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Four-body continuum-discretized coupled-channels calculations
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The development of a continuum-bin scheme of discretization for three-body projectiles is necessary for studies
of reactions of Borromean nuclei such as 6He within the continuum-discretized coupled-channels approach. Such
a procedure, for constructing bin states on selected continuum energy intervals, is formulated and applied for the
first time to reactions of a three-body projectile. The continuum representation uses the eigenchannel expansion
of the three-body S matrix. The method is applied to the challenging case of the 6He + 208Pb reaction at 22 MeV,
where an accurate treatment of both the Coulomb and the nuclear interactions with the target is necessary.

DOI: 10.1103/PhysRevC.80.051601 PACS number(s): 21.45.−v, 24.10.Eq, 24.50.+g, 25.60.−t

Rapid experimental developments have made studies of
the scattering and reactions of very weakly bound systems
possible in many branches of physics. Among these are the
Efimov states observed in ultracold cesium trimers [1] and
molecular triatomic systems, such as LiHe2 [2], halo nuclei
[3], systems undergoing two-proton radioactivity [4], and
Bose-Einstein condensates and ultracold dilute gas studies.
The need for novel and quantitative theoretical descriptions of
the dynamics of such systems, which must include a priori
a realistic treatment of their continuum spectra, is common
to many problems. Here we discuss continuum effects in
the nuclear physics context of reactions of weakly bound
halo nuclei [3,5,6]. The study of these systems is of special
importance in nuclear physics to determine the properties of
the nucleon-nucleon interaction in the low-density limit and
to investigate the role of pairing off the stability line. Many
of these exotic nuclei play a significant role in astrophysical
processes. Although the method is general, in this Rapid
Communication, we discuss reactions of the Borromean halo
nucleus 6He, that is, the bound three-body (4He + n+ n)
system with (i) no bound excited states and (ii) no bound
binary subsystems.

Because of their weak binding, halo nuclei are readily
excited to the continuum (broken up) by the differential forces
exerted on the constituents through the nuclear and Coulomb
interactions with a target. Theoretically, explicit treatment of
these breakup channels is difficult, as the states involved are
infinite in number and are not square integrable. Hence a robust
discretization and truncation scheme, to provide a finite and
normalizable basis to represent the continuum, is required. The
continuum-discretized coupled-channels (CDCC) method, as
formulated for two-body projectiles [7,8], uses bin states to
represent the continuum. Here, the continuum spectrum is
truncated at a maximum excitation energy εmax and the model
space, from the breakup threshold to εmax, is then divided into
intervals, where the number and positions of the intervals can
depend on the properties (e.g., resonant or nonresonant) of the
continuum of the system. For each such interval, or energy

bin, a representative square-integrable state is constructed as
a linear superposition of the two-body scattering states in
the interval. The method has been enormously successful
in the description of elastic and breakup observables in
reactions involving weakly bound two-body projectiles [9–11]
and has recently been extended to include core excitation
[12].

Of interest here are reactions of three-body projectiles. To
date, published discretized three-body projectile calculations
have used a pseudostate basis [13–16], accounting reasonably
well for existing elastic scattering data. Based on our own
experience [15] with calculations using pseudostate bases,
convergence problems are found for reactions where the
Coulomb interaction plays an important role. An alternative
continuum treatment using the energy-bin technique within
the CDCC method had yet to be formulated; the present work
provides this theoretical development.

To describe the three-body ground and excited continuum
states of the projectile we use a hyperspherical harmonics
expansion basis [17]. This involves the use of the one radial
and five angular hyperspherical coordinates, ρ, α, x̂, and
ŷ, obtained from the normalized Jacobi coordinates x and
y of the three bodies [15,17]. The quantum number set
β that defines each three-body channel [15] includes the
hypermomentum K , the orbital angular momenta lx and ly
in coordinates x and y, their total l = lx + ly , the total spin Sx

of the particles associated with coordinate x, and the inter-
mediate summed angular momentum jab = l + Sx . If the
spin of the third particle, I , is assumed to be fixed, then
the total angular momentum is j = jab + I with projections
µ. Note that, for each continuum energy ε and total angular
momentum j , there will be as many independent solutions
of the three-body scattering problem as there are outgoing
channels β considered. These solutions can be chosen as the
incoming channels β ′, but any orthogonal combination of these
would be equally valid.

Based on these total angular momentum eigenstates
Yβjµ(�) [15], where � ≡ (α, x̂, ŷ), the bin wave functions
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are defined as

φbin
njµ(x, y) =

∑
β

Rbin
nβj (ρ)Yβjµ(�), (1)

where the label n includes reference to the energy interval of
the bin [κ1, κ2], as well as to the set of quantum numbers β ′.
The functions Rbin

nβj (ρ) in Eq. (1) are the associated hyper-radial
wave functions,

Rbin
nβj (ρ) ≡ Rbin

[κ1,κ2]β ′βj (ρ)

= 2√
πNβ ′j

∫ κ2

κ1

dκe−iδβ′j (κ)fβ ′j (κ)Rββ ′j (κ, ρ), (2)

where κ = √
2m|ε|/h̄ is the momentum associated with the

continuum energy ε, Rββ ′j (κρ) are the continuum hyper-radial
wave functions with scattering phase shift δβ ′j (κ), and fβ ′j (κ)
is a weight function with normalization constant Nβ ′j . Note
that, for each j and three-body energy bin, we must construct
wave functions for all allowed incoming channels β ′. Further,
as is explicit in Eq. (1), for each n we must also construct
Rbin

nβj (ρ) for all allowed outgoing channels β.
It follows that the inclusion of a large number of β ′ channels

is a severe computational challenge and that it is desirable
to establish a hierarchy of the continuum states according to
their importance to the reaction dynamics. In so doing, we
may be able to describe scattering observables using only a
selected set of states, their number depending on the reaction
under study. To this end, we make use of the eigenstates of
the multichannel three-body S matrix [18], or eigenchannels
(ECs), as follows. (i) For each j and continuum energy ε,
the S matrix in the β basis is diagonalized to obtain its
ECs, enumerated by γ , and their corresponding eigenvalues
exp[2iδγj (κ)] and eigenphases δγj (κ). (ii) The magnitudes of
these eigenphases are used to order the ECs. We will show
that the ECs with the largest phase shifts are the most strongly
coupled in the reaction dynamics, and thus a hierarchy of
states can be established by such an ordering. This leads
to the possibility of a truncation in the number nec of ECs
included and testing of the convergence with respect to this
number.

Here we apply this methodology to the scattering of 6He,
treated as a three-body system of an inert α-particle core
and two valence neutrons. A notable property of 6He is that
none of its binary subsystems bind, while the three-body
system has a single bound state with a binding energy
of 0.973 MeV and total angular momentum jπ = 0+. Its
low-lying continuum spectrum is dominated by a narrow
jπ = 2+ resonance, 0.825 MeV above threshold. We describe
the three-body α + n+ n system using the same structure
model as in Ref. [15]. The three-body Hamiltonian includes
two-body interactions plus an effective three-body potential.
For a given value of the maximum hypermomentum used,
Kmax, the parameters of the latter are adjusted to reproduce the
ground-state separation energy and matter radius (for j = 0+)
and the resonance energy (for j = 2+) [15]. Calculations were
performed using the codes FACE [19] and STURMXX [20]. The
maximum hypermomentum in the CDCC reaction calculation
was Kmax = 8, which provides converged results for the elastic
scattering of 6He from a heavy target [15]. The number of
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FIG. 1. (Color online) B(E1) distribution (upper panel) and
eigenphase shifts (lower panel) for the first few jπ = 1− eigenchan-
nels (ECs) of 6He. The thick solid line in the upper panel is the total
B(E1) distribution.

channels β was 15 (0+), 26 (1−), and 46 (2+). The calculated
6He ground state has a binding energy of 0.953 MeV and a
single-particle density with a root-mean-square (rms) radius
of 2.46 fm, assuming an α-particle rms radius of 1.47 fm.

The EC basis states have properties that are useful for
describing collisions. The upper panels in Figs. 1 and 2
show the Coulomb B(E1) and B(E2) transition probabilities,
respectively, as a function of the 6He excitation energy above
threshold. The curves show the total B(E1) and B(E2)
strengths (thick solid curve) and the contributions from the
first four ECs. Because the 6He(g.s.) has jπ = 0+, B(E1)
measures the electric dipole strength to 1− states, and B(E2)
the quadrupole strength to 2+ states. For each EC, the 1− and
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FIG. 2. (Color online) B(E2) distribution (upper panel) and
eigenphase shifts (lower panel) for the first few jπ = 2+ eigenchan-
nels (ECs) of 6He. The thick solid line in the upper panel is the total
B(E2) distribution.
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2+ eigenphases are shown in the lower panels in Figs. 1 and 2.
It has been shown (see, e.g., Ref. [21]) that the position of
the peak of the B(E1) distribution depends on the maximum
hypermomentum chosen. In particular, the maximum appears
at about 2 MeV for Kmax = 10 and decreases to about 1 MeV
for Kmax = 20, for which convergence of this observable is
achieved. For Kmax = 8, which is the value used in this work,
the maximum is about 2 MeV, and hence this observable is not
converged. Nevertheless, as we have shown in Ref. [15], the
scattering calculations are converged with this value, provided
that the parameters of the three-body potential are adjusted
such that the 6He system has the same binding energy and rms
matter radius for the chosen Kmax. In principle, the reaction
calculations could be done with a higher Kmax value, although
this would make these calculations computationally very
demanding.

It is evident from Figs. 1 and 2 that there is energy
localization for the EC contributions to the Eλ strength.
Also evident is that the ECs with eigenphases of the largest
magnitude make the maximum contribution to the B(Eλ) at
low excitation energies. This is a very appealing feature for
scattering studies where, at moderate collision energies, only
continuum states up to a few MeV play a significant role in
the reaction process. So, for example, if excitation energies up
to ≈8 MeV are strongly populated in a particular reaction, the
first three or four ECs should suffice to describe the relevant
part of the continuum. Of course, in nuclear collisions near
and above the Coulomb barrier, nuclear forces (not included
in Figs. 1 and 2) will play an important role. We show here that,
with nuclear interactions present, only a few ECs are needed
for converged scattering observables.

It is also interesting to identify the dominant quantum
numbers of the ECs that make the largest contributions to
these observables. For B(E1) the most important component
of ECs 1 and 2 has lnn = lx = 0, Sx = 0, or a dineutron config-
uration. This dominance could explain why previous two-body
(α + 2n) model calculations of 6He reactions work to a limited
extent, although it is well known that such simple models
overestimate continuum coupling effects without parameter
adjustments [22,23]. For B(E2) the most relevant structure
is the 2+ resonance that corresponds to EC 1. In this case
we have a combination of three configurations: a dineutron
(lx = 0, Sx = 0), a cigarlike structure (lx = 2, Sx = 0), and a
spin-triplet structure (lx = 1, Sx = 1).

We now compute the states of Eq. (1) and use these as the
basis states for a four-body CDCC calculation using techniques
from Ref. [15]. There, a multipole expansion of the coupling
potentials was developed for a three-body projectile-plus-
target system. The weight function fγj (κ) (with γ instead
of β ′) used in the superposition of states when constructing
the bins, Eq. (2), was taken to be unity for the nonresonant
(0+, 1−, and 2+) continuum and sin[δγj (κ)] for the resonant
(2+) continuum. The latter provides an improved description
of the resonant character.

Four-body CDCC calculations are carried out for the
6He + 208Pb reaction at 22 MeV, for which experimental data
are available in Ref. [24]. This is a demanding example,
because (a) long-range Coulomb couplings arising from the
heavy target are important and (b) the incident energy is near

TABLE I. Sets of states used in this work for four-body CDCC
calculations. N is the total number of states considered (including the
ground state). Parentheses are used to specify the two bin schemes
adopted, depending on the eigenchannel (set IV) or on the energy
(set V).

Set εmax (MeV) nec nbin(0+) nbin(1−) nbin(2+) N

I 8 4 6 9 6 85
II 8 4 9 12 9 121

III 8 4 12 15 12 157
IV 8 5 (1–4, 5) (9, 6) (12, 9) (9, 6) 142
V 9 (0–8, 8–9) 4 (9, 1) (12, 1) (9, 1) 133

the Coulomb barrier and both Coulomb and nuclear forces
play a significant role.

Implicit in the CDCC calculations is that the actual
continuum can be truncated at a maximum excitation energy
εmax, of which the choice is dependent on the specific
reaction and projectile energy. The convergence of the
model space calculation must then be studied with respect
to εmax and the number of bins assumed (nbin). For our
four-body case we must, in addition, study convergence with
respect to nec, the number of ECs included. The present
calculations include 6He states with jπ = 0+, 1−, and 2+ and
projectile-target interaction multipole couplings of the order
Q = 0, 1, 2. Coulomb and nuclear potentials are included.
Nuclear interactions with the target used parametrized optical
potentials. For n+ 208Pb and α + 208Pb the potentials were
from Refs. [25] and [26], respectively.

The coupled equations describing the projectile-target
motion were solved with the code FRESCO [27], the coupling
form factors being read from external files. Partial waves up
to J = 150 were included and the solutions were matched
to their asymptotic forms at radius Rm = 200 fm. To check
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FIG. 3. (Color online) Elastic differential cross section
(Rutherford ratio) in the center-of-mass (c.m.) frame for the
6He + 208Pb reaction at 22 MeV. See text for details. Experimental
data are taken from Ref. [24].
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M. RODRÍGUEZ-GALLARDO et al. PHYSICAL REVIEW C 80, 051601(R) (2009)

0 40 80 120 160

θ
c.m.

 (deg)

1

10

100

dσ
bu

/d
Ω

 (
m

b/
sr

)

set I
set II
set III
set IV
set V

FIG. 4. (Color online) Breakup differential cross-section angular
distribution in the center-of-mass (c.m.) frame for the 6He + 208Pb
reaction at 22 MeV. See text for details.

the convergence with respect to basis size, for the different
observables shown in this work, we use five sets, which are
summarized in Table I. Sets I, II, and III have the same
maximum energy εmax and number of ECs nec, so they are
used to test the convergence with respect to the number of bins
considered for each EC and jπ . Set IV is like set II but includes
the fifth EC, so it will be used to study the convergence with
nec. Finally, set V is like set II but includes an additional bin
with ε = 8–9 MeV for all ECs and jπ , providing information
on the convergence with respect to εmax.

First, we analyze the elastic scattering. Figure 3 compares
the calculated and experimental (circles) elastic differential
cross-section angular distributions (Rutherford ratio). The
dashed line is the one-channel calculation, in which continuum
states are omitted. The solid (set I), dotted (set II), dot-dashed

(set IV), and double-dot-dashed (set V) lines are the full CDCC
calculations with different choices of model space. It is remark-
able that all these calculations are almost indistinguishable,
showing that the elastic angular distribution is converged with
set I. Also, this full four-body CDCC calculation, in contrast
to the one-channel calculation, describes the data fairly well.
Set III is not shown, as convergence with the number of bins
is already seen with sets I and II.

Solution of the CDCC coupled equations for the projectile-
target S matrix also provides predictions for breakup ob-
servables. First, Fig. 4 shows the breakup differential cross-
section angular distribution, summed over the excitation
energy. The solid (set I), dotted (set II), dashed (set III),
dot-dashed (set IV), and double-dot-dashed (set V) lines are
the full CDCC calculations with different choices of model
space, as in Fig. 3. For this breakup observable the rate
of convergence is slightly slower than for the elastic cross
section, although the convergence reached with set II is fairly
good.

Second, Fig. 5 shows the breakup cross-section distribution,
as a function of the 6He excitation energy above the breakup
threshold, for each jπ and for each EC. This distribution
is calculated by dividing the breakup cross section for each
bin by its energy width. Here we use set II, which gives
a converged result for the breakup angular distribution. As
anticipated, in all jπ , the contribution of each EC decreases
with decreasing magnitude of its eigenphase. In particular, the
contribution of the fourth EC is already small, justifying the use
of a truncated calculation and nec ≈ 4. We have also checked
that the contribution of the fifth EC (comparing sets II and
IV) changes the total breakup cross section by less than 2%.
Figure 5 also shows the importance of the dipole and resonant
states. These make the largest contribution to the breakup cross
section.

Collisions of loosely bound three-body projectiles with a
target can be studied in the CDCC framework. The continuum-
bin discretization procedure has been formulated and used
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Basis set II was used.
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for the first time for a three-body projectile, requiring the
superposition of three-body scattering states. For each three-
body total angular momentum j and energy ε, scattering
states are calculated for ingoing boundary conditions with
quantum numbers β. The multichannel S matrix in this
β basis, determined from the asymptotics of these states,
is diagonalized to determine the ECs, which are ordered
according to the magnitude of their associated eigenphases.
We have shown that the ECs with the largest eigenphases are
most strongly coupled in the collision, suggesting a hierarchy
of continuum states and an associated truncation scheme. This
EC hierarchy allows practical CDCC calculations that extend
the energy-binning procedure to four-body reactions induced
by three-body projectiles. The formalism has been applied
to the 6He + 208Pb reaction at 22 MeV. The convergence of
the results for elastic and breakup cross sections has been

presented. Good agreement with existing elastic data for this
reaction has been obtained.
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