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Continuous cooling of a one-dimensional bonded fluid: A Monte Carlo simulation study
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A kinetic one-dimensional bonded Quid model is formulated by extending a model for water due
to Bell. The behavior of the system under continuous cooling is analyzed by use of a Monte Carlo
simulation method. It shows a phenomenon similar to the laboratory glass transition. The depen-
dences of the glass transition temperatures and of the residual energy on the cooling rate are dis-
cussed.

I. INTRODUCTION

In spite of the intense scientific effort carried out in re-
cent years, the nature of the liquid-glass transition is far
from being we11 understood. Although it is clear that the
glass transition as observed in real experiments is a kinet-
ic phenomenon associated with the departure of the
liquid from the equilibrium, little is known about the
physical processes controlling the behavior of the system
through the transition. ' In some theories and models the
laboratory glass transition is the manifestation of an un-
derlying thermodynamic or kinetic phase transition,
where one or more relaxation times diverge. Neverthe-
less, it has also been shown that an underlying phase
transition is not a necessary condition for a model to
present glass transition phenomena similar to those ob-
served in real glasses.

A typical way of preparing a glass is by the fast cooling
of a liquid. In fact, it seems that any liquid can be led to
a glassy state if the cooling rate is large enough. Besides,
the properties of the resulting glass depend on the cooling
procedure. Therefore, the study of the time evolution of
systems whose temperature is externally changed shows
up as a critical step for the understanding of the glass
transition. This poses us with a formidable task from a
theoretical point of view. It is not even clear how to for-
mulate, in an appropriate way, a kinetic equation incor-
porating the mechanism controlling the temperature. Of
course, this can be done, in principle, by considering
time-dependent boundary conditions in the kinetic equa-
tion for an isolated system. Nevertheless, this introduces
inhomogeneities into the system and renders the problem
extremely di%cult.

A simpler, although unjustified, possibility is to assume
that the equation describing the evolution of a system at
constant temperature can be directly extended by formal-
ly replacing the constant value of the temperature by the
given time function. Most of the models invented to ana-
lyze the dynamics of glasses are formulated in this way.
Nevertheless, even with this choice, the explicit analyti-
cal solution for the case of continuous cooling is known
only for a few very simple models in some asymptotic
limits. '

Recently, several models have been proposed that

mimic the dynamics of real fiuids near the glass transi-
tion. Although no fully satisfactory theory has been
developed to explain their kinetic properties yet, their
simplicity allows very efFicient computer simulations. As
Fredickson has pointed out, a general characteristic of
these models is that they contain some dynamical con-
straints that are spatially short ranged, but lead to a high
cooperativity in the dynamics at larger distances.

The purpose of this paper is to investigate, using
Monte Carlo simulation methods, the time evolution un-
der continuous cooling of a model of one-dimensional
bonded fiuid. This model was introduced by Bell as a
model for liquid water. It is a lattice model for which
only the statics was specified. The free Gibbs energy can
be easily computed and, from it, analytical expressions
for the thermodynamic properties are derived. Here we
introduce a dynamics of the bonded fiuid by a master
equation with transition probabilities obeying detailed
balance.

It must be noticed that Bell's model has been previous-
ly used to study the properties of glasses by Singh and
Kovac. Nevertheless, their approach is quite different
from the one we present here. They assume that, in the
quenched fiuid, there is some kind of disorder associated
with a given distribution of bond energies. No attempt to
describe the dynamics of the glass transition is made and,
therefore, the kinetics of the model was not defined.

Section II defines our model. Explicit expressions for
some of the thermodynamical properties are given and
the kinetics of the system is established. The Monte Car-
lo simulation method employed is outlined in Sec. III.
The results obtained for the evolution of the system are
presented in Sec. IV. There, it is seen that the system ex-
hibits a behavior similar to a laboratory glass transition.
The dependence of the residual energy and the glass tran-
sition temperature on the cooling rate is analyzed. Sec-
tion V contains some comments and conclusions.

II. DESCRIPTION OF THK MODEL

We consider a one-dimensional lattice of N equally
spaced sites. Each site can be either occupied by a parti-
cle or it can be empty. The number of particles is M.
Two nearest-neighbor particles have an interaction ener-
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E(N, M, Z, B)= —(M —Z)E —Bc@ . (2.1)

The number of possible configurations with given
values of Z and 8 is

g(N, M, Z, B)
(M —1)!N(N —M —B —1)!

Z! (Z —1)! (M —Z —B)! (N —M —Z —B)!

gy —c. Also, two particles separated by a single empty
lattice site may establish between them a bond of energy—(8+co). Both E and co are taken as positive. These are
the only interactions in the system.

Following Bell, we will refer to a site between two
bonded particles as occupied by a bond. The empty sites
are considered as holes.

Let us think of a given configuration of the system.
We will assume periodic boundary conditions. The ener-

gy of the system can be expressed in terms of the number
of bonds 8 and the number of particle-hole contacts,
denoted by 2Z, as

Refs. 3 and 4, Eq. (2.6) does. In fact, the latter can be
directly derived by using the transfer matrix method.

By the differentiation of the Gibbs free energy, all the
equilibrium thermodynamical properties of the system
can be derived. In particular, the equation of state reads

aGN=— ADJ '+J(J—1)
ADJ '+ A +(J—1)

(2.7)

and the average energy is

BG — A E+ ADJ '(E+co)
ADJ-'+ A +(J—1)-'

(2.8)

Other properties can be derived by using the isotherm-
isobaric distribution. The average number of bonds is
given by

(2.2) 8 ink
BD

ADJ
ADJ '+ A +(J—1)

(2.9)

Since this expression differs from those reported by Bell
and Singh and Kovac, a derivation of it is presented in
the Appendix. Equation (2.2) is useful in estimating
finite-size effects in a computer simulation of the model.
In our case it has been checked that these effects are
negligible for the size of the system we have considered.

Now the partition function is constructed from Eqs.
(2.1) and (2.2). It is convenient to work in the isotherm-
isobaric ensemble where the partition function for our
model is given by

M —Z co

6(M,p, T) = g g g g (N, M, Z, B)
Z=O B =0 N=M+B+Z

X exp[ 13(E +pNl) j, —

(2.3)

where T is the temperature, P=(k~T) ', p is the pres-
sure, and I is the distance between neighboring sites.
Substitution of Eqs. (2.1) and (2.2) into Eq. (2.3) yields,
after carrying out the summations,

6(M,p, T)=(J—1) 'J +'[(J—1)

+DAJ '+ Aj

Since we are dealing with a one-dimensional model
with short-range interactions, the system does not present
any equilibrium phase transition. In the following we
will consider a system with a constant length, i.e., num-
ber of sites X. The equilibrium pressure at each tempera-
ture is determined by Eq. (2.7).

Once the thermodynamics of our system is known, we
specify its dynamics. It is assumed to be governed by a
master equation. Taking into account that the number of
sites and particles are kept fixed, the allowed transitions
consist either in the creation (or destruction) of a bond,
or in the motion of a particle to a next empty site. Of
course, a bond can only be created starting from a
configuration in which two particles are separated by a
single hole. Also, a particle cannot jump to a site that is
being "occupied" by a bond. Before that, the bond must
be destroyed. This implies that at low temperatures„
when the concentration of bonds is large, the relaxation
of the model requires the system to jump over high ener-
gy barriers.

If x and x' denote two configurations of the system
connected by an allowed single transition, the transition
rate used is

X[J '+2AD(J —1)J
AE

I —tanh
2kB T (2.10)

+ AJ '(J —1)+(J—1) 'j,
with A =e~', D =e~, and J=e~~.

The Gibbs free energy 6 is

6 = —kBT ink

and, in the limit of M going to infinity, one gets

6 =MkBT ln
J

ADJ '+ A +(J—1)

(2.4)

(2.5)

(2.6)

Although Eq. (2.4) does not agree with those derived in

where QE =Q(x') E(x) and zo is a—constant that fixes
the natural time unit of our system. The dynamics
defined in this way satisfies the detailed balance condi-
tion. Besides, it is clear that all the configurations can be
reached from a given one by a string of transitions with
nonzero probability, i.e., the Markov process defined by
our equation is irreducible. It follows that any initial dis-
tribution of configurations will tend towards the equilibri-
um canonical distribution.

It must be noticed that we have not introduced in the
dynamics any constraint other than the purely energetic
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ones associated with the destruction of bonds. In this
sense our model differs from the facilitated Ising mod-
els ' and also from the tiling models. '

For convenience we have introduced an adimensional
cooling rate as

III. MONTE CARLO SIMULATION

r~05=
(E+co)

(4.2)

The simulation of the system has been carried out by
means of a Monte Carlo algorithm similar to that formu-
lated by Bortz, Kalos, and Lebowitz. ' For computation-
al reasons, this method was preferred to the standard
Metropolis Monte Carlo method, where the probability
of rejection of a movement increases very fast as the tem-
perature is lowered. Given the configuration of the sys-
tem at a time t, the transition rates for all the possible
transitions are computed according to Eq. (2.10). The to-
tal transition rate from the given state

O(x) = g W(x ~x') (3.1)

—lna
Q(x)

(3.2)

where a is another random number between 0 and 1. As
indicated before, the time was measured in Monte Carlo
steps, taking so= 1 in Eq (2.10.). For the interaction en-
ergies we chose c.=200 and co =500.

The data presented in this paper have been obtained
with a lattice of 200 sites and 100 particles, and periodic
boundary conditions have been used. For the highest
cooling rates considered, we have checked that the results
are not significantly altered when the number of particles
is increased to 1000 (2000 sites). Besides, by using the
transfer matrix method we have calculated the normal-
ized equilibrium density correlation function. Of course,
it is an oscillating function whose amplitude monoto-
nously decays with distance. For kz T =400 it is smaller
than 10 for distances greater than 10 lattice spacings.
For kz T =200, that is the smallest temperature at which
the system remains near equilibrium in our simulation,
the correlation has already decayed to 10 for distances
of 30 lattice spacings. For each cooling rate, 100 in-
dependent cooling runs were performed and the results
were averaged. In spite of the rather small size of our
system, the runs at the lowest cooling rates required more
than 35 h in a CONVEX-220 computer.

IV. CONTINUOUS COOLING

We have cooled the system following a linear law for
the variation of the temperature, i.e., with the constant
cooling rate

d (k~ T)
dt

(4.1)

is also calculated. A random number uniformly distri-
buted between 0 and 1 is then generated to determine
which of the possible transitions takes place. This is done
by dividing the interval (0, 1) into a number of inter-
vals equal to the number of possible transitions. To
each of them it corresponds a portion of length
W'(x~x )/Q(x). The time interval associated with this
change in the configuration of the system is

C3
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FIG. 1. Average energy as a function of the temperature in
continuous cooling experiments for r =1, 0.1, and 0.01. Also,
the equilibrium values have been plotted (circles).

We started with the equilibrium configuration at P= —ca

that, for the system considered here, is an open structure
with a hole between every two particles. As is the case
for the facilitated Ising model, the fact that the tempera-
ture is negative does not present any physical problem
since the model does not show pathological behavior in
passing from negative to positive temperatures. Besides,
the state at 13= —~ is only used in our simulation as a
convenient initial state, from which we carry out an in-
stantaneous quench to a low temperature. This tempera-
ture was chosen in such a way that significant departures
from the equilibrium behavior when cooling the system
at the considered rate show up well below it. Its value
ranged between k~T=500 for r =1 and k~T=300 for
r =0.005.

The aim of the quench was to save computer time.
Then, the system was equilibrated at a constant tempera-
ture until the relative difference between the averaged en-
ergy over 100 runs and the equilibrium value given by Eq.
(2.8) was of the order of 1%. This required runs of typi-
cally 10 Monte Carlo time steps. After that, the system
was continuously cooled. Ten difterent values of the con-
stant rate in the range 2.5 X 10 ~ r ~ 1 have been inves-
tigated. That interval corresponds to 3.6 X 10 ~ 6
&1.4X10 '.

Figure 1 shows the time evolution of the average ener-
gy as a function of the temperature in some of the con-
tinuous cooling experiments. For the sake of clarity only
the results corresponding to three values of the cooling
rate are represented, namely r =1, 0.1, and 0.01. Never-
theless, the following comments apply to all the cases
studied. It is seen that the system has a behavior similar
to the laboratory glass transition observed in real glasses.
For a given value of the cooling rate, the evolution of the
average energy follows the equilibrium curve at high tem-
peratures, but the system falls out of equilibrium when



J. J. BREY AND M. J. RUIZ-MONTERO 43

e„,(5)=5 (4.3)

with a =0.199. For 0.05 & r & 1 the fit gives o,"=0.139.
To see whether a logarithm dependence on the cooling

rate is more accurate, in Fig. 3 we have plotted the loga-
rithm of the residual energy against ln( —ln5). Again,
two linear regions show up quite clearly. Each of them
can be fitted to a behavior of the form

e„,(5)=( —ln5) (4.4)

with y =2.184 for r & 0.05 and y' = 1.087 for 0.05 & r & 1.
Although the fitting in Fig. 3 is slightly better than in

Fig. 2, our results are not at all conclusive about which of
the laws given by Eqs. (4.1) and (4.2) describes best the

00

FIG. 2. Double logarithm representation of the residual en-

ergy as a function of the cooling rate.

sufBciently low temperatures are reached, and the energy
departs from its equilibrium value.

If we define the glass transition temperature T as that
corresponding to the point where the system falls out of
equilibrium, then T decreases as the cooling rate r de-
creases. A more precise definition of T will be given
later on. Subsequent cooling leads the energy to a value
practically constant; that is, not affected by a further de-
crease of the temperature. The difference between the
value of the energy and the energy of the ground state is
the so-called residual energy. In our model the energy
per particle in the ground state is —(E+co). Figure 1 also
shows that the residual energy becomes smaller as the
cooling rate is decreased.

In an attempt to identify the dependence of the residu-
al energy on the cooling rate, two different representa-
tions have been used. They correspond to the two laws
usually considered in the bibliography. In Fig. 2 a double
logarithm representation is shown. Although one could
try to fit all the data to a single straight line, it seems that
two different regions can be identified, with a crossover
around r=0.05 (5=7.1X10 ). A similar behavior of
the residual energy was found by Kob and Schilling" for
a different one-dimensional configurational glass model.
For r & 0.05, the results fit quite well to the power law

2.2 2.4 in(-i&b)

FIG. 3. Logarithm of the residual energy vs ln ( —ln6).

p(T)=p, (T~)+m„(T—TI), (4.5)

where m is the variation of p with the temperature asso-
ciated with the glass relaxation. The fictive temperature
depends, in general, on the property under consideration.

In a continuous cooling experiment T& reaches a sta-
tionary value that can be identified as the laboratory glass
transition T . Its value is easily obtained by extending
the glass behavior until reaching the equilibrium curve.
The temperature of the intersection point is the glass
transition temperature. In our case, the system becomes
frozen at low temperatures. Therefore, T is given by the
equilibrium temperature of the system when it has a
value of the macroscopic property equal to its residual
value in the glass.

From the above discussion it is clear that different
properties can lead to different values of T for a given
value of the cooling rate. We have evaluated two glass
transition temperatures for each of our cooling experi-
ments by using the residual values of the energy and the
number of bonds, respectively. The results are plotted in
Fig. 4. Is is seen that there is a clear correlation between
the values of both transition temperatures. Besides, their
difference seems to go to zero as the cooling rate de-
creases. It must be noticed that, according to Eq. (2.1),
the energy is not determined by the number of bonds and
vice versa.

Figure 4 shows that, from a practical point of view, Tg
is quite accurately given by a linear function of the loga-
rithm of the cooling rate. A similar behavior has been
found from phenomenological theories and also observed
in some real glasses.

dependence of the residual energy on the cooling rate.
A concept that has proved to be very useful in phe-

nomenological theories of glassy relaxation is that of
fictive temperature. The fictive temperature T& of a
glass is the temperature at which the equilibrium liquid
has approximately the same structure as the glass. Usu-
ally, it is defined with reference to a given property p of
the system by
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have tried to identify in our model the energy of a possi-
ble configurational defect and the corresponding barrier
height leading to the values of a and a' reported below
Eq. (4.3). Nevertheless, we have not found agreement,
even approximate, for any of the possible simplest de-
fects. The relation between the low-temperature relaxa-
tion properties of our model and an ensemble of two-level
systems is an important point that deserves further study.
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FIG. 4. Glass transition temperature obtained from the ener-

gy (circles) and from the number of bonds (asterisks).

V. DISCUSSION

The one-dimensional bonded fluid model discussed in
this paper exhibits a phenomenon analogous to the labo-
ratory glass transition observed in real glasses. The mod-
el is ergodic and its thermodynamic properties are
known. It does not present any kind of thermodynamic
or kinetic ideal glass transition. In this sense, it is similar
to the facilitated Ising models and differs from the tiling
models. '

Here we have restricted ourselves to continuous cool-
ing computer experiments. The linear and nonlinear re-
laxation properties at constant temperature will be dis-
cussed elsewhere, both analytically and by means of a
Monte Carlo simulation. Nevertheless, it can be antici-
pated that, at low temperatures, the relaxation of the
model is dominated by a defect diffusion picture. At such
temperatures, the concentration of bonds is very high,
and the concentration of holes and particle-particle con-
tacts is very low. In order to decrease the energy, the
holes must move until they find a particle-particle con-
tact, and then create a new bond. The process requires
the destruction of all the bonds separating the initial posi-
tions of the hole and the particle-particle contact. Of
course, the bonds can be created again after the hole (or
the particle) has jumped. We arrive then to a picture of
defects diffusing in a periodic potential. The same kind
of picture was found for the one-spin facilitated Ising
model.

The residual energy of the model can be fitted quite
well to both power laws and logarithm laws in certain
ranges of the cooling rates. No clear conclusion has been
established about which of the two laws leads to a better
fit of the data. Both of them have been justified theoreti-
cally by considering an ensemble of two-level sys-
tems. "' The logarithm law corresponds to a smooth
distribution of low-excitation energies, while the power
law is obtained when the excitation energy is the same for
all the two-level systems. In this latter case the exponent
is given by the ratio between the excitation energy and
the potential barrier.

In an attempt to elucidate between the two laws, we

APPENDIX

In this appendix we present a derivation of Eq. (2.2).
We start from M particles without holes or bonds be-
tween them and let us insert Z holes and 8 bonds with
the condition that every two of them must be separated
by at least one particle. It is convenient to analyze the six
possible following cases separately.

(a) Configurations having one particle to the left and
another particle to the right. Its number is easily seen to
be

(M —1)!
Z!8!(M —Z 8 —1)!— (Al)

(b) Configurations having one hole to the left and, of
course, ending by one particle. There are

(M —1)!
(Z —1)!8!(M —Z —8)! (A2)

of them.
(c) Configurations having one hole to the right and, of

course, beginning by one particle. This number is also
given by Eq. (A2).

(d) Configurations having one bond to the left and, of
course, one particle to the right:

(M —1)!
Z!(8 —1)!(M —Z —8)! (A3)

(N —M 8 —1)!—
(Z —1)!(N —M 8 —Z)!— (A4)

(b) Now holes can also be introduced to the right of the
lattice without changing the value of Z. The number of
different ways of introducing the new holes is

(e) Configurations having one bond to the right and one
particle to the left are given by Eq. (A3).

The next step is to introduce in each of the above
configurations N —(M+8+Z) holes in all the possible
ways, but without creating any new particle-hole con-
tacts. This implies that the new holes can only be insert-
ed next to one of the Z holes already present. In the pro-
cess, the periodic boundary conditions must be taken into
account. Let us consider each of the above group of
configurations.

(a) It is seen that the number of possibilities for every
configuration in this group is
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(N —M —8)!
Z! (N —M —8 —Z)!

(N —M —8 —l )!
(Z —1)!(N —M —8 —Z)! (A6)

In this way we generate all the configurations having at
least a hole to the left.

(c) Only those final configurations with one particle to
the left and one or more holes to the right have to be con-
sidered here. Then, for each of the starting
configurations given by Eq. (A2) we have

possibilities.
(d) and (e) Equation (A4) also holds.
The final step is to collect all the above results, namely

multiply Eq. (Al) by Eq. (A4), Eq. (A2) by Eq. (AS), and
so on, adding all the resulting products. This 1eads very
easily to Eq. (2.2).
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