f (k) = 1.
The number of bins N was determined in order to achieve
convergence of the elastic angular distribution. For the two
lower energies, Elab = 12 MeV and Elab = 21.6 MeV, the
calculations included both open and closed channels. Thus,
the continuum was represented by a set of Nopen bins up to the
maximum available c.m. energy, and by Nclosed bins from this
energy to Emax, and hence N = Nopen + Nclosed.

7Higher n-p partial waves would be certainly important to compar-
ing the theoretical results with the respective experimental data.

B. Choices for parameter values of the wave-packet bases for
the WPCD calculations

To simplify the construction of the n-p relative motion WPs,
|Zi〉, and to get simultaneously the bound-state wave function,
|Z0〉, we apply here a single diagonalization procedure for the
hbc sub-Hamiltonian on the simple Gaussian basis |ψn〉NG

n=1,
i.e., we assume that the n-p wave packets are expanded as
follows:

|Zi〉 ≈
NG∑
n=1

An|ψn〉, ψn(r) = Bn e−αnr
2
, (17)

where Bn are normalization factors. The scale parameters αn

are defined on the generalized Tchebyshev grid

αn = α0

[
tan

(
π (2n − 1)

4NG

)]t

, n = 1, . . . , NG, (18)

where α0 is the common scale parameter, and t defines the
distribution sparseness for the Gaussian “frequencies” αn.
As t becomes larger, the mesh points αn are simultaneously
extended to lower and higher values, so that longer range
and shorter range Gaussian components appear in the basis.
The energy distribution ε∗

i (and the corresponding wave
numbers ki =

√
2mε∗

i /h̄
2) obtained with such a basis turns

out to be highly nonuniform (i.e., not equidistant), but it
covers practically all the energy spectrum and provides
well-converged results for the scattering amplitudes [19,20].
Figure 1 shows the energy and corresponding momentum
distributions for the following parameter values chosen for
the grid: NG = 20, t = 2, and α0 = 0.1 fm−2. In practical
calculations, we found that it is quite sufficient to include
only the first N basis functions with maximum bin energy
εN less than some chosen maximal energy value Emax of the
included closed channels. For example, it is clear from Fig. 1
that a basis containing the first N = 13 functions is enough
for Emax = 100 MeV.

As for the WP basis to describe the n-p pair c.m. motion
we employ (for all required partial waves L) a set of the exact

FIG. 1. Energy εi (a) and momentum ki (b) distributions for the
n-p continuum discretization constructed with a Gaussian basis on
the generalized Tchebyshev grid (18).
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Coulomb packets of the dimension M constructed also on the
Tchebyshev grid with t = 1, which corresponds to the energy
distribution

Ej = E0 tan

(
π (2j − 1)

4M

)
, j = 1, . . . , M, (19)

where Ej are the end points of the energy bins (E0 = 0), and
E0 is the incident energy of the projectile in the c.m. frame.

C. Results of calculations

In this section we will present the particular results for
the differential elastic cross sections calculated at different
incident energies.

1. Elab = 80 MeV

At this relatively high energy, we found that the breakup
effect contribution is rather small, producing just a minor
correction to the folding model result (i.e., the calculation
omitting continuum channels). Also it was shown previously
[9] that only about half of the open channels (i.e., Emax ≈
40 MeV) play a significant role at this relatively high energy.
So one can conclude that the effect of closed channels can
be ignored here. Figure 2 compares the elastic differential
cross sections obtained within the CDCC, the WPCD, and
the folding model calculations. For these calculations, the WP
bases with dimensions N = 13 (for n-p relative motion)8 and
M = 500 (for deuteron c.m. motion) are used. The number of
partial waves required for the deuteron-target relative motion
is Lmax = 45. For the CDCC calculations, the continuum was
truncated at Emax = 70 MeV and divided into N = 20 bins,
uniformly distributed in the linear momentum k. The set of
coupled equations were solved using the Numerov method

8The Gaussian basis [Eq. (17)] with NG = 20, t = 2, α0 = 0.1 fm−1

has been used for this calculation.

θ

σ/
σ

FIG. 2. Comparison of the differential elastic cross sections of the
deuteron off 58Ni-target scattering (as a ratio to the Rutherford cross
section σR) at Elab = 80 MeV calculated with the CDCC (dotted line)
and WPCD approaches (full line). The dashed curve corresponds to
the single folding model calculation.

and matched to their asymptotic solution at 20 fm. These
calculations were performed with the code FRESCO [11].

As it follows from Fig. 2, the results of both discretization
methods are in very good agreement for all angles. It should
be emphasized that despite the highly nonhomogeneous bin
distributions for the internal n-p subsystem as well as for the
deuteron-target sub-Hamiltonian, the WPCD calculations led
to well-converged results. So, in practical calculations, it is not
necessary to use only equidistant momentum bin distributions
as is usually done [4,7,9]. Moreover, the application of some
special energy distribution allows one to decrease significantly
the number of packet basis functions required for conver-
gence.9 Thus, to summarize, despite the quite different bin
distributions considered in the CDCC and WPCD approaches
and their rather different formalisms, both methods provide
results that nicely agree with each other at Elab = 80 MeV.

2. Elab = 21.6 MeV. The effect of closed channels

At this intermediate energy, the influence of closed channels
(CC) on the elastic scattering amplitude becomes visible. Our
calculations have shown that the main part of this effect is seen
at backward angles. Though the CC effect has been commonly
neglected in the conventional CDCC calculations [1–9,12],
it is worth studying carefully the convergence of the elastic
cross section when the number of closed channels and the
corresponding maximum energy Emax are increased.

To prepare these calculations in the WPCD scheme, we used
the three-body WP sets of dimensions N = 15 [constructed
with the Gaussian basis (17) with NG = 30, t = 3, and α0 =
0.1 fm−1] and M = 150. The number of partial waves required
at this energy is Lmax = 25. To incorporate the closed channels
into the CDCC framework, a special combination of the
coupled-channel scheme and the R-matrix approach has been
used [25]. In contrast to the Numerov method, where the
radial functions χi(R) are obtained by direct integration of
the coupled differential equations (4), in the R-matrix method
a basis set of energy eigenstates is first obtained by solving
the diagonal parts of the coupled equations, with the basis
functions all having fixed logarithmic derivatives at a given
distance Rm. Next, the unknown functions χi(R) are expanded
in this basis. Although this procedure is computationally
more demanding, it leads to more stable results when closed
channels are taken into account. To achieve convergence at
this incident energy, we required Nopen � 20 and Nclosed �
15 bins, for a maximum excitation energy Emax ∼ 140 MeV.
The R-matrix radius was fixed to Rm = 30 fm.

In Fig. 3, the comparison between the R-matrix CDCC and
the WPCD elastic cross sections calculated at almost equal
Emax values is presented. For Emax = 20 MeV, there are only
open channels, and the conventional Numerov procedure has
been employed to solve the CDCC equations [see Fig. 3(a)].

9This feature is also useful in the presence of a resonance in the b-c
continuum. The general WPCD formalism remains the same for this
case, but some detailed energy distribution is required (see Ref. [20]
with the α − α scattering problem).
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FIG. 3. Elastic d+58Ni cross section at Elab = 21.6 MeV cal-
culated within the CDCC (dotted line) and WPCD (dashed line)
approaches for different values of Emax: (a) 20 MeV, (b) 38 MeV,
and (c) 80 MeV. The full lines correspond to the converged CDCC
and WPCD results (with Emax = 139 MeV), which are almost
indistinguishable in these plots.

For the other values of Emax [Figs. 3(b) and 3(c)], the R-
matrix method has been employed, while the WPCD technique
has not been changed. It is evident that the results for the
differential cross sections found with the WPCD and R-matrix
CDCC methods with similar Emax values are almost identical.
So, it can be concluded that the details of the discretization
distributions in both methods do not play an important role in
the convergence, and the most significant factor here is just the
Emax value.

The converged elastic cross sections (calculated with the
highest value, Emax = 139 MeV) are presented in Fig. 4.
The curves corresponding to both discretization methods are
hardly distinguishable. In this figure we have also included
the calculation corresponding to the folding model calculation
(dashed line). It is evident that breakup effects are large at this
incident energy.

In Fig. 5, we plot the elastic S-matrix elements obtained
with both discretization methods. It can be seen that they are
in very good agreement for all partial waves.

From the present results it becomes clear that the CC effect
must be taken into account at these intermediate energies.
Furthermore, the required maximum energy of the CCs is
rather high, viz. Emax ∼ 100 MeV.

3. Elab = 12 MeV

We finally present in this section the calculations at the
relatively low energy of 12 MeV. In this case, the dimensions of
the WP sets N = 15 (constructed from the Gaussian basis (17)

θ

σ/
σ

FIG. 4. Converged results (with respect to Emax) for the differ-
ential elastic cross section (relative to Rutherford) for d+58Ni at
Elab = 21.6 MeV, calculated with the CDCC (dotted curve) and
WPCD (solid curve) approaches. The dashed line corresponds to
the folding calculation, in which continuum channels are not taken
into account.

with NG = 30, t = 3, and α0 = 0.1 fm−2) and M = 150 are
sufficient, and the maximum deuteron c.m. angular momentum
value is only Lmax = 15. For the CDCC calculations, we used
Nopen = 15 and Nclosed = 10 (for Emax ∼ 80 MeV). Again, the
R-matrix technique was used to solve the coupled equations,
with a matching radius of Rm = 30 fm.

The elastic cross sections calculated with the WPCD and
the R-matrix CDCC approaches for different Emax values are
shown in Fig. 6. The comparison between the converged (with
respect to Emax values) cross sections calculated with both
methods along with the folding model results are presented in
Fig. 7.

It is evident that the influence of the CC is the largest
here, and this effect is seen not only at backward angles
but also at intermediate angles (θc.m. ∼ 90◦–100◦). The small
discrepancies between the WPCD and R-matrix CDCC results
observed at most backward angles might be ascribed to
the different n-p continuum discretization parameters, but
we cannot rule out that they can be related to numerical
inaccuracies of either of the two methods. In any case, this

FIG. 5. Argand plot for the elastic S-matrix elements for the
reaction d+58Ni at Elab = 21.6 MeV calculated within the CDCC
(open circles connected by dotted lines) and WPCD (black squares
connected by solid lines) methods.
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FIG. 6. Elastic d+58Ni cross section at Elab = 12 MeV calculated
within the CDCC (dotted line) and WPCD (dashed line) approaches
for different values of Emax: (a) 10.2 MeV, (b) 24.5 MeV, and (c)
36 MeV. The full curves correspond to the converged CDCC results
(Emax = 80 MeV).

effect, which has not been seen in the two previous cases,
begins to play some role at rather low incident energies.

IV. DISCUSSION

The close agreement between the WPCD and R-matrix
CDCC approaches found in the present work can be inter-
preted as a good indicator that the basic assumptions (or
approximations) adopted in the WPCD method, in particular

θ

σ/
σ

FIG. 7. Converged results (with respect to Emax) for the differ-
ential elastic cross section (relative to Rutherford) for d+58Ni at
Elab = 12 MeV, calculated with the CDCC (dotted curve) and WPCD
(solid curve) approaches. The dashed line corresponds to the folding
calculation, in which continuum channels are not taken into account.

the employment of orthonormalized stationary wave packets
instead of exact nonnormalizable three-body scattering wave
functions, are well justified and correct. This fact implies
some further consequences in the whole many-body scattering
theory. Actually, the usage of the total continuum discretization
on the basis of normalizable (of L2 type) stationary wave
packets is equivalent to the formulation of the many-body
scattering problem in a finite multidimensional box and leads
a treatment of the original scattering problem analogous to
the much more simple bound-state problem. In turn, the
last conclusion allows us to treat the many-body scattering
problem in similar way as the many-body bound states, e.g.,
by expanding the L2-type stationary wave packets (constructed
from the exact unknown scattering wave functions) on some
convenient L2 basis widely used in bound-state problems (for
example, the many-body harmonic oscillator basis). The first
results obtained by two of the present authors [21] with the
application of this technique to the solution of the Faddeev
equations above the three-body breakup threshold seem to
support this expectation.

Another nice feature of the WPCD approach is the
possibility to reformulate in a straightforward way the whole
problem in terms of the Feshbach projection technique [23]
and to include all the breakup channels into the respective
Feshbach polarization nonlocal potential. After this, one can
readily use the full applicability of the WPCD approach to the
resulted nonlocal interactions (in contrast to the conventional
coupled-channel method) and to reduce in a standard way
the complicated many-body scattering problem to the simple
matrix equations [27].

On the other hand, the very close agreement between the
conventional CDCC approach and the fully alternative wave-
packet integral method should remove any doubts reported in
literature [16,18] concerning the reliability and convergence
properties of the Schrödinger coupled-channel scheme in the
framework of the three-body scattering problem.

V. CONCLUSION

In this work, we have compared two essentially different
approaches based on the general idea of continuum discretiza-
tion for solving three-body scattering problems. The CDCC
method was proposed to solve the coupled-channel problem
in the framework of the Schrödinger equation formalism.
This approach uses a discretization of the projectile internal
continuum only, along with an explicit matching between
inner and asymptotic scattering wave functions to extract the
multichannel S matrix. On the other hand, the WPCD approach
is based on the total three-body continuum discretization
which allows the use of the integral equation formalism
of the scattering theory. The special wave-packet technique
allows one to construct finite-dimensional analogs for all
the scattering operators and to use only inner parts of wave
functions in order to find the observables.

The direct comparison of both methods leads to the
following conclusions:

(i) The two methods of continuum discretization dis-
cussed in this work produce very close results for the
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composite-particle elastic scattering at rather high and
also at low energies.

(ii) Different types of discretization of the projectile inter-
nal sub-Hamiltonian continuum used in both methods
do not lead to visible discrepancies at high and
intermediate energies. Small differences in the elastic
cross sections arise only at low incident energies.
An employment of a highly nonuniform discretization
distribution in the WPCD approach still leads to well-
converged results.

(iii) The effect of closed channels is not seen at high incident
energies. This effect begins to play a visible role at
intermediate energies (at the most backward angles) and
cannot be ignored as it was assumed in some previous
CDCC calculations. The convergence of the calculated
cross section when increasing the number of included
CCs depends only on the maximum excitation energy
and is not sensitive to the details of the continuum
discretization.

(iv) The effect of CC on elastic scattering becomes more
significant when the incident energy of the projectile
decreases.

(v) The very close agreement between the results obtained
with these two different approaches at various energies,
from low to high, seems to indicate that the three-
body wave-packet technique can be considered as a
rather reliable and numerically accurate method for
calculating composite-projectile scattering by nuclei.
Simultaneously, one can confirm again that the con-
ventional (or R-matrix) CDCC method leads to quite
reliable and well-converged results for the elastic and
inelastic scattering of composite projectiles.
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