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The residual properties, after cooling from a high temperature to 7=0 K, of a system of identical
and independent two-level systems are analyzed. A general criterion to know whether a given cool-
ing law will lead to a nonvanishing residual population is derived. After defining in a precise way
the condition of slow cooling, asymptotic expressions for the residual population and entropy are
obtained for a family of cooling laws. It is shown that the expressions for the residual properties,
and their own existence, depend quite strongly on the cooling procedure.

L. INTRODUCTION

One of the most used and faithful methods for model-
ing the static properties of glasses at low temperatures is
by means of an ensemble of two-level systems.! In the
last few years, the same kind of approximation is being
used as a model for the high-temperature dynamical
properties of frustrated systems. Huse and Fisher? have
proposed that the residual energy, after slow cooling
from high temperatures to 7'=0 K, of various disordered
systems can be explained by considering an ensemble of
independent two-level systems (TLS), with a given distri-
bution of excitation energies and barriers. A crucial
point in their arguments is that the residual energy of a
TLS, in the limit of a large cooling time, is roughly in-
dependent of the cooling procedure.

Langer et al.3”> have studied the residual energy and
entropy of an ensemble of identical TLS cooled asymptot-
ically slow. They consider two specific cooling laws, and
the results they find for the residual energy are equivalent
if the cooling rate parameter is appropriately defined for
each case. Neverthetless, both cooling schedules are
quite different from a physical point of view: one of them
requires an infinite time to reach the temperature 7 =0
K, with independence of the value of the cooling rate pa-
rameter, while the other one corresponds to a linear de-
crease of the temperature.

In this paper we consider again an ensemble of in-
dependent and identical TLS that are cooled from high
temperature to 7=0 K. Our aim is to try to clarify the
following points: (a) Does the existence of a nonvanish-
ing residual population depend on the cooling pro-
cedure?; (b) If it does, is there a general criterion to deter-
mine -whether a given cooling law will lead to the ex-
istence of a residual energy?; (c) What does slow cooling
mean in general?, and (d) How does the value of the resid-
ual energy depend on the cooling law and the cooling rate
in the limit of slow cooling?.

Another important residual property is the entropy.
Once the distribution at 77=0 K is known, the statistical
entropy can be easily computed from its own definition.
Nevertheless, as Langer and Sethna® have pointed out,
what is measured in actual experiments is a calorimetric
entropy, obtained from the heat exchange of the system.
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For nonequilibrium systems both definitions are not
equivalent. Therefore, it must be distinguished between
residual statistical entropy and residual calorimetric en-
tropy. By means of thermodynamical arguments, Langer
and Sethna’ have shown that the residual calorimetric en-
tropy provides a lower bound for the statistical one. The
same result has been derived in Refs. 5 and 6 starting
from a general master-equation description of the cooling
process. Here, we will compute both residual entropies
in the limit of slow cooling for a wide class of cooling
laws, and the relation between them will be explicitly es-
tablished.

From a formal point of view, the calculations we
present differ from those in Refs. 2 and 4. There, singular
perturbation theory was used to obtain approximate solu-
tions, whereas here we will start from exact solutions,
where the interesting limits will be considered.

The plan of the paper is as follows. In Sec. II the mod-
el and the notation are introduced. Also, the general
solution of the master equation describing the model is
given. This expression is used in Sec. III to derive a
necessary and sufficient condition for the existence of re-
sidual population or energy after continuous cooling to
T =0 K. For those cases that do not lead to residual
population we will analyze the way in which the popula-
tion goes to zero as the temperature decreases. Also, a
precise definition of slow cooling will be given and its re-
lation with the cooling rate parameter will be discussed.

The above results are applied in Sec. IV to a one-
parameter family of cooling laws. It is shown that there
is a critical value of the parameter separating cooling
processes with and without residual population. All the
processes with a finite time of cooling to 7=0 K lead to
the presence of residual population, but it also appears
for some of the processes corresponding to an infinite
cooling time. The particular case of a linear variation of
the temperature does not belong to this family, and it is
separately discussed in Sec. V. Explicit expressions for
the residual populations in the asymptotic limit of slow
cooling are derived in both sections.

Section VI is devoted to the calculation of the residual
entropy for the same family of cooling laws as in Sec. IV.
Finally, some general conclusions and discussions are
presented in Sec. VII.
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II. DYNAMICS OF THE TWO-LEVEL SYSTEM

Our model is a simple two-level system (TLS). The
difference in energy between the two possible energy
states is €, and the activation barrier separating them,
measured from the lower state, is e+ V. The probability
p (1) of finding the system in the upper state is assumed to
obey the master equation

i’-’;‘t—”za{exp[—ﬁm(e+ MI—p ()]

—exp[ —B()VIp ()]}, (2.1)

where B(¢)=[kpT(t)]”!, kp being the Boltzmann con-
stant and T (?) the time-dependent temperature. The con-
stant a measures the characteristic frequency of jumping,
and we will use it to define an adimensional time variable,
i.e., we formally take a=1.

Introducing the transition probability

yO)=[—B1IV], (2.2)
and the asymmetry parameter

u=e/vV, (2.3)
we can rewrite Eq. (2.1) in the more compact form

PO =1+ ] (1)) . 2.4)

dt

While y(¢) is bounded between O and 1, u can take any
positive value. If the temperature is a monotonous func-
tion of time, the structure of Eq. (2.4) suggests the use of
v as independent variable. Then, assuming that the law
of variation of the temperature is given by

D — sy,

with r >0, Eq. (2.4) becomes

~rf(7)g%ﬁ=y[y”—(l+y”)p(y)] .

-

(2.5)

(2.6)

The parameter r defines the time scale on which y
changes. For r <<1 the transition probability changes
very slowly in time. The sign of f (), that is independent
of the value of y, defines the nature of the process. If
f >0 the system is being cooled, while for f <O the sys-
tem is being heated. The only additional requirement for
f is to be continuous or, at least, to have a finite number
of discontinuities.

The several cooling laws that have been considered in
the bibliography can, of course, be cast in the form (2.5).
For instance, the linear law

T(t)=Ty—at , 2.7
used by Huse and Fischer,? corresponds to the choices

f(y)=y(ny)?, (2.8)
and

r=kga/V . 2.9

The same authors also consider
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14 e ]
t)=— , .
T(t) Xy In 15 (2.10)
that is equivalent to
f=y*, 2.11)
and
I 2.12)
1+u -~ ’

Finally, Langer, Dorsey, and Sethna* have studied the
case

T,
T(t)= TR’ (2.13)
i.e.,
fry=y, (2.14)
and
VR
= . 2.15
r Ko To ( )

Equation (2.6) is a linear first-order differential equa-
tion that can be exactly solved for a given initial condi-
tion p (y,)=p,, where ¥ is the value of y corresponding
to the initial temperature, i.e., yo=exp(—V /kgT,). Of
course, 0 =p, =1. The solution is

1 p%o y1+“ 1 pY , z+z1Te
= |po+-— L Ta 2
p= |pot [y prew | e
1 %, y+y!t#
2 [ gy — (2.16)
Xexp rfy 3% ()

The above expression holds for arbitrary f(¥), po, Yo
and p. Once they are specified, the integrals can be eval-
uated, resorting, if necessary, to numerical techniques.
The residual population at T =0 K is obtained particu-
larizing Eq. (2.16) for y =0.

It is possible to write Eq. (2.16) in a more transparent
form. Integration by parts yields

143
1+vE

——_&4_

(y)=
Py 1+y#

Po—

_ 1Ty y T
A,

Xexp )

Yo y#—l
o [Tay 2
ul, Y Atym2

Xexp (2.17)

1 py, z+z!T#
—= [PaETE
rfy “r@

The first term on the right-hand side is the equilibrium
value of p (y) for constant temperature. The second one
corresponds to the relaxation from a nonequilibrium state
towards the equilibrium curve. It identically vanishes if
the system was initially at equilibrium. The last term is
associated with the (possible) departure from the equilib-
rium curve.
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In the following section we will derive several asymp-
totic properties of the TLS, starting from Eq. (2.17).

III. A CRITERION FOR THE EXISTENCE
OF RESIDUAL POPULATION AT T'=0K

Let us consider that the TLS is uniformly cooled to
T =0 K from a given initial temperature T\,. The time ¢,
required to realize the process will depend on the cooling
law, and it can be finite or infinite. For instance, if
f(y)=y* it is easily seen that t,=oc0 for k >1, and
to=ys Kr(1—k)]7! for k <1. In the case k =1, y de-
cays exponentially in time.

The residual population (RP) for 70 will be given, ac-
cording to Eq. (2.17), by

0 1 %, y+ylte
(0)= - exp | —— dy—F7——
p Po T+ pk p fo y ()
Yo yr1 1 py, z+z! ¢
+ dy——— —— | dz—F—
'ufo y(1+y;t)2€xl) fo z f(z)

(3.1

We will characterize a slow cooling process as that lead-
ing to a RP that is independent from the initial value p,.
Equation (3.1) shows that this requires

1 Yo, yp+yltH
— dy———=——>>1 3.2
Iy ) (3.2)
or, equivalently,
_ 1 %o y
8 l=—| d >>1 . (3.3
. I

In fact, 8 is the small parameter we will use in our
asymptotic analysis. But before that, let us study under
which conditions will be p (0), given by Eq. (3.1), different
from zero, independently from the value of p,. The
relevant quantity is

x + 1+u
sx)= [ dij;‘{;)— ,

where x can take any value between 0% and y,. We no-
tice that since we have assumed that the system is cooled
down to T=0 K, f(y) can not vanish in the interval
0<y =<y, If it would vanish for y =y, it follows from
Eq. (2.5) that the temperature would tend asymptotically
in time to the value Ty=—V/(kglny,). Therefore, the
character convergent or divergent of {(x) does not de-
pend on x in the range of values considered.

If §(x) is finite, it is clear from Eq. (3.1) that the RP is,
in general, different from zero. This holds with indepen-
dence of the values of p, and 8. On the other hand, when
&(x) diverges, the first term on the right-hand side of Eq.
(3.1) vanishes, and to analyze the second one it is con-
venient to consider it as given by the limiting process

(3.4)

p(0)=Ilimp(y), (3.5)
v —0

where
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Yo y#—l 1 rY% . z4z!TH
dy———exp | — dz——F"F
) Mfy y(1+y“)2 p rfy f(z)
p\y)=
ex ifyodz——z +zl T
PI) T @
(3.6)

Taking into account that y, =1 it is easily seen that for
0<x =7y,

n(x)=§&(x)=2n(x), (3.7)
where
= [Fgy—2— )
(0= [ R (3.8)

and, therefore, the divergence of {(x) is equivalent to the
divergence of 7(x), and the condition for this to happen is

limf (y)y ~?*¢=0 3.9)
y—0
for arbitrary € >0. Two cases must be distinguished:
(1) linz)f(y)y‘2=0, (3.10)
y—
(3.11)

(II) Lmf(y)y %=C
y—»O

with C being a constant. In both cases the denominator
in Eq. (3.6) diverges. The numerator also diverges in case
(I), but in case (II) it can converge or diverge depending
on the values of r and . When the numerator does not
diverge it is clear that p(0)=0. If the numerator
diverges we can apply the L’Hospital rule, obtaining the
same result.

Therefore, for divergent 7(x), or equivalently when Eq.
(3.9) is verified, there is no RP (for u=0, it is p (0)=1/2).
In this way we have arrived to a well-defined criterion for
the existence of residual population, given by the condi-
tion

Limf(y)y ?=o , (3.12)
y—0

that does not involve the parameter 7.

Thus, for instance, it follows that there will be RP in
the cases of the cooling laws given by Egs. (2.7) and
(2.13), but not if the TLS is cooled according to Eq.
(2.10).

It is easy to understand why it is the shape of f(y) that
determines whether there is a nonvanishing RP, whereas
the cooling rate parameter r does not play any role in it.
When the system is cooled down to T =0 K, y(¢) goes to
zero with independence of the value of ». Therefore, the
relevant point is not the value of », but whether the time
variation of y is fast enough to prevent the system of fol-
lowing the equilibrium curve. In fact, it is easily seen
that 1(x) can be used to define the relevant time scale. Of
course, when there is RP, its specific value will depend on
the value of r.

In the next section we will investigate the behavior of
the RP when Eq. (3.12) is verified. In the remainder of
this section we are going to study more deeply the case
7n(x)= 0. In particular, we want to determine the way in
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which p(y) vanishes when y approaches zero. The
second term on the right-hand side of Eq. (2.17) can be

neglected because it decays exponentially, while the first
one shows an algebraic behavior. Besides, the former
identically vanishes when the system was initially at equi-
librium, as it is usually assumed.

To analyze the behavior of p (y) we consider its relative
deviation from the equilibrium curve, i.e., we study the
asymptotic behavior for ¥y —0 of the ratio B (y) between
the third and the first terms in Eq. (2.17). A simple calcu-
lation shows that

Bly)~ 217 (3.13)
Y B,(7) ’ .
where
Yo y! 1 p% , z+z1Te
B (y)= dy—"— — dz¥—FF | ,
1Y .ufy y(1+y#)zexp rfy z (2
(3.14)
and
1 Y, z+z!TH
B =k — dz—F7"— 3.15
2 =yrexp | [ e 13

The two cases given by Egs. (3.10) and (3.11) must be
considered separately. In case (I), B(y) has the indeter-
minate form < /o and application of L’Hospital rule
leads to

limB(y)=0, (3.16)
y—0

and, therefore, the behavior of the population of the
upper level for ¥ small enough is given by

_r*

) (3.17)
1+y#

py)~
i.e., it tends to zero along the equilibrium curve. In case
(IT), we have to distinguish between two possibilities. For
u <1/Cr, we arrive again to a form o /c whose limit is

;%B(yb—l—f%’fr—# , (3.18)
and thus

p<y>~l_—1CrﬁTf+“7 . (3.19)
For p = 1/Cr, lim, _,,B,(y)=0 and one gets

giﬁ)mOB(y)=oo , (3.20)

and the leading behavior is given by the last term on the
right-hand side of Eq. (3.17). In the particular case
f(y)=Cy?itis found

i 1/Cr ot
py)~py eXPCm
Yo yu—l—l/Cr yp.
X [ dyt———exp |— (3.21)
fy Y (14+y*#)? P Cru
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In conclusion, the population of the upper level goes to
zero along the equilibrium curve, except when f(y)~y2
for y —0. In this latter case, it obeys Eq. (3.19) for
pn<1/Cr, while for u>1/Cr the decay law depends on
the initial condition, and also on the concrete form of

).

IV. RESIDUAL POPULATION FOR COOLING LAWS
OF THE FORM f (y)=y*

The general arguments presented in the previous sec-
tion will be applied here to cooling laws given by a power
of v, i.e.,

fr=vk,

with k €R. In this case Eq. (2.6) can be easily integrated
yielding

4.1

y=[ro ¥+ —Dr /170 (4.2)
for k#1, and

Y=y " 4.3)
for k =1.

It follows from the above equations that for k=1 it
takes an infinite time to cool the system from a finite tem-
perature T,=—V (kglny,)~! down to T=0 K. For
k <1 the cooling time is finite and it is given by

1—k
Yo

Tra—k)

According to the criterion obtained previously, Eq.
(3.12), there will be a nonvanishing RP for k <2. Be-
sides, for k >2 the RP tends to zero on the equilibrium
curve for small values of . This is clearly illustrated in
Fig. 1, where the evolution of the upper level population
is shown, for different values of k, and fixed values of »
and u. The curves have been obtained by numerical eval-
uation of the exact expression, as given by Eq. (2.17).
The continuous line is the equilibrium curve.

For k =2 the behavior is given by Eq. (3.19) or by Eq.
(3.21), depending on whether r <p~! or »>p~!. In par-
ticular, for the cooling law defined by Eq. (2.10) we have

T (4.4)

n

P ~(1+p)—L—~(1+p)y* (4.5)
1+y#

Using Eq. (4.2) it is seen that this expression is equivalent

to the asymptotic behavior

p(t)~(1+p) tHe—r (4.6)

for t — . Equation (4.6) was derived by Huse and Fish-
er.? It is important to realize that p (?) is not the RP of
the TLS when it is cooled to T"=0 K in a finite time 7 fol-
lowing Eq. (2.10). As we have already discussed, and it is
clearly shown by Eq. (4.5), the temperature T =0 K is
reached for t— o, and in this limit p (#) vanishes. We
cannot properly speak of RP for finite ¢ in this case.

Let us proceed now to compute the RP in the case
k <2. Particularizing Eq. (3.1) for the law given by Eq.
(4.1) it is found
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FIG. 1. Evolution of the upper level population as a function of the transition probability for the power cooling law, Eq. (4.1), for
several values of the exponent k. All the curves correspond to r =107% and £=0.5. The continuous line is the equilibrium popula-
tion for each value of y.

v—1

v 178 u
_ B p 1 y2 K yatu—k p(0)~wvp fo du—-———-—~—(1+ .y
p(0)= |p, exp P
1+v4 r 12—k 2+u—k 1
X —u |[l+——p"u” , 4.11
v o exp | —u WAL ( )
+yf0 dy——/J 3
(1+y*#) where we have introduced
2—k 2+p—k v=—=>___ (4.12)
% _1iy +2 (2—k)
xp 2=k 24p—k ||’
K The integral in Eq. (4.11) can be extended up to infinity

(4.7)  with an exponentially small error. Next, we use the series

expansions
This expression will be analyzed in the slow cooling limit, v © (_1ym vm
that according to Eq. (3.3) is characterized by exp | — ‘i%u Ty :mzzo—(T!)—mu (1 vim
2—k
- Yo (4.13)
= .
2—k)r >1, “.8) and
that implies (y,<1) (1+p"u*) 2= (—=1)"(n +1)p"u™" . (4.14)
n=0
p=QR2—k)r<<1. (4.9) The first one has an infinite radius of convergence, and

the second one converges for pu <1. The maximum

The first term on the right-hand side of Eq. (4.7) is of  value of u in Eq. (4.1) is 5" ' and, using Eq. (4.8) we get
~1/8  From now on, terms of this order will be  that pu is bounded by y2~¥, that is smaller than one for

order e
neglected, since the behavior we are going to obtain is K <2. After introducing Eqs. (4.13) and (4.14) in Eg.
dominant against them. By doing the change of variable (4.11) it is obtained
2k . n+1
=Y 4. p(0)~vp¥ (—1ptme—
YT “.10) P x mi(1+v)"

one gets Xp"" M w(14+n +m)+m] . (4.15)
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The series is clearly convergent for p<1. In order to
take the slow cooling limit, Eq. (4.9), two different cases
must be considered. If v is not too small, so that p¥ <<1,

we can keep only the first term in Eq. (4.15),
p(O)~p'T(1+wv) . (4.16)

Nevertheless, if v is so small that p” is of order of unity,
we have to take a distinguishable limit. We rewrite Eq.

(4.15) as

p(0)~vp” S (—1)"(n +1)p" T [v(1+n)]

n=0
Sl +1
+vp¥ (_1)n+m n
P n§0m2=1 m'(1+v)'”

Xp"" T [v(1+n +m)+m] .
4.17)

Using the properties of the I" function it is seen that in
the limit v—0 the second term on the right-hand side of
Eq. (4.17) behaves as

——P—In(1+p") (4.18)
(1+p")
and it goes to zero. For the first term one gets
p’S (—1)pr=—L— | (4.19)

n=0 1+Pv

that is dominant as compared with Eq. (4.18). Therefore,
for v—0,

v

p(0)y~—L— .
1+p"

Matching the solutions given by Egs. (4.16) and (4.20)
it is found, uniformly in v,

(4.20)

2v
p(0)~p"T(14v)——L— | @.21)
1+p"
or
p(O)~[(2—k)r/2=Fr 1+—;ﬁ—k]
_ 2u/(2—k)
[2—r]™ 4.22)

[k R

This expression is uniformly valid in . In particular, for
v=0 it reduces to p (0)=1/2, showing that if there is no
asymmetry the TLS always tends towards equilibrium,
with the same population in both states. Of course, we
cannot really speak of the RP in this case. In Fig. 2 the
asymptotic behavior given by Eq. (4.22) is compared with
the numerical evaluation of the exact expression, Eq.
(4.7), for k =1 and p=4. It is seen that the agreement is
surprisingly good over a wide range of values of the cool-
ing rate r. In fact, on the scale of the figure, significant
discrepancies only appear for r=~0.1. We have checked
that the range of validity of the asymptotic expression is
larger, the smaller the value of u is.

Equation (4.22) deserves some comments. It clearly
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FIG. 2. Comparison of the exact (squares) and the asymptot-
ic expressions for the RP for the cooling law f(y)=y. The
value of the asymmetry parameter p=4.

shows that the RP depends on the cooling law, even in
the slow cooling limit we are considering. In fact, we
have proved in the previous section that the own ex-
istence of RP is determined by the way in which the tem-
perature goes to zero, i.e., the value of k, and it is in-
dependent of the parameter . The relevance of the value
of k shown in Fig. 3, where the RP is plotted as a func-
tion of k for fixed » and u. We have used both, the
asymptotic expression, and also the exact one. The RP
tends to zero as k approaches the limit value k =2.

For k <1, the system is cooled to 77=0 K in a finite
time 7 given by Eq. (4.4), and the asymptotic RP depends
on it, for a given T, in the form [for u/(2—k) not too
small]

p(0)oc 7 H#/2=k (4.23)

where, again, the influence of the cooling law shows up.
It must be noticed that Eq. (4.23) holds for all finite 7, as
long as the slow cooling condition, Eq. (4.8), is verified.
Therefore, we can not speak of an universal dependence
of the RP on the cooling time, even for very large 7.
When 1<k <2 the system needs an infinite time to
reach T=0 K, but there is always RP. For 6<<1
(p<<1) the RP is given by Eq. (4.22). When k ap-
proaches the value 2 from below, the slow cooling condi-
tion does not require r to be very small. In fact, for arbi-
trarily large r, there is always a range of values of k in
which the RP is asymptotically given by Eq. (4.22). Fi-
nally, for k =2 there is no RP. More explicitly, for k =2
the system is always at equilibrium, as seen in Sec. III.

V. LINEAR COOLING

A linear decrease of the temperature corresponds to a
function f(y) given by Eq. (2.8) and, therefore, it cannot
be reduced to the power laws discussed in the previous
section. We already know that in this case there is RP
and, from Eq. (2.16) we have
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FIG. 3. Dependence of the RP on the value of the exponent
k for a power cooling law. The squares are the exact values and
the continuous line corresponds to the asymptotic expression,
Eq. (4.22). The cooling rate and the asymmetry parameter are
r=0.01 and u=0.5, respectively.

1 p% 14yt

(0)=pgyexp |—— dy

p(O=poexp | == [ “dy (o)’
1 %, p# 1 py, , 1+p*
— exp |—— | dy'—— | . (5.1
rJo y(lny)2 P rfo 4 (Iny’)? 6D

The slow cooling general condition expressed by Eq.
(3.3) is equivalent, for not very high initial temperatures,
to

r<<i. (5.2)

This will be the asymptotic limit we will consider in this
section. Thus, the initial term in Eq. (5.1) is exponential-
ly small, and we can write
,u

ln )2

p)== [ "ay ~ [ Lyt

€x
P r (Iny')?

(5.3)
The asymptotic analysis of this expression requires
some care, since the integrand presents a rather broad

-2
1 z Inz’ .
A ~ ' —_ M, 'p
(N~ f“nrrzdz [1+ . J (1+rkz'®)
12 :
= (—1)" dz'(1+rkz"")(n +1
(Inr)? ,,éo ) fllnrl"z 21z )

Taking into account that |Inr| ! <z < |Inr|* it is easily
verified that only the term n =0 must be kept and, after
carrying out the integral, we obtain

1 1+u

(Inr )?

Now, it can be checked that A4, is really negligible. In
this way, we have arrived to

rtz

A(r)~ 1+u

(5.12)

moving maximum.’

thus obtain

We start by substituting y =zr and

'l/o/r z,u
0)=r# dz—"——
pO=r fo z(lnz+1nr)2

1+rHz®
Xexp |— | dz'————F— (5.4)
P fO (Inz'+1nr)?
This expression is approximated by
r |1nrf dzz 1_+__l_n_z -
(Inr)? ¥ linrl ! Inr
1zt »
Xex dz'
P f (Inz’'+1nr)? J
(5.5)
with an error that can be shown to be bounded by
L+l (5.6)
where
Ln=—">" (5.7
r)=——r .
! [Inr|#*3 )
and
Yo 1
IL(r)=r* —|Inr|* exp[ —L(Inr)?] .
2 r I | ] (11’1’}/0)2 p[ 2 ]
(5.8)

Let us study now the exponential appearing in the in-
tegrand of Eq. (5.5), i.e.,

1+rkz'*

A = [fd ——F%— . 5.9
() fO z (Inz’ +1nr)? 5.9)

The contribution to A4(r) coming from the region

0<z'<|lnr|~?is bounded by
1
A((r)’=———, (5.10)
! (Inr)*

and we will see it is negligible as compareed to the contri-
bution from |lnr|~?<z'<z. Thus,

(5.11)
[
p(O)~ L [ gy g |y 102 B
(In7)? ¥ I ! Inr
Xexp | — 1 rizl e
(Inr)? 1+p
(5.13)

Using again the same Taylor expansion as in Eq. (5.11)
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it is clear that

(0)~—12
P (Inr)?
|tnr|*
dz z*
Xf“nrl_] z z
1 rizlte

X — 5.14
exp (nr)? T+ a ( )

The range of the integral in Eq. (5.14) can be extended to
0 <z < o with an error smaller than

113+ 1], (5.15)

where
P

Is(r)=W ) (5.16)
and

IL,(n=r*(1+ullnr| 72+ - - exp(—|Inr|?) .  (5.17)
Thus, substitution of s =z|Inr| =2 yields

p(0)~rH|Inr|?

Xfowds stexp |s |1+ = [Inr|#rHst
(5.18)

To evaluate the integral uniformly in u we consider
two regions. For r#|Inr | << 1 we get

p(0)~rP|lnr|#*T(1+u) (5.19)
while for r#|Inr|?*=0(1), that implies . —>O0, it is
Iz 2n
p(0)~—Alinrl (5.20)

1+ r#nr |

Matching the two solutions, Egs. (5.19) and (5.20), we
obtain the final result, that is uniformly valid in u,

72| Inr |
1+r#nr|*

Besides, the terms I, I,, I3, and I,, given by Egs. (5.7),
(5.8), (5.16), and (5.17), respectively, are clearly subdom-
inant with respect to the contributions retained in Eq.
(5.21).

Different asymptotic expressions for the RP after
linear cooling have been previously derived by Huse and
Fisher? and by Langer, Dorsey, and Sethna.* The one ob-
tained by the latter authors reduces to Eq. (5.21) after
neglecting terms that are of the same order as others that
have already been omitted. The discrepancies with the
result by Huse and Fisher are deeper.

The cooling time is given by

p(O)~rH|Inr |01+ p)— (5.21)

kgT
=1 "0 (5.22)
rlny, vr
and for u not too small
p(0)ar #|InT|? . (5.23)
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Therefore, the dependence of the RP on the cooling time
is quite different from that found in the previous section
(for k <1). We have again a proof of the relevance of the
cooling procedure to determine the residual properties.

VI. RESIDUAL ENTROPY

Two different, and nonequivalent, definitions of entro-
py will be considered here. First, there is the usual
definition of statistical entropy, that for the TLS reads

S=—kg[plnp +(1—p)in(1—p)] (6.1)

and, second, we can define a calorimetric entropy by

sgt—sgl= [ fiTQ : (6.2)
where dQ is the heat flow into the system. In our case,
Eq. (6.2) reduces to®

dScal _ € EB
dt T(t) dt =

It has been shown>® that when the above definitions
are used to compute the residual entropy at T =0 K,
starting from a state whose entropy is known, the residu-
al calorimetric entropy (RCE) provides a lower bound for
the residual statistical entropy (RSE). The aim of this
section is to compute both, the RCE and the RSE, for a
two-level system in the asymptotic limit of slow cooling.
It will be assumed that the cooling law is expressed by a
power of v, i.e., it corresponds to Eq. (4.1). Besides, we
will consider k <2, since we know that for k =2 there is
no RP, and, therefore, the RSE vanishes.

The calculation of the RSE is straightforward from its
own definition and from the results in Sec. IV. Substitu-
tion of Eq. (4.21) into Eq. (6.1) yields

(6.3)

2v
p"T(1+v)——L—

S(0)~—kg
1+p"
2v
X1In [p*T(1+v)— —£—
1+p"
2v
—ky [1—p"T(1+v)+—-L—
1+p"
2v
XIn [1—p"T(1+v)+—-L— |, (6.4)
1+p"

where the argument of S refers to y =0. For p<<1 and v
not too small Eq. (6.4) is equivalent to

S(0)~—kgp"T(1+v)[Inp*+1nI(1+v)—1] . (6.5)

On the other hand, for p <<1 and v<<1 [p*"=0(1)] one
gets

v

S(0)~—kBT_%T[lan—ln(1+pV)—p*V1n(1+pV)] .
P

(6.6)

Matching Egs. (6.5) and (6.6) in the overlapping region
the following asymptotic expression, uniformly valid in v,
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is found for the RSE:
S() _
B

—p(0)Inp¥+[In(1+p*)—p"]

r(1+v)[In['(14+v)—1], (6.7)

with p (0) given by Eq. (4.21).
Next we proceed to the calculation of the calorimetric

entropy. Eq. (5.3) can be written in terms of the transi-
tion probability y as
dScal —4&
=—kgul . .
dy gt Iny dy (6.8)

To compute S°! from this equation we must specify an
initial condition. We assume that at ¢ =0 the system was
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substitution of Eq. (4.1) into Eq. (2.17) and subsequent
derivation leads to

4 _ Byt =*1+ymexp |

7,2—k+ y2rrk ]

dy 2—k  2+4u—k
Yo yu—l
X dy—————
fr y(l+y")2
2—k 2+p—k
Yy y
X .
exp PP S— I (6.9)

This expression is introduced into Eq. (6.8), that is then
integrated between ¥ and 0. In the Appendix it is shown
that after some algebra one obtains for the residual entro-

at equilibrium with a transition probability v, Thus, py
J
Sca‘(O):—kBVp(O Inp— kBV f mexp -z 1+%; Inz
+kyvip” [d ——f du In(1—u)[1+p*2*(1—u)*]
0 (1+pv v)Z
Xexp(—zu)exp | —z 'z 2 U=u) > (6.10)
1+v 1+v

with 8, p, and v given by Egs. (4.8), (4.9), and (4.12), respectively. Eq. (6.10) is exact, and holds for arbitrary values of
all the parameters, with the only restriction k <2. Let us study its asymptotic behavior in the slow cooling limit. For

p <<1 and v not too small one finds

§5(0)~ —kpp'T(1 +v>[1np”+v¢<v)]+ka2pr0°°dz z"foldu In(1—u)e "2,

where 1 is the digamma function.® For p<<1 and v<<1 [p*=

(6.11)

0(1)], a naive approximation of the second term in the

right-hand side (rhs) of Eq. (6.10) leads to the divergent integral

fow 1+_ 2 exp[—z(1+p")]Inz .

In order to carry out a more careful analysis we expand (1+p*z") "2

(6.12)

and exp[ —p*z'tV/(14+v)]. Also, it is easily

realized that the integrals can be extended up to infinity with a negligible error. In this way, after some algebra one ob-

tains
5 (178 z"! p’z”
v dz———exp | —z |1+
fo (1+p*z")? P 1+v

0

~ (—l)’"+1—&r‘(v+vm+l)+v S (— D" T (v+vm +1)Y(v+vm +1)
p

=0 m +1 =,
© __1\ym-+n v(im +n)
3 3 DT Am Al CIv(l+m +n)+nld[v(l+m +n)+n] .

m=0n=1

nl(14+v)"

(6.13)

For v—0, the dominant contribution is given by the first summation that reduces to
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_voo (__1)3
P

s=1

p*=—p *In(1+p") . (6.14)

The third and fourth terms on the right-hand side of Eq.
(6.10) are asymptotically much smaller than this. Thus,
the asymptotic behavior of Eq. (6.10) in the limit p—0
and v—0 is described by
v
§(0)~ —kpy—L—1Inp"+kyln(1+p) . (6.15)
1+p"

To have an expression valid uniformly in v, we look for

a common limit for Egs. (6.11) and (6.15) in an overlap-
ping region, for instance,

lInr| =2 <v<|Inr| 7173 . (6.16)
The common limit is
S(0)~ —kgp'Inp”+kpp”, (6.17)

and, therefore, our final result for the RCE (uniformly in

v) reads

Scal(o) _
kg

—p(0)Inp*+In(1+p")

—p'+p T(1+v)[vp(1+v)—1]

© 1
+vp¥ [ “dzz"| duln(l—u)e . 6.18
vpfo z z fo uln(l—u)e (6.18)
We see that both, the RSE and RCE, depend on the
cooling law. Nevertheless, for cooling laws of the form
y(t)=—ry* they can be expressed in a form that is in-
dependent from k by introducing an effective cooling rate

p=Q2—=k)r (6.19)
and an effective asymmetry parameter
=K
Ve Tk (6.20)

A similar result was found for the RP in Sec. IV.

Given that the RSE and the RCE have been computed
in the same order of approximation, it is meaningful to
consider their difference,

S (0)—S8°(0)
~kpp*T(1+v)[vip(1+v)—In[(1+v)]

2 v [ v[! —zu
- In(1— . .
kzvp fo dzz fodu n(l1—u)e (6.21)

The last term in this expression is defined positive due
to the range of integration of u. Besides,?

v¢(l+v)—]nI‘(1+v)=fovdxxt//(”(x+l)>0, (6.22)
where 1'1(x) is the trigamma function
Dy [=g,te " (6.23)
¥ = [ TdE—r

that is defined positive for x = 1. In this way, we have
proved that

S(0)—S°0)>0, (6.24)
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uniformly in v. The result is consistent with the more
general one derived in Refs. 5 and 6.

The difference between the RSE and the RCE increases
with the value of the effective asymmetry parameter v,
and it vanishes when v goes to zero. For v=0 it follows
from Egs. (6.7) and (6.18) that S (0)=5°0)=kyIn2. We
use the equality sign here, since it can be easily proved
that this is an exact result. In fact, the statistical and
calorimetric entropies remain constant along the cooling
process of the TLS in this case.

A comparison of Egs. (4.22) and (6.21) shows that the
difference of entropies is of the same order in the effective
cooling rate p as the residual population or the residual
energy. If this were also true in real glasses, one could
expect significant differences between the measured RCE
and the theoretical RSE obtained from a definition in
terms of the probability density.

VII. CONCLUSIONS

A necessary and sufficient condition for the existence
of a residual population when the temperature of an en-
semble of identical two-level systems is lowered to T =0
K has been obtained. The condition is given by Eq. (3.12)
or, in terms of the temperature, by

lim 1
T—0T

dInT
at

exp =0 . (7.1)

It is, therefore, the behavior of the cooling law near 7'=0
that determines the possibility of a residual population.

Also, a precise definition of slow cooling has been in-
troduced. It involves the cooling law, the cooling rate
parameter and the initial condition. In the asymptotic
limit of slow cooling, we have derived explicit expressions
for the residual population and entropy. The results
show a clear dependence on the cooling law, contrary to
what has been stated by some authors.

In particular, the simple picture that the population
freezes when the rate of cooling equals the transition rate
does not lead to the correct qualitative behavior. Instead,
the picture that emerges form our analysis is that the
freezing takes place when the average number of transi-
tions that the TLS is going to experiment until reaching
T =0 K is of the order of unity. Also, the system will
have forgotten its initial conditions after a time allowing
a large enough number of transitions. That means that
the relevant time scale is given by

ds=—y(t)dt . (7.2)

as suggested by Eq. (2.4). The origin of s is taken such
that s =0 for y =0, i.e.,

t
s=["aryan,

where ¢, is the time for which ¥ (and T) vanishes. The
value of s is proportional to the average number of transi-
tions from ¢ to ¢,.

If s(0)>>1 the system has time to reach equilibrium
before getting frozen. This can be understood as the con-

(7.3)
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dition for slow cooling. It follows that the residual popu-
lation will be roughly of the order of the equilibrium pop-
ulation corresponding to s =1. For the power cooling
law given by Eq. (4.1) one gets

y(s=1)=[(2—k)r]/? R (7.4)

and the slow cooling condition reads (2—k)r <<1, that
agrees with Eq. (4.9). It can be checked that Eq. (7.4)
correctly predicts the values of ¥ for which the separa-
tion of equilibrium and the freezing take place in Fig. 1.
From Eq. (7.4) it follows,

[(2-—k)r]”/(2_k)
1+[(2—k)r/e=R -

For p/(2—k)<<1, Eq. (7.5) reduces to the exact asymp-
totic behavior, Eq. (4.20), while for p/(2—k) not too
small one gets

pO)~[(2—k)r#/2=F

p(0)~ (7.5)

(7.6)

that also agrees with the exact asymptotic behavior, ex-
cept for a factor of the order of unity.

The linear cooling case can be discussed in a similar
way. It is easily found that
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y(s =1)~r(Inr)? (1.7)

and the slow cooling condition reads r(Inr)? <<1). From
here one easily reobtains Egs. (5.19) and (5.20), the form-
er without the function I factor.

Starting from the analysis presented here, it is straight-
foward to study the asymptotic residual properties of an
ensemble of two-level systems with a given distribution of
excitation energies and activation barriers. The results
will be presented in a follow-up paper.
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APPENDIX

In this appendix we derive Eq. (6.10), which gives an
exact expression for the calorimetric entropy at T=0 K
when the TLS is cooled with a law given by Eq. (4.1),
with k <2. From Eqgs. (6.8) and (6.9) we get

dscal }i I—k ,’/2—k ,}/2+,u—k Yo yp,—l yZ—k y2+y.—k
L -k oy - dy—>——exp | —— .
dy B (17 %)exp 2—k  2+4+u—k y y(1+yp)2exp 2—k+2+p—k (AD
If the initial state was of equilibrium, by integration of Eq. (A1) we obtain
2y 2—k 2+p—k
cal — Ja 0 1—k 14+ pH# = Y Y
STH0I=Seq(vo) + ks r fo dyy  (1+yHexp r|2—k 2+tpu—k
Yo y‘u.—l 1 y2—k y2+‘u.‘k
X dy———— - + . A2
fy YAty P T 2=k 24p—k (A2)
The argument of S refers to v =0, as in Sec. VL
Changing the order of integration in the second term, and using the identity
Iny =lny + Zikln[(Z—k)r]— z_l_kln[(z—k)r] , (A3)
one gets
2 Yo p—1 2—k 2+pu—k
5%0)=5 +ky—E—m[2—k e —exp|—= |[T—+2
(0) (Vo) Tkp 2—k)r n(( )r]fo dy(1_|_y#)2exp 2—k 2+u—k
2—k 2+u—k
% [ 1=k({ 4yt 11 Y
fod‘y‘y (17 Hexp r|2—k 2+u—=k
2 7o u—1 2—k 2+pu—k
" y _1ly y
s Geror o W ayrp P 2—k ' 2+p—k
2—k 2—k 24pu—k
X [Ydy y' K1+yin |L—— L = : (A4)
Jydr v T Uy In | e | - 24p—k

The second integral in the second term on the RHS of Eq. (A4) can be easily evaluated, giving
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2 Yo p—1
5°H0) =S (vo)—kg=L—In[(2— —E 12— r—
(0)=Seq(v0)—ks 35 (2= K)rlp (0)+kp - Inl (2 k)r]f0 dy(l+y#)2
2 Yo pn—1 2—k 2+pu—k
+k A d _ry- _1\» Yy
B(Z—k)rfo Y Aty P 2—k | 24p—k
y _ 2—k 2—k 24+u—k
X [y y K1+ L x :
Jodr '™ atyin | exp 2=k T2tk (43
Now, we introduce the new variables
2—k
Toasoe T eser (A6)
and use the identity
Yo pn—1
Se(vo)=—kpp? [ ‘dy Iny—L——.
«(%o sp? [ “dyIny g (A7)
The result, in terms of the parameters p, v, 8 defined in Sec. IV, is
18 zv7!
Sea(0)=—kgzvInpp(0)—kg —
=~k npp0) =k [ i
1 z 1
_ v v ViV ViV . A8
X [lnz exp 1+ P fodx(l-i-px JInxexp |x |1+ TP ] (A8)

Now, we put Inx =Inz +In(x /z), and rewrite the double integral in terms of z and ¢ =x /z. After some very simple

algebraic manipulation, Eq. (A8) becomes

S0)=—kzvp (0)lnp—k v — 2 _ex
BVP p—Kp f (1+p" V)2 1Y
1/8 zv vzv
+kgvip” dz—2——exp | —z |1+ 25—
BVP fo (1+p7z )2 P 1+v

To arrive to Eq. (6.10) we only have to introduce u =1—¢.

—Z

Inz
1 v, Vt'V
dt Int(1+p*z"t" 1+ 22
fo nt(1+p*z"t")exp |z 1w (A9)
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