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Abstract. In 1997 Pták defined generalized Hankel operators as follows: Given two
contractions T1 ∈ B(H1) and T2 ∈ B(H2), an operator X : H1 → H2 is said to be a
generalized Hankel operator if T2X = XT ∗

1 and X satisfies a boundedness condition that
depends on the unitary parts of the minimal isometric dilations of T1 and T2. This approach,
call it (P), contrasts with a previous one developed by Pták and Vrbová in 1988, call it
(PV), based on the existence of a previously defined generalized Toeplitz operator. There
seemed to be a strong but somewhat hidden connection between the theories (P) and (PV)
and we clarify that connection by proving that (P) is more general than (PV), even strictly
more general for some T1 and T2, and by studying when they coincide. Then we characterize
the existence of Hankel operators, Hankel symbols and analytic Hankel symbols, solving in
this way some open problems proposed by Pták.
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1. Introduction

What objects should be called generalized Toeplitz or Hankel operators? Toeplitz
and Hankel operators on the Hardy space H2 are two of the most important and
widely studied classes of operators on Hilbert spaces (see [6], [9], [10], [19], [21], [31],
[32], [35], [43] or [46]). These classes are intimately related from its very definition:
Every function ϕ ∈ L∞(T) defines a Toeplitz operator Tϕ and a Hankel operator Hϕ

by
Tϕ : H2 → H2

f → P+(ϕ · f)
and

Hϕ : H2 → H2
−

f → P−(ϕ · f)

This research has been partially supported by la Consejería de Educación y Ciencia de
la Junta de Andalucía and by la Dirección General de Investigación Científica y Técnica,
project PB97-0706.
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where P+ is the orthogonal projection from L2(T) onto H2 and P− = 1 − P+ is the
orthogonal projection onto H2

−. In the language of dilation theory, Tϕ and Hϕ are
compressions of the multiplication (or Laurent) operator Mϕ induced by ϕ. This
function ϕ is called the symbol of Tϕ (it is unique) and a symbol of Hϕ (it is not
unique; the kernel of the application ϕ → Hϕ is H∞, whose functions are called
analytic symbols).

Toeplitz and Hankel operators satisfy simple relations that characterize these
classes. The characteristic relation for Hankel operators was given by Nehari in
1957 [31] and it tells us that a bounded linear map X : H2 → H2

− is a Hankel
operator if and only if XS = S∗

−X where S is the unilateral forward shift in H2

defined by (Sf)(ζ) := ζ · f(ζ) and S− is the unilateral forward shift in H2
− de-

fined by (S−f)(ζ) := ζ · f(ζ). The characteristic relation for Toeplitz operators was
given by Brown and Halmos in 1963 [10] and it tells us that a bounded linear map
X : H2 → H2 is a Toeplitz operator if and only if X = S∗XS.

It is no wonder that a number of possible generalizations of the notion of a Toeplitz
or Hankel operator have been proposed in literature. To start with, one may sub-
stitute L2(T) by some complex L2(µ) and H2 by a suitable subspace of analytic
functions (without the aim of being exhaustive, we refer the reader to, e.g., [2], [3],
[4], [7], [13], [14], [25], [44], [45] or [46] and references therein). In this approach, the
role of symbol is played by functions from L∞(µ). More generally, one may start
with an algebra A of continuous functions on a compact and Hausdorff topological
space, and with a probability measure ν representing a character of A. Then L2(ν)
substitutes for L2(T) and the closure of A in L2(ν) substitutes for H2. This leads
to a generalization that preserves the harmonic flavour of the duality between T and
Z (see [16] or [30] and the references in the latter paper). One more way: treat
Hankel and Toeplitz operators as bilinear forms and generalize them by considering
bilinear forms having a similar behaviour (as in [1], [12] or [29] where one can also
find further references).

In this paper we want to concentrate on generalizations made by exploiting the
properties of the characteristic relations. Namely, let T1 and T2 be two contrac-
tions defined, respectively, on Hilbert spaces H1 and H2 and call X : H1 → H2 a
generalized Toeplitz operator if X = T2XT ∗

1 and a generalized Hankel operator if
T2X = XT ∗

1 . The purpose of this way of extending the classical notions of Toeplitz
and Hankel operators is two-fold: on the one hand, to obtain new operators that share
some of the properties that make these classes important and, on the other hand,
to find out which of these interesting properties of the classical case depend only
on the characteristic relations and not on the machinery of complex function theory
that sometimes is used to prove them. For Toeplitz operators, this line of research
was started, to the best of authors’ knowledge, by Douglas [18] and Sz.-Nagy and
Foiaş [41], [42]. In 1988 Pták and Vrbová [37] undertook the problem of obtaining an
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abstract analogue for Hankel operators, something that had been previously treated
in the particular case when T1 and T2 are backward shifts of arbitrary multiplicity
by Rosenblum [39], Page [33], Bonsall and Power [8] and Peller [34].

In this approach, an essential problem—already identified by Douglas, Sz.-Nagy
and Foiaş in the Toeplitz case—is to find out what operators play the role of symbols.
In the classical case, the symbols are multiplication operators induced by functions
from L∞(T) or, from another point of view, operators that commute with the unitary
bilateral shift V defined in L2(T) by (V f)(ζ) := ζ · f(ζ). The fact that V and V ∗

are the minimal isometric dilations of the backward shifts S∗
− and S∗, respectively,

suggests, as is the case, that operators intertwinning the minimal isometric dilations
of T1 and T2 and the structure of these minimal isometric dilations (including lifting
theorems) must be of the greatest importance for the problem at hand. Pták and
Vrbová started by considering common symbols for Toeplitz and Hankel operators.
Their research revealed a surprising fact: a certain boundedness condition must
be satisfied by X in order to ensure that the Hankel type intertwinning relation
T2X = XT ∗

1 can be lifted. This boundedness condition, that will be described later,
is trivially satisfied in the classical case and, more generally, also when T1 and T2

are backward shifts, so that one of the main virtues of Pták and Vrbová’s paper [37]
is to uncover its true meaning in the general approach. More recently, Pták [36] has
proposed that it is more natural to consider different, rather than common, sets of
symbols for Toeplitz and Hankel operators. These two approaches, let us call them
(PV) and (P), yield exactly the same class of generalized Toeplitz operators but
not the same class of generalized Hankel operators and Prof. Pták encouraged us to
analyze and clarify the relationship between the theories (PV) and (P). The purpose
of this paper is to show that, indeed, (P) is more natural and strictly more general
than (PV), to study when these theories provide the same classes of generalized
Hankel operators and to extend to the (P)-framework a number of results given
in the (PV)-framework that depend on the notions of the Hankel operator or the
analytic symbol. This research is continued in our paper [26] where we study finite-
rank and compact generalized Hankel operators. We also refer the interested reader
to our papers [27] and [28], which contains of a number of remarks, examples and
results about invertibility and spectral properties of generalized Toeplitz operators.

Prof. V. Pták, who introduced us to this interesting topic and encouraged us to
continue his line of research, died one year after this paper was completed. During
almost fifteen years we had very close contact with him and his research group. His
comments helped us to search in the right directions and to clarify some obscure
points. We will miss very much the continuous flow of lively and interesting discus-
sions that we had with him. We take this opportunity to thank, for their hospitality
during our visits, to other members of the Mathematical Institute of the Academy of
Sciences of the Czech Republic; notably M. Fiedler, V. Müller and, in illo tempore,
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J. Fuka and P. Vrbová. We also thank V. Vasyunin (Steklov Mathematical Institute,
St. Petersburg) for his helpful remarks and simplifications of some of our original
proofs.

2. Terminology and Notation

Our terminology and notation will be mostly standard, e.g., given two Hilbert
spaces H and K , we denote by B(H , K ) the set of all operators (:= bounded
linear mappings) from H into K and we simply write B(H ) if K = H . The
range X(H ) of an operator X ∈ B(H , K ) will be denoted by ran(X) and its kernel
by ker(X). However, and although we refer the reader to the excellent books by
Böttcher and Silbermann [9], Douglas [19], Halmos [20], [21], Nikolskii [32], Young
[43] and Sz.-Nagy and Foiaş [40], let us fix some of the (maybe not so standard)
notation that will be used in the sequel.

We have already fixed S, S− and V for the usual forward shifts in H2, H2
− and

L2(T). Let T be a contraction defined on a Hilbert space H . We denote by U the
minimal isometric dilation of T ; this isometry U is defined on a Hilbert space K

and we will denote by P (H ) the orthogonal projection from K onto H , by H ⊥

the orthogonal complement of H in K , and by R the unitary part of the Wold
decomposition of U (please note that if we had followed strictly the notation of [40],
then we would have written K+ and U+ instead of K and U). In what follows,
we will mostly deal with two contractions T1 and T2 defined on respective Hilbert
spaces H1 and H2, so we will write K1, K2, and so on; in particular, a very useful
operator will be the co-isometry T̃2 := (U2

∣∣H ⊥
2 )∗.

3. Theories (PV) and (P): Description and Comparison

We start by describing in some detail the approaches that we have called (PV)
and (P); the proofs can be found in the corresponding papers [37] and [36]. The
reader must be aware of the following fact: In [37] the operators are defined from
H2 into H1 (from K2 into K1, etc.). To make the comparison between (PV) and
(P) possible, we have rewritten the definitions and results of [37] interchanging the
subindices 2 and 1.

Theory (PV). An operator Y : K1 → K2 is said to be a symbol (with respect
to T1 and T2) if Y = U2Y U∗

1 . The set of all symbols is denoted by SPV(T1, T2).
These symbols are operators defined essentially from R1 into R2 because every sym-
bol Y satisfies Y = P (R2)Y P (R1). This is the reason why these spaces R1 and
R2 are so important in the generalized theory of Toeplitz and Hankel operators.
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This importance is hidden in the classical case because if T1 = T2 = S∗, then
R1 = K1 = R2 = K2 = L2(T). Note that there are no non-zero symbols if either
R1 or R2 is {0}—for instance if either T1 or T2 is a shift operator. Every symbol Y

defines two operators TY ∈ B(H1, H2) and HY ∈ B(H1, H
⊥

2 ) by

TY := P (H2)Y
∣∣H1 and HY := P (H ⊥

2 )Y
∣∣H1.

These operators satisfy the relations

TY = T2TY T ∗
1 and HY T ∗

1 = (U2

∣∣H ⊥
2 )∗HY .

The operator HY also satisfies the following boundedness condition: there exists
c > 0 such that for all h1 ∈ H1 and all h2 ∈ H ⊥

2 the following inequality holds:

| 〈HY h1, h2〉 | � c‖P (R1)h1‖ ‖P (R2)h2‖.

The minimum of the constants c appearing above will be denoted by ‖HY ‖R. Op-
erators satisfying this condition were called R-bounded (with respect to T1 and T2)
by Pták and Vrbová. This condition, as we will make precise immediately, plays
an essential role in the searching of a symbol by lifting a Hankel-type intertwinning
relation.

An operator X ∈ B(H1, H2) is said to be a Toeplitz operator (with respect to
T1 and T2) if X = T2XT ∗

1 . The fundamental lifting theorem for Toeplitz operators
(proved by different approaches in [18], [41], [42], [37] and [36]) says that they have a
unique symbol: An operator X : H1 → H2 is a Toeplitz operator if and only if there
is a unique symbol Y such that X = TY , in which case ‖X‖ = ‖Y ‖.

An operator X ∈ B(H1, H ⊥
2 ) is said to be a Hankel operator (with respect to

T1 and T2) if X is R-bounded and (U2

∣∣H ⊥
2 )∗X = XT ∗

1 . The fundamental lifting
theorem for Hankel operators [37] says that they have (non-unique) symbols: An
operator X : H1 → H ⊥

2 is a Hankel operator if and only if there is a symbol Y

such that X = HY , in which case a symbol Y can be found such that ‖X‖R =
‖Y ‖. Pták and Vrbová provided examples of non-R-bounded operators satisfying
the intertwinning relation (U2

∣∣H ⊥
2 )∗X = XT ∗

1 .
The classes of Toeplitz and Hankel operators defined in this (PV)-framework will

be denoted, respectively, by TPV(T1, T2) and HPV(T1, T2).

Theory (P). Now Pták proposed to consider different, as the opposite to
common, sets of symbols for Toeplitz and Hankel operators. The (P)-approach
to Toeplitz operators is simply the same as (PV): the (P)-symbols for Toeplitz
operators—now called Toeplitz symbols—are the same as the (PV)-symbols and the
(P)-Toeplitz operators are defined exactly as the (PV)-Toeplitz operators; shortly,

TPV(T1, T2) = TP(T1, T2) and SPV(T1, T2) = T SP(T1, T2).
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For Hankel operators, the stress is put on the intertwinning relation by itself rather
than in attaching them to a previously defined Toeplitz operator, as it was in the
(PV)-approach. An operator Z : K1 → K2 is said to be a Hankel symbol (with
respect to T1 and T2) if U2Z = ZU∗

1 . The set of all Hankel symbols is denoted by
HSP(T1, T2). Hankel symbols are also essentially in B(R1, R2) because every Hankel
symbol Z satisfies Z = P (R2)ZP (R1).

Every Hankel symbol Z defines an operator HZ : H1 → H2 by HZ := P (H2)Z
∣∣H1.

This operator HZ satisfies the intertwinning relation T2HZ = HZT ∗
1 and also a

boundedness condition, which we will call (PV)-boundedness (with respect to T1

and T2), which is similar but not equivalent to R-boundedness: there exists c > 0
such that for all h1 ∈ H1 and all h2 ∈ H2 the following inequality holds:

| 〈HZh1, h2〉 | � c‖P (R1)h1‖ ‖P (R2)h2‖.

The minimum of the constants c appearing above will be denoted by ‖HZ‖PV; note
that ‖Z‖ � ‖HZ‖PV. The reason why (PV)-boundedness is not the same as R-
boundedness is the following: R-boundedness is defined for operators from H1 into
H ⊥

2 , which is a space defined a posteriori, after considering T2 and K2, whereas
(PV)-boundedness is defined for operators from H1 into H2, which is a space given
a priori. Moreover, since R2 is the unitary part of the minimal isometric dilation of
the contraction T2, the roles of H2 and H ⊥

2 are not interchangeable with respect to
these objects.

We say that an operator X : H1 → H2 is a Hankel operator if X is (PV)-bounded
and T2X = XT ∗

1 . The key lifting theorem (given in [38] and [36]) says that Hankel
operators have Hankel symbols: An operator X : H1 → H2 is a Hankel operator if
and only if there is a Hankel symbol Z such that X = HZ , in which case a symbol Z
can be found such that ‖Z‖ = ‖X‖PV. The class of (P)-Hankel operators will be
denoted by HP(T1, T2). Pták provided examples of non-(PV)-bounded operators
satisfying the intertwinning relation T2X = XT ∗

1 .

The generalization proposed by Rosenblum [39] and Page [33] fits into this scheme:
Let T be the backward shift operator defined on a vector-valued Hardy space H =
H2(M ) by the relation (Tf)(ζ) = ζ−1

(
f(ζ)−f(0)

)
. Then U is the (unitary) bilateral

shift defined on K = R = L2(M ) by (Uf)(ζ) = ζ−1f(ζ), hence (PV)-boundedness
holds trivially and, therefore, the class of Hankel operators HP(T, T ) coincides with
the class defined by Rosenblum of all operators X : H2(M ) → H2(M ) such that
TX = XT ∗. The set of Hankel symbols is then the set of all operators Z : L2(M ) →
L2(M ) such that UZ = ZU∗; if M is separable then this set can be identified
with L∞(B(M )) via Z ↔ JMϕ where Mϕ is the multiplication operator induced
by a function ϕ ∈ L∞(B(M )) and J is the unitary operator defined on L2(M ) by
(Jf)(ζ) = f(ζ−1).
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Comparison between (PV) and (P). We have already pointed out that the
theories (PV) and (P) are the same for Toeplitz operators but not for Hankel op-
erators; well, at least not formally. Theory (P) is apparently more general because
the range space H2 of a (P)-Hankel operator is free, in the sense that it is not the
orthogonal of some previously fixed space in the superspace where the minimal iso-
metric dilation of T2 lives. If we compare the definitions of a Hankel operator in
both theories:

(PV): X : H1 → H ⊥
2 is R-bounded and (U2

∣∣H ⊥
2 )∗X = XT ∗

1 ,

(P): X : H1 → H2 is (PV)-bounded and T2X = XT ∗
1 ,

we can see that the connection between them is given by the co-isometry T̃2 defined
by T̃2 := (U2

∣∣H ⊥
2 )∗ because every (PV)-Hankel operator satisfies the (P)-type

intertwinning relation T̃2X = XT ∗
1 . Then, what is the relation between the

R-boundedness with respect to T1 and T2 and the (PV)-boundedness with respect
to T1 and T̃2? We prove now that the former implies the latter.

Theorem 1. Let X be a (PV)-Hankel operator with respect to T1 and T2. Then
X is a (P)-Hankel operator with respect to T1 and T̃2. In other words,

HPV(T1, T2) ⊂ HP(T1, T̃2).

This theorem tells us that for Hankel operators theory (P) is more general than
theory (PV) because every (PV)-Hankel operator is also a (P)-Hankel operator. The
converse is not true as we will see in Example 3 below.

Proof. X is an operator in B(H1, H ⊥
2 ) and, as we know already, X satisfies

T̃2X = XT ∗
1 , so we have to check that X is (PV)-bounded with respect to T1 and T̃2.

Since X is R-bounded with respect to T1 and T2, it follows that there is a constant
c > 0 such that

| 〈Xh1h2〉 | � c‖P (R1)h1‖ ‖P (R2)h2‖ for all h1 ∈ H1 and all h2 ∈ H ⊥
2 .

Now, T̃2 is a co-isometry defined on H ⊥
2 . Its minimal isometric dilation is a unitary

operator Ũ2 defined on some space K̃2 that, therefore, coincides with the corre-
sponding R̃2 so that R̃2 ⊃ H ⊥

2 . This implies that for all h1 ∈ H1 and h2 ∈ H ⊥
2 we

have

| 〈Xh1, h2〉 | � c‖P (R1)h1‖ ‖P (R2)h2‖ � c‖P (R1)h1‖ ‖h2‖
= c‖P (R1)h1‖ ‖P (R̃2)h2‖,

and this tells us that X is (PV)-bounded with respect to T1 and T̃2. This concludes
the proof that X ∈ HP(T1, T̃2). �

329



Coincidence of (PV) and (P) for Hankel operators. If T1 = T2 = S∗

on H2 then T̃2 = S∗
− and both HPV(T1, T2) and HP(T1, T̃2) equal the set of all

classical Hankel operators, and both SPV(T1, T2) and HSP(T1, T̃2) equal the set of
all multiplication operators induced by functions from L∞(T). In order to figure out
what assumptions would imply that HPV(T1, T2) = HP(T1, T̃2), let us make some
heuristics about the corresponding symbols.

Every (PV)-symbol Y ∈ SPV(T1, T2) verifies Y = U2Y U∗
1 . Every (P)-Hankel

symbol Z ∈ HSP(T1, T̃2) verifies Ũ2Z = ZU∗
1 where Ũ2 is the minimal isometric

dilation of T̃2. This dilation Ũ2 is a unitary operator because T̃2 is a co-isometry,
hence Z = (Ũ2)∗ZU∗

1 . In order to have that every (PV)-symbol Y is a (P)-Hankel
symbol, the relations Y = U2Y U∗

1 and Y = (Ũ2)∗Y U∗
1 should be essentially the

same. Now, on the one hand, (Ũ2)∗ is a unitary operator defined on a space K̃2 that
contains H ⊥

2 . On the other hand, U2 is unitary on R2, so both situations fit into
the same frame if we require H ⊥

2 to be contained in R2.

As we will prove, this condition H ⊥
2 ⊂ R2 is exactly what we need, but in its

present form it is not adequate for our purposes. As it turned out after a number of
fruitful discussions with V. Pták and V. Vasyunin, this condition can be reformulated
in various different ways and leads to some unexpected facts. In particular, it implies
that T2 is a power partial isometry, i.e., that T n

2 is a partial isometry for every
n ∈ N. Halmos and Wallen [22] proved that every power partial isometry is a direct
sum whose summands are unitary operators, pure isometries, pure co-isometries and
truncated shifts (or finite Jordan blocks in the language of matrices). As we are
about to show in Lemma 1, due to V. Vasyunin, the inclusion H ⊥

2 ⊂ R2 holds
if and only if T2 is a power partial isometry without truncated shifts or, in other
words, with no nilpotent part. Then we will give an adequate description of Ũ2 and
K̃2 under the assumption H ⊥

2 ⊂ R2. Power partial isometries form a nice class of
operators with some interesting applications. For more information about them we
refer the reader to the papers [5], [11], [15] and [24].

Lemma 1. H ⊥ ⊂ R if and only if T can be decomposed as T = S1 ⊕ S∗
2 ⊕ V3,

where S1 and S2 are forward shift operators and V3 is unitary.

Proof. The “if” implication is easy. To start with the “only if” implication,
take V3 as the unitary part of T in the Langer-Wold decomposition for contractions
[40, Theorem 3.2]. It remains to prove that if T is completely non-unitary and
H ⊥ ⊂ R then T can be decomposed as T2 = S1 ⊕ S∗

2 . To see this, use the Sz.-
Nagy and Foiaş’s function model for the minimal isometric dilation of a completely
non-unitary contraction [40], Chapter VI]: There exists two Hilbert spaces D and
D∗ (the defect spaces of T and T ∗), a contraction-valued analytic function Θ (the
characteristic function of T ) and a positive operator-valued function ∆ (∆ = (I −
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Θ∗Θ)1/2) such that

K = H2(D∗) ⊕ ∆L2(D),

H =
[
H2(D∗) ⊕ ∆L2(D)

]
�

[
Θ ⊕ ∆

]
H2(D),

H ⊥ = ΘH2(D) ⊕ ∆H2(D),

R = {0} ⊕ ∆L2(D).

Therefore, H ⊥ ⊂ R if and only if Θ = 0. It follows that this happens if and only if T

decomposes as the direct sum of a forward unilateral shift operator plus a backward
unilateral shift operator because if Θ = 0, then ∆ = I, hence H = H2(D∗)⊕H2

−(D)
and T (f⊕g) = zf⊕ f−f(0)

z . In other words, T it is the orthogonal sum of the forward
shift of multiplicity dim(D∗) and the backward shift of multiplicity dim(D). �

Lemma 2. Let T ∈ B(H ) be a contraction such that H ⊥ ⊂ R. Let Hn ⊂ H

be the reducing subspace where the completely non-unitary part of the Langer-
Wold decomposition of T is defined. Then the minimal isometric dilation of T̃ :=
(U

∣∣H ⊥)∗ is the unitary operator U∗∣∣K̃ , where K̃ = (Hn ∩ R) ⊕ H ⊥.

Proof. Use Lemma 1 to decompose H into three T -reducing subspaces H =
H1 ⊕ H2 ⊕ H3 such that S1 := T

∣∣H1 is a forward shift operator, S∗
2 := T

∣∣H2 is
a backward shift operator and V3 := T

∣∣H3 is unitary. It is clear that the minimal
isometric dilation of T can be written as

U = S1 ⊕ V ∗
2 ⊕ V3

where V2 is a bilateral forward shift defined on some space K2 ⊃ H2. Hence we can
write K = H1 ⊕ K2 ⊕ H3 and, consequently,

R = {0} ⊕ K2 ⊕ H3,

H ⊥ = {0} ⊕ H ⊥
2 ⊕ {0},

Hn = H1 ⊕ H2 ⊕ {0}.

Therefore, the co-isometry T̃ = (U
∣∣H ⊥)∗ can be identified with (V ∗

2

∣∣H ⊥
2 )∗ and this

is a backward shift operator having, as is easy to check, the same multiplicity as S∗
2 .

It follows that the minimal isometric dilation of T̃ is unitarily equivalent to V2, so
we may write

K̃ = {0} ⊕ K2 ⊕ {0} and Ũ = 0 ⊕ V2 ⊕ 0 = U∗∣∣K̃ .

Finally, note that

(R ∩ Hn) ⊕ H ⊥ =
[
{0} ⊕ H2 ⊕ {0}

]
⊕

[
{0} ⊕ H ⊥

2 ⊕ {0}
]

= K̃ .

The fact that K̃ is U∗-reducing follows from the construction made. �
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Theorem 2. If H ⊥
2 ⊂ R2 then

SPV(T1, T2) ⊃ HSP(T1, T̃2) and HPV(T1, T2) = HP(T1, T̃2).

Let T2u be the unitary part of the Langer-Wold decomposition of T2. Then the
equality SPV(T1, T2) = HSP(T1, T̃2) holds if and only if either R1 = {0}, or T2

is completely non-unitary, or the unitary operators T2u and U1

∣∣R1 are relatively
singular.

Proof. Let Z ∈ HSP(T1, T̃2) be a (P)-Hankel symbol. Then Lemma 2 above
tells us that Ũ2 = U∗

2

∣∣K̃2, where K̃2 = (H2n ∩R2)⊕H ⊥
2 , so that the intertwinning

relation that Z verifies is (U∗
2

∣∣K̃2)Z = ZU∗
1 . Since we have Z = P (K̃2)Z, the

intertwinning relation can be written as U∗
2 Z = ZU∗

1 . Note that K̃2 ⊂ R2, hence
Z = P (K̃2)Z = P (R2)Z takes its values in R2 ⊂ K2. Next, by using that U∗

2 is
unitary in its reducing subspace R2, it follows that Z = U2ZU∗

1 . This proves that
Z ∈ SPV(T1, T2).

Theorem 1 says that HPV(T1, T2) ⊂ HP(T1, T̃2). Take now X ∈ HP(T1, T̃2) and
let Z ∈ HSP(T1, T̃2) be a (P)-Hankel symbol for X so that X = P (H ⊥

2 )Z
∣∣H1. As

we have just proved, Z ∈ SPV(T1, T2). Therefore, X ∈ HPV(T1, T2).
To see when the equality SPV(T1, T2) = HSP(T1, T̃2) holds, we will use the de-

composition given in Lemma 1 but written in matrix terms for the sake of con-
venience: There are three T2-reducing subspaces H21, H22 and H23 such that
H2 = H21 ⊕ H22 ⊕ H23 and, with respect to this decomposition, T2 can be written
as

T2 =


S1 0 0

0 S∗
2 0

0 0 V3




where Si ∈ B(H2i) (i = 1, 2) are forward shift operators and V3 ∈ B(H23) = T2u is
unitary. From the proof of Lemma 2 we know that

U2 =


S1 0 0

0 V ∗
2 0

0 0 V3


 and Ũ2 =


 0 0 0

0 V2 0
0 0 0


 ,

where the bilateral backward shift operator V ∗
2 ∈ B(K22) is the minimal isometric

dilation of S∗
2 . Now Z ∈ HSP(T1, T̃2) if and only if Z ∈ B(K1, K̃2) and Ũ2Z = ZU∗

1

or, equivalently, Z = (Ũ2)∗ZU∗
1 . In matrix terms, this means that HSP(T1, T̃2) can

be identified with the set

Z : K1 → K2 : Z =


 0

Z2

0


 and


 0

Z2

0


 =


 0 0 0

0 V ∗
2 0

0 0 0





 0

Z2

0


 U∗

1


 .
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Analogously, SPV(T1, T2) can be described as

Y : K1 → K2 : Y =


 Y1

Y2

Y3


 and


 Y1

Y2

Y3


 =


 S1 0 0

0 V ∗
2 0

0 0 V3





Y1

Y2

Y3


U∗

1


 .

Consequently, HSP(T1, T̃2) equals SPV(T1, T2) if and only if both Y1 and Y3 are zero.
Now, Y1 = P (H21)Y is always zero because Y1 = S1Y1U

∗
1 so that Y1 ∈ SPV(T1, S1),

and this set reduces to {0} because S1 is a shift operator. On the other hand,
Y3 = P (H23)Y verifies Y3 = V3Y3U

∗
1 , hence Y3 ∈ SPV(T1, V3) and, according to

[37, 4.2], this set reduces to {0} if and only if either H23 = H2u reduces to {0}, or
R1 = {0}, or the unitary operators U1

∣∣R1 and V3 = T2u are relatively singular. �

Example 1. If T2 is a backward shift operator on, say, H2 = H2(H ) then U2 is
a unitary operator, a bilateral shift, on K2 = R2 = L2(H ) and this space contains
H ⊥

2 = H2
−(H ). Then we have

HSP(T1, T̃2) = SPV(T1, T2) and HPV(T1, T2) = HP(T1, T̃2)

so that both theories coincide. If, moreover, we take T1 = T2 then (PV)-boundedness
and R-boundedness are both the same as the usual boundedness. This is what
happens in the classical case: one takes T1 = T2 = S∗, hence T̃2 = S∗

− and the
equality XS = S∗

−X characterizes Hankel operators in both (PV) and (P).

Example 2. Take T1 = S∗ and T2 = V ∗ so that T2 is unitary and H ⊥
2 = {0}.

Then
Y ∈ SPV(S∗, V ∗) ⇐⇒ Y = V ∗Y V ⇐⇒ Y V = V Y.

Therefore, the set of symbols SPV(S∗, V ∗) coincides with the set of all multiplication
operators induced by functions in L∞(T). We also have K̃2 = (H2n ∩ R2)⊕ H ⊥

2 =
{0}, so that HSP(T1, T̃2) = {0}: this proves that the inclusion given in Theorem 2
can be strict. Note also that both classes of the (PV)- and the (P)-Hankel operators
are trivial, although the class of the (PV)-symbols is not trivial; we will see in the
next section that this cannot happen within the theory (P).

Example 3. Let T2 be the zero operator in C . It is well-known that U2 = S in
H2 so that R2 = {0}, SPV(T1, T2) = {0} and, consequently, H ⊥

2 �⊂ R2. On the
other hand, T̃2 = S∗ in H2, so that Ũ2 = V ∗ in L2. Therefore, Y ∈ HSP(T1, T̃2) if
and only if V ∗Y = Y U∗

1 . Now, if we take the co-isometry T1 = S∗
− then U1 = V

and we have that Y ∈ HSP(T1, T̃2) if and only if Y commutes with V . This tells us
that HSP(T1, T̃2) coincides with the set of all multiplication operators induced by
functions in L∞(T) and thatHP(T1, T̃2) is the set of all bounded operators X : H2

− →
H2 such that S∗X = XS−, i.e., the adjoints of the classical Hankel operators. This
example shows that the theory (P) can be strictly more general that the theory (PV).
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Remarks. The theorems and examples above tell us that the theory (P) is more
general than the theory (PV) and can be strictly more general. Even when both
theories provide the same class of Hankel operators, under the hypothesis H ⊥

2 ⊂ R2,
the set of symbols for the (P)-approach is smaller than the set of (PV)-symbols, so
the former gives a more precise description.

The paper [37] contains a number of results that, as the notion of an analytic
symbol, depend on the definition of a Hankel operator. In the next section we will
show that most of these results hold also for the (P)-approach and that, in some
sense, we obtain sharper conclusions; e.g., we cannot have, as it may happen in the
(PV)-approach, that all non-zero Hankel symbols produce the zero operator as the
unique Hankel operator.

Since, from now on, we will work only within the (P)-framework, we will suppress
the corresponding subindex “P”.

4. Analytic Symbols

In the classical case, the set of analytic symbols is H∞ and it can be viewed as
the set of symbols such that the associated Toeplitz operator commutes with S or
also as the set of symbols such that the associated Hankel operator is zero. In our
case we have to deal with two different sets of analytic symbols, namely, analytic
Toeplitz symbols and analytic Hankel symbols.

Definition. A Toeplitz symbol Y is said to be analytic if P (H ⊥
2 )Y

∣∣H1 = 0;
the set of all analytic Toeplitz symbols is denoted by AT S(T1, T2). Thus a Toeplitz
symbol Y is analytic when the Hankel operator HY associated to Y in the (PV)-
approach is zero. A Toeplitz operator is said to be analytic if its symbol is analytic;
the set of all analytic Toeplitz operators will be denoted byAT (T1, T2). The existence
and a number of properties of analytic Toeplitz operators was already studied in [37].

A Hankel symbol Z is said to be analytic if its Hankel operator HZ = P (H2)Z
∣∣H1

is zero, and the set of all analytic Hankel symbols is denoted by AHS(T1, T2). Thus
AHS(T1, T2) is the kernel of the linear mapping Z ∈ HS(T1, T2) → HZ ∈ H(T1, T2).

We start by giving the (P)-version of Nehari’s Theorem. It follows easily from the
fundamental lifting theorem for (P)-Hankel operators quoted in the description of
the theory (P) and from the fact that ‖Z‖ � ‖HZ‖PV.

Theorem 3. Let M1 ⊂ H1 be a closed subspace such that

H0 := lin{T ∗n
1 (M1); n = 0, 1, 2, . . .}

is dense in H1. Let X : H1 → H2 be an operator satisfying T2Xh0 = XT ∗
1 h0 for all

h0 ∈ H0. Then the following assertions are equivalent:
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(a) X is (PV)-bounded.
(b) X is a Hankel operator.
If X satisfies (a) or (b) and Z ∈ HS(T1, T2) is a Hankel symbol for X then we

have ‖X‖PV = dist(Z,AHS(T1, T2)) and this infimum is attained.

We will now study when there exist non-trivial Hankel symbols, analytic Hankel
symbols and Hankel operators. The existence of non-zero Hankel symbols is easily
established.

Theorem 4. HS(T1, T2) reduces to {0} if and only if either R1 or R2 reduces
to {0}, or the unitary operators U∗

1

∣∣R1 and U2

∣∣R2 are relatively singular.

Proof. If either R1 or R2 is trivial then we already know thatHS(T1, T2)={0}.
Assume, then, that neither R1 nor R2 reduces to {0}. In this case, given Z ∈
HS(T1, T2) we have U2Z = ZU∗

1 and Z = P (R2)ZP (R1). Therefore, the relation
U2Z = ZU∗

1 can be written as (U2

∣∣R2)(Z
∣∣R1) = (Z

∣∣R1)(U∗
1

∣∣R1) so that, by [18],
HS(T1, T2) = {0} if and only if U∗

1

∣∣R1 and U2

∣∣R2 are relatively singular. �

Notation. In what follows, we will make an intensive use of a co-isometry, de-
noted by W , associated to a contraction T . The co-isometry W is defined on the
space P = P (R)H by W := (U∗∣∣P)∗. Note that if T is itself a co-isometry then
P = H and W = T . There is a number of properties of this co-isometry that
will be used and that the reader may find proved in [37] and [36]; in particular, the
minimal isometric dilation of W is the unitary operator U

∣∣R (see [37, 1.1], [36, 1.1
and 2.3] or [42]).

Pták’s idea of using this co-isometry is essential in the two-step proofs given in [36]:
first for the case when T1 and T2 are co-isometries and then for the general case by
using the corresponding W1 and W2. For Hankel operators and Hankel symbols,
the connection is given in the following lemma. Although some of the items in its
statement are proved and used in [37, 1.4] and [36, 2.5], they never appear explicitly.
For this reason, we find it convenient to give a complete proof.

Lemma 3. For every Hankel operator X ∈ H(T1, T2) there is an operator XW ∈
B(P1, P2) possessing the following properties:
(1) Xh1 = P (H2)XW P (R1)h1 for every h1 ∈ H1, and X has finite rank if and

only if XW has finite rank.
(2) XW = 0 if and only if X = 0; in other words, the operator XW is the only one

verifying the relation given above.
(3) XW is a Hankel operator with respect to W1 and W2.
(4) If Y ∈ HS(W1, W2) is a Hankel symbol for XW then Y P (R1) is a Hankel

symbol for X .
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(5) If Z ∈ HS(T1, T2) is a Hankel symbol for X then the restriction Z
∣∣R1 is a

Hankel symbol for XW .
(6) The correspondences given in (4) and (5)mapAHS(T1, T2) ontoAHS(W1, W2).

Proof. (1) Every X ∈ H(T1, T2) is (PV)-bounded, hence there exists c > 0
such that | 〈Xh1, h2〉 | � c‖P (R1)h1‖ ‖P (R2)h2‖ for all h1 ∈ H1 and h2 ∈ H2. Take,
on the one hand, h1 ∈ H1. Then

‖Xh1‖2 = | 〈Xh1, Xh1〉 | � c‖P (R1)h1‖ ‖P (R2)Xh1‖ � c‖P (R1)h1‖ ‖Xh1‖

and, therefore, ‖Xh1‖ � c‖P (R1)h1‖ for all h1 ∈ H1. The well-known Douglas’
lemma [17] says that there is an operator A : P1 → H2 such that ‖A‖ � c and
AP (R1)

∣∣H1 = X . Since P (R1)
∣∣H1 is dense in P1, it follows that A has finite rank

if and only if X has finite rank. On the other hand, for every h2 ∈ H2 we have

‖A∗h2‖ = sup{| 〈P (R1)h1, A
∗h2〉 | : ‖P (R1)h1‖ � 1}

= sup{| 〈AP (R1)h1, h2〉 | : ‖P (R1)h1‖ � 1}
= sup{| 〈Xh1, h2〉 | : ‖P (R1)h1‖ � 1} � c‖P (R2)h2‖.

Consequently, ‖A∗h2‖ � c‖P (R2)h2‖ and, again by Douglas’ lemma, it follows that
there exists an operator B : P2 → P1 such that A∗ = BP (R2)

∣∣H2 and ‖B‖ � c.
Again, B has finite rank if A∗ has finite rank. If we define XW := B∗ then
P (R2)XW = XW and we obtain

X = AP (R1)
∣∣H1 = (P (R2)

∣∣H2)∗XW P (R1)
∣∣H1 = P (H2)XW P (R1)

∣∣H1.

This proves (1).
(2) Assume that there is X0 ∈ B(P1, P2) such that P (H2)X0P (R1)

∣∣H1 = 0.
Then P (H2)X0 = 0 because P (R1)H1 is dense in P1. Since the range of X0 is
already contained in P2 it follows that ran(X0) ⊂ P2 ∩H ⊥

2 . Now, bearing in mind
that R2 = P2 ⊕ (H ⊥

2 ∩R2) [36, 2.3], we have that P2 ∩H ⊥
2 = {0} and, therefore,

that X0 = 0.
(3) Recall that the minimal isometric dilations of W1 and W2 are, respectively,

U1

∣∣R1 and U2

∣∣R2. Using the fact that XW ∈ B(P1, P2) verifies (1) and that
(U∗

1

∣∣P1)P (R1)
∣∣H1 = P (R1)T ∗

1 (see [36, 2.4]) we have

(P (R2)
∣∣H2)∗XW (U∗

1

∣∣P1)P (R1)
∣∣H1

= (P (R2)
∣∣H2)∗XW P (R1)T ∗

1

= P (H2)XW P (R1)T ∗
1 (because ran(XW ) ⊂ R2)

= XT ∗
1 = T2X = T2P (H2)XW P (R1)

∣∣H1

= T2(P (R2)
∣∣H2)∗XW P (R1)

∣∣H1 (because ran(XW ) ⊂ R2)
= (P (R2)

∣∣H2)∗(U∗
2

∣∣P2)∗XW P (R1)
∣∣H1 (by [36, 2.4], again).
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This proves, by continuity, that on P1 we have the equality

(P (R2)
∣∣H2)∗XW (U∗

1

∣∣P1) = (P (R2)
∣∣H2)∗(U∗

2

∣∣P2)∗XW .

Now note that (P (R2)
∣∣H2)∗ is injective in P2 because

ker
[
(P (R2)

∣∣H2)∗
]

= P2 �
[
ran(P (R2)

∣∣H2)
]

= {0},

therefore, XW (U∗
1

∣∣P1) = (U∗
2

∣∣P2)∗XW . This proves that XW verifies the charac-
teristic Hankel intertwinning relation. Since W1 and W2 are co-isometries, it fol-
lows automatically that XW is (PV)-bounded with respect to W1 and W2. Hence
XW ∈ H(W1, W2).

(4) Let Y ∈ HS(W1, W2) be a Hankel symbol for XW , that means Y ∈ B(R1, R2)
verifies (U2

∣∣R2)Y = Y (U1

∣∣R1)∗ and P (P2)Y
∣∣P1 = XW . Take Z := Y P (R1), then

P (H2)Z
∣∣H1 = P (H2)Y P (R1)

∣∣H1 = P (H2)P (P2)Y P (R1)
∣∣H1

because P (H2)P (P2) = P (H2)P (R2) [36, 2.3]. Therefore,

P (H2)Z
∣∣H1 = P (H2)XW P (R1)

∣∣H1 = X.

Moreover,

U2Z = U2Y P (R1) = (U2

∣∣R2)Y P (R1) = Y (U∗
1

∣∣R1)P (R1) = Y P (R1)U∗
1 = ZU∗

1

so that Z is a Hankel symbol for X .

(5) Let Z ∈ HS(T1, T2) be a Hankel symbol for X . Then, as we have already
pointed out, Z = P (R2)ZP (R1). This implies that the intertwinning relation U2Z =
ZU∗

1 can be written as (U2

∣∣R2)(Z
∣∣R1) = (Z

∣∣R1)(U1

∣∣R1)∗ and it follows that Y :=
Z

∣∣R1 is in HS(W1, W2). Let HY = P (P2)Y
∣∣P1 be the Hankel operator associated

to Y . Using again the relation P (H2)P (P2) = P (H2)P (R2) [36, 2.3], we obtain
that HY verifies

P (H2)HY P (R1)
∣∣H1 = P (H2)P (P2)Y P (R1)

∣∣H1

= P (H2)P (R2)ZP (R1)
∣∣H1 = P (H2)Z

∣∣H1 = X.

Therefore, the uniqueness proved in (2) tells us that HY = XW .

(6) Follows from (4), (5) and (2). �
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Lemma 4. If Z ∈ AHS(T1, T2) is an analytic Hankel symbol then X := Z
∣∣H1 is

an analytic Toeplitz operator with respect to T1 and T̃2.

Proof. Since Z is analytic we have that P (H2)Z
∣∣H1 = 0, hence X =

P (H ⊥
2 )Z

∣∣H1 so that X ∈ B(H1, H ⊥
2 ). Let us prove first that X ∈ T (T1, T̃2),

i.e., X = T̃2XT ∗
1 . Since, by the well-known properties of the minimal isometric

dilation [40], for i = 1, 2 the space Hi is U∗
i -invariant and T ∗

i = U∗
i

∣∣Hi, we have
P (H ⊥

i )U∗
i P (Hi) = 0 and this implies

T̃2XT ∗
1 = (U2

∣∣H ⊥
2 )∗(P (H ⊥

2 )Z
∣∣H1)(U∗

1

∣∣H1) = (U2

∣∣H ⊥
2 )∗P (H ⊥

2 )ZU∗
1

∣∣H1

= (U2

∣∣H ⊥
2 )∗P (H ⊥

2 )U2Z
∣∣H1 = P (H ⊥

2 )U∗
2 P (H ⊥

2 )U2Z
∣∣H1

= P (H ⊥
2 )U∗

2

[
P (H ⊥

2 ) + P (H2)
]
U2Z

∣∣H1 = P (H ⊥
2 )U∗

2 U2Z
∣∣H1

= P (H ⊥
2 )Z

∣∣H1 = X,

as was required. Now, to prove that X is analytic it suffices to show, according to
[37, 4.3], that (T̃2)∗X = XT ∗

1 . Since Z is analytic, we have P (H2)Z
∣∣H1 = 0 and,

therefore,
(T̃2)∗X = (U2

∣∣H ⊥
2 )X = U2P (H ⊥

2 )Z
∣∣H1 = U2Z

∣∣H1.

Using this and the relation U2Z = ZU∗
1 , we have

(T̃2)∗X = U2Z
∣∣H1 = ZU∗

1

∣∣H1 = P (H ⊥
2 )ZU∗

1

∣∣H1 = XT ∗
1 ,

which completes the proof. �

Theorem 5. Let N1 and N2 be, respectively, the wandering subspaces of the shift
parts of the Wold decompositions of U∗

1

∣∣P1 and U∗
2

∣∣P2. Then AHS(T1, T2) �= {0}
if and only if neither N1 nor N2 reduces to {0}.

Proof. We will make the proof in two steps: we assume first that both T1 and
T2 are co-isometries and this will be used afterwards to complete the proof in the
general case.

So assume that T1 and T2 are co-isometries. Then Ri = Ki, Pi = Hi for
i = 1, 2. Note also that, in this case, U∗

i

∣∣Pi = T ∗
i for i = 1, 2. We start by

proving that AHS(T1, T2) = {0} if and only if AT S(T1, T̃2) = {0} where, as before,
T̃2 = (U2

∣∣H ⊥
2 )∗.

(⇐) Take Z ∈ AHS(T1, T2), then Lemma 4 tells us that X := P (H ⊥
2 )Z

∣∣H1 =
Z

∣∣H1 is in AT (T1, T̃2). Assume that AT S(T1, T̃2) = {0}. Then AT (T1, T̃2) = {0},
because the correspondence between the Toeplitz operators and the Toeplitz symbols
is 1-1, and hence ZH1 = 0. Use that U1 is an isometry to write Z = U2ZU1 and,
inductively, Z = Un

2 ZUn
1 for all n ∈ N. Then Z(H1) = Un

2 ZUn
1 (H1) = {0} and,
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consequently, ZUn
1 (H1) = {0} for all n ∈ N. Now, by using that {Un

1 H1 : n =
0, 1, 2, . . .} is dense in K1, we deduce that ZK1 = {0}; that is, Z = 0.

(⇒) Since T2 is a co-isometry we have that H ⊥
2 ⊂ R2. Now we may use this

condition to prove, by using an argument similar to the one that was made to prove
the first part of Theorem 2, that T S(T1, T̃2) ⊂ HS(T1, T2). Let us see that this
inclusion implies the inclusionAT S(T1, T̃2) ⊂ AHS(T1, T2): Every Y ∈ AT S(T1, T̃2)
is, on the one hand, in T S(T1, T̃2) so that Y is also in HS(T1, T2); on the other hand,
such Y verifies Y H1 ⊂ H ⊥

2 because H ⊥
2 is the space where T̃2 is defined; therefore,

P (H2)Y
∣∣H1 = 0. This proves that Y ∈ AHS(T1, T2) and we may conclude that if

AHS(T1, T2) reduces to {0} then so does AT S(T1, T̃2).
This proves that AHS(T1, T2) = {0} if and only if AT S(T1, T̃2) = {0}. Since,

again by the well-known properties of the minimal isometric dilation, (T̃2)∗ = U2

∣∣H ⊥
2

is completely non-unitary, we may use Pták and Vrbová’s characterization of the ex-
istence of non-trivial analytic Toeplitz symbols [37, 4.6] to deduce that AT S(T1, T̃2)
does not reduce to {0} if and only if both N1 and Ñ2 are non-trivial, where N1 is
as defined in the statement and Ñ2 is the wandering subspace of the shift part of
the Wold decomposition of (Ũ2)∗

∣∣(H ⊥
2 ∩ R̃2). Since T̃2 is a co-isometry, we already

know that R̃2 = K̃2, hence (H ⊥
2 ∩ R̃2) = H ⊥

2 . On the other hand, we also know
that (T̃2)∗ = (Ũ2)∗

∣∣H ⊥
2 by the well-known properties of the minimal isometric dila-

tion. It follows from these facts that Ñ2 is, indeed, the wandering subspace of the
shift part of the Wold decomposition of (T̃2)∗ = U2

∣∣H ⊥
2 or, in the notation of [42],

that Ñ2 = L2 = (U2 − T2)H2. It is also well-known that L2 is a Hilbert space of
the same dimension as N2, the wandering subspace of the shift part of the Wold
decomposition of T ∗

2 , hence dim(Ñ2) = dim(N2). Summarizing: AHS(T1, T2) does
not reduce to {0} if and only if both N1 and N2 are non-trivial, and this completes
the proof in the case when T1 and T2 are co-isometries.

Assume now that T1 and T2 are arbitrary contractions and consider the co-
isometries W1 := (U∗

1

∣∣P1)∗ and W2 := (U∗
2

∣∣P2)∗. Item (6) of Lemma 3 tells us
that

{Z
∣∣R1 : Z ∈ AHS(T1, T2)} = AHS(W1, W2).

Therefore, AHS(T1, T2) is non-trivial if and only if AHS(W1, W2) is non-trivial.
According to what we have already proved, we know that it is non-trivial if and only
if N1 and N2 do not reduce to {0}, where Ni is the wandering subspace of the shift
part of the Wold decomposition of W ∗

i = U∗
i

∣∣Pi for i = 1, 2. �

Theorem 6. H(T1, T2) = {0} if and only if HS(T1, T2) = {0}.

Proof. Clearly, HS(T1, T2) = {0} implies H(T1, T2) = {0}. Assume, then, that
HS(T1, T2) is not trivial. Theorem 4 tells us that neither R1 nor R2 is trivial and
that the unitary operators U∗

1

∣∣R1 and U2

∣∣R2 are not relatively singular. We have
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to see that these conditions imply that H(T1, T2) is non-trivial. By using Lemma 3,
it is clear that we may restrict ourselves to the case when T1 and T2 are non-zero
co-isometries. We will distinguish two subcases.

(1) Assume that the completely non-unitary parts H1n and H2n of the Wold
decompositions of, respectively, T ∗

1 and T ∗
2 are both non-trivial. For i = 1, 2, we know

that T ∗
i

∣∣Hin is a unilateral forward shift with the wandering subspace Ei := kerTi

satisfying Hin =
⊕
k�0

T ∗
i

kEi. Fix unit elements e1 ∈ E1 and e2 ∈ E2 and define

the non-zero operator X : H1 → H2 by Xh1 := 〈h1, e1〉 e2 for h1 ∈ H1. Let us
see that X is a Hankel operator. Since e1 ∈ kerT1 and e2 ∈ kerT2, for h1 ∈ H1

we have, on the one hand, XT ∗
1 h1 = 〈T ∗

1 h1, e1〉 e2 = 〈h1, T1e1〉 e2 = 0 and, on the
other hand, T2Xh1 = 〈h1, e1〉T2e2 = 0. Therefore, T2X = XT ∗

1 = 0. Since we
are dealing with co-isometries, (PV)-boundedness is automatically granted, hence
X ∈ H(T1, T2). (More generally, it can be proved that any operator X of the form
n∑

j=0

〈
h1, T

∗
1

n−je1

〉
T ∗

2
je2 is a Hankel operator with respect to T1 and T2.)

(2) Assume now that, say, H1n is trivial (the reasoning is similar if H2n is trivial).
Then T1 is unitary and U∗

1

∣∣P1 = T ∗
1 is also unitary. Therefore, the completely

non-unitary part of the Wold decomposition of U∗
1

∣∣P1 is trivial and, by Theorem 5,
AHS(T1, T2) = {0}. This means that the correspondence between Hankel symbols
and Hankel operators is 1-1 in this case and, since by our hypothesis HS(T1, T2) is
non-trivial, it follows that H(T1, T2) is non-trivial. �

Corollary. The equalityHS(T1, T2) = AHS(T1, T2) holds only if both sets reduce
to {0}.

Example 4. Of course, the trivial example T1 = T2 = identity on a Hilbert space
shows that one may have AHS(T1, T2) = {0} and HS(T1, T2) = H(T1, T2) �= {0}.
A little less trivial example is given by T1 = V and T2 = V ∗ on L2(T). Then
AHS(T1, T2) reduces to {0} but, obviously, the identity on L2(T) is a Hankel operator
with respect to T1 and T2; as a matter of fact, the set of all Hankel operators coincides
with the set of the multiplication operators induced by functions from L∞(T). In
this case each Hankel operator coincides with its own unique symbol.
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