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Salmonella enterica serovar Typhimurium es una bacteria gram-negativa que causa 

enfermedades gástricas y sistémicas en una gran variedad de organismos, incluyendo la 

especie humana. La invasión del epitelio intestinal es un proceso crítico en la infección por 

Salmonella y requiere funciones codificadas en una región del cromosoma bacteriano 

adquirida por transferencia horizontal, conocida como isla de patogenicidad 1 (SPI-1). Otro 

locus que Salmonella ha adquirido por transferencia horizontal es el operón std, implicado en 

la formación de fimbrias que participan en la colonización del intestino del hospedador. 

La expresión del operón std se encuentra reprimida en condiciones de laboratorio y se activa 

en el intestino. Estudios previos han mostrado que esta represión es causada principalmente 

por la metilación Dam y en menor medida por el represor RosE. La transcripción del operón 

std en los mutantes Dam– requiere HdfR, un factor de transcripción poco conocido de tipo 

LysR. Estos mismos estudios han sugerido la posibilidad de que la expresión de std esté 

sujeta a biestabilidad o cambio de fase. Recientemente se ha visto que el producto de los dos 

genes distales del operón, stdE y stdF, es responsable de la represión de los genes de SPI-1 en 

mutantes Dam–, que muestran un fenotipo de baja invasión en células epiteliales.  

En base a estos antecedentes, esta Tesis se inició con el objetivo de investigar si la expresión 

del operón std está sujeta a biestabilidad en condiciones de laboratorio. La existencia de 

heterogeneidad fenotípica en poblaciones clonales es un concepto relativamente reciente, 

pero cada vez son más los ejemplos encontrados. Para determinar si el operón std mostraba 

biestabilidad se construyeron fusiones GFP en stdA y se usó citometría de flujo para analizar 

su expresión en células individuales. De estos experimentos se ha podido concluir que existe 

una expresión bimodal del operón std en condiciones de laboratorio. La expresión de std tiene 

lugar en un 0,3-3% de la población, generando dos subpoblaciones: StdON y StdOFF. 

Otro objetivo de esta Tesis era entender el mecanismo molecular que controla la transcripción 

de std generando una expresión bimodal del mismo. Se ha puesto de manifiesto el papel 

esencial de HdfR para la expresión de std, no solo en fondo Dam– como ya se había descrito 

sino también en fondo silvestre. La subpoblación StdON desaparece en ausencia de HdfR y 

aumenta de tamaño si hdfR se expresa constitutivamente. Además, igual que ocurre en otros 

factores transcripcionales de tipo LysR, hemos demostrado la existencia de un proceso de 

autorregulación (represión) que mantiene la transcripción de hdfR en niveles constantes.  



 

La metilación Dam es el principal represor de la expresión del operón std, pero existen otros 

represores previamente descritos como RosE o SeqA. En colaboración con el grupo de la Dr. 

Delgado del Instituto Superior de Investigaciones Biológicas (INSIBIO) CONICET-UNT en 

Argentina, se ha identificado un nuevo represor de la expresión de std, RcsB. La expresión 

constitutiva de rcsB reprime la expresión de std en fondo Dam– y también en fondo silvestre. 

Se han realizado ensayos de retardo en gel para corroborar la unión de RcsB a la región 

promotora de std. El análisis bioinformático identifica un posible sitio de unión de RcsB en la 

región -35 del promotor de std.   

Con el fin de identificar otros posibles reguladores de la transcripción del operón std, se  

realizaron escrutinios genéticos. Los resultados obtenidos mostraron una autorregulación 

positiva del operón std, de la que son responsables los genes distales del operón std: stdE y 

stdF. Ensayos realizados mediante citometría de flujo corroboran los resultados del 

escrutinio. La expresión de stdE y stdF mantiene la subpoblación StdON y una expresión 

constitutiva de stdE y stdF aumenta el tamaño de dicha subpoblación.  

La expresión bimodal del operón std en fondo silvestre nos llevó a pensar en la existencia de 

patrones de metilación distintos para cada una de las subpoblaciones. Para demostrar la 

existencia de dichos patrones de metilación se han realizados ensayos de Southern Blot tras 

digestión del DNA con isosquizómeros de enzimas de restricción que reconocen la misma 

secuencia en el DNA (GATC) pero difieren en su sensibilidad al estado de metilación de la 

diana. Los tres sitios GATC de la región reguladora se hallan metilados cuando el promotor 

está inactivo (la subpoblación StdOFF es mayoritaria en un fondo silvestre). Resultados de 

citometría de flujo sugieren un patrón de metilación distinto para la subpoblación StdON, ya 

que la hipermetilación disminuye dicha subpoblación. 

Anteriormente se había descrito que StdE y StdF controlan la expresión de hilD a nivel 

postranscripcional. Teniendo en cuenta que nuestros resultados indican que StdE y StdF son 

reguladores autógenos de la transcripción de std, nos planteamos la posibilidad de que estas 

proteínas tuvieran un papel regulador. Con objeto de identificar posibles dianas de regulación 

del regulón StdEF se realizó un análisis transcriptómico usando un microarray de S. enterica 

serovar Typhimurium. Los datos obtenidos nos han permitido identificar a StdE y StdF como 

reguladores globales de la transcripción en Salmonella, ya que no sólo reprimen la isla de 

patogenicidad 1 (SPI-1) sino también genes flagelares y de quimiotaxis. Por otra parte, StdE 
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y StdF activan la expresión de genes del plásmido de virulencia y del gen hdfR, que codifica 

el factor de transcripción esencial para la expresión del operón std.  

Para tratar de determinar el mecanismo regulador de estas proteínas, hemos realizado un 

ensayo de ChIP-seq (inmunoprecipitación de cromatina seguida de secuenciación masiva), 

que permite identificar sitios de unión al DNA de las proteínas analizadas. Los resultados 

obtenidos confirman el papel de StdE y StdF como reguladores transcripcionales de la 

expresión en Salmonella. StdE parece tener un papel principal, uniéndose a regiones 

promotoras del DNA. Por otro lado, los resultados del ChIP-seq sugieren un papel secundario 

o accesorio de StdF en la regulación, quizá favoreciendo la actuación de StdE. El análisis 

global de la unión de StdE y StdF al genoma de Salmonella ha proporcionado información 

acerca de la autorregulación del operón std. Como ya se ha mencionado, StdE y StdF 

favorecen la expresión de std, aumentando el tamaño de la subpoblación StdON. Según los 

datos del ChIP-seq, es StdF quien se encuentra en la región promotora, favoreciendo la 

expresión de std. Queda por determinar si StdF tiene un papel principal en la regulación de 

std o, como en otros sitios de regulación, actúa de modo auxiliar, tal vez favoreciendo la 

unión de HdfR o impidiendo la actividad de la metilasa Dam.  

Todo parece indicar que nos encontramos frente a un sistema de regulación global pero con 

expresión bimodal. La expresión del operón std, con la consiguiente formación de fimbrias, 

tiene lugar en una pequeña fracción de la población en condiciones de laboratorio, y 

mayoritariamente en condiciones de adherencia al epitelio intestinal. En dichas condiciones, 

la bacteria mantiene reprimidos los genes implicados en virulencia, expresión del flagelo o 

quimiotaxis, y los genes reguladores del operón std son los encargados de coordinar estos 

procesos. Por otro lado la expresión del operón std favorece la activación del sistema 

conjugativo del plásmido de virulencia y garantiza el mantenimiento del mecanismo 

autorregulador de expresión del propio operón std al activar el factor de transcripción HdfR y 

al ejercer de reguladores transcripcionales uniéndose a la región promotora del propio operón 

std.  
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The genus Salmonella 

The genus Salmonella includes facultative anaerobic Gram-negative, rod-shaped bacteria that 

are able to infect a variety of animal hosts including amphibians, reptiles, birds and 

mammals. Salmonellae are usually motile and produce peritrichous flagella. Salmonella 

belongs to Enterobacteriaceae family in the γ-proteobacteria subdivision and is a close 

relative of the genera Escherichia, Shigella and Citrobacter. 

Currently, the genus Salmonella is divided into 2 species, known as Salmonella enterica and 

Salmonella bongori (Tindall et al., 2005). Salmonella enterica comprises 6 subspecies 

(McQuiston et al., 2008): enterica (subsp. I), salamae (subsp. II), arizonae (subsp. IIIa), 

diarizonae (subsp. IIIb), houtenae (subsp. IV) and indica (subsp. VI). 

Salmonella subspecies are further divided into serovars (also known as serotypes). Serovars 

are defined by the antigen properties of the polysaccharide chain of LPS (O-antigens) and of 

the proteinaceous flagella (H antigens) (Grimont & Weill, 2007; McQuiston et al., 2004). 

There are more than 2,500 Salmonella serovars, most of them belong to the subsp. enterica 

(Popoff et al., 2004). Only serovars of this subspecies are able to colonize warm-blooded 

vertebrates (McClelland et al., 2001), accounting for 99% of human infections caused by 

Salmonella, while the remaining subspecies of Salmonella enterica and members of 

Salmonella bongori are usually associated to cold-blooded vertebrates or to the environment 

(Bäumler et al., 1998).  

Differences in host specificity and types of diseases produced are found among serovars 

belonging to subsp. enterica. Some serovars are able to infect a wide variety of animals, 

while others are host-specific (Bäumler & Fang, 2013). Serovars of subsp. enterica produce a 

variety of diseases that ranges from self-limiting gastroenteritis to life-threatening systemic 

infection, and the outcome of the disease depends on the specific serovar-host combination. 

For example, the human-restricted serovar Typhi produces typhoid fever, while the generalist 

serovar Typhimurium produces mild gastroenteritis in humans but causes a systemic 

infection similar to human typhoid fever when infecting mice (Velge et al., 2012). For this 

reason, the interaction between serovar Typhimurium and mice has been widely used as a 

model for human typhoid fever (Santos et al., 2001a), and most pathogenicity studies in 

Salmonella have employed this serovar. In this work we have used the mouse-virulent strain 



 

Salmonella enterica subsp. enterica serovar Typhimurium SL1344, from the B.A.D. Stocker 

collection. For simplicity, it will be often abbreviated as Salmonella typhimurium.  

Evolution of Salmonella pathogenesis 

Salmonella is a close relative of Escherichia. They diverged 120-160 million years ago 

(Ochman & Wilson, 1987). Almost 25% of the genetic material in the Salmonella genome is 

absent in Escherichia coli (McClelland et al., 2001; Porwollik & McClelland, 2003). The 

evolution of Salmonella pathogenicity (Figure I. 1) has involved the sequential acquisition of 

genetic elements, each contributing to different aspects of its lifestyle (Groisman & Ochman, 

1997; Kelly et al., 2009). Among those elements are the Salmonella pathogenicity islands 

(SPIs), which are clusters of virulence genes in the chromosome. More than 10 SPIs have 

been described (Hensel, 2004) including some that are serotype-specific. These regions 

usually have a different G+C content than the rest of the Salmonella chromosome, and are 

absent in other Enterobacteriaceae, suggesting that they have been acquired by horizontal 

gene transfer (Kelly et al., 2009; Porwollik & McClelland, 2003). 

 

Figure I. 1 Phylogeny of the genus Salmonella. The acquisition of SPI-1 and SPI-2, and the ability to infect warm-blooded 

vertebrates are indicated. Modified from (Ellermeier & Slauch, 2006). 
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Salmonella pathogenicity island 1 (SPI-1) and Salmonella pathogenicity island 2 (SPI-2) are 

the best characterized SPIs. SPI-1 was first acquired by the common ancestor of Salmonella 

bongori and Salmonella enterica, and is involved in the invasion of epithelial cells in the 

animal intestine (Que et al., 2013). SPI-1 acquisition provided Salmonella the ability to 

invade eukaryotic cells and to become an intracellular pathogen, likely associated with cold-

blooded vertebrates (Ellermeier & Slauch, 2006). SPI-2 allows Salmonella to survive in 

macrophages and colonize deeper tissues (Ochman et al., 1996), and its acquisition resulted 

in the split of the two Salmonella species (Ellermeier & Slauch, 2006). Consequently, only 

members of Salmonella enterica are able to reach deep tissues and organs producing systemic 

infection.  

The ancestor of subsp. enterica acquired the capacity to infect warm-blooded vertebrates, and 

different strains subsequently evolved to colonize a variety of hosts. Although the mechanism 

of host specificity is not fully understood, the presence of a virulence plasmid in certain 

serovars of subsp. enterica has suggested the potential contribution of plasmid functions 

(Bäumler et al., 1998). Another trait that may be involved in host specificity is the presence 

of different sets of fimbrial operons in different serovars (Bäumler et al., 1998; Townsend et 

al., 2001).  

Salmonella infection 

Salmonella enterica is found mostly in the intestine of animal hosts and the infection is 

usually transmitted by the fecal-oral route. Infection normally starts via ingestion of 

contaminated water or food. Salmonella must endure adverse conditions along the digestive 

track, which serves as a protective barrier against bacterial infections.  

The acid pH in the stomach destroys the majority of microorganisms (Tennant et al., 2008). 

However, Salmonella responds with the activation of the acid tolerance response, a complex 

adaptive system, which allows the bacterial population to endure periods of severe acid stress 

(Foster & Hall, 1990; Lee et al., 1995). 

High concentrations of bile are secreted in the small intestine, in particular in the duodenum, 

during digestion. Bile has two main antibacterial actions: as a detergent disrupting the cell 

envelope (Gunn, 2000) and as DNA damaging agent producing DNA rearrangements and 



 

point mutations (Prieto et al., 2004). Nevertheless, like other enteric bacteria, Salmonella is 

intrinsically resistant to high concentrations of bile (Gunn, 2000). 

Once in the distal small intestine, Salmonella has the ability to penetrate inside epithelial 

cells. In a first step, adhesins and fimbriae are necessary to mediate the adherence (Wagner & 

Hensel, 2011); afterwards the bacterial population is able to invade the intestinal epithelium 

through three different routes (Figure I. 2): (i) by inducing a phagocytosis-like process in 

non-phagocytic enterocytes, (ii) through specialized epithelial M cells, and (iii) through 

dendritic cells that intercalate epithelial cells by extending protrusions into the gut lumen 

(Finlay & Brumell, 2000; Grassl & Finlay, 2008). The two first routes are mediated by the 

virulence-associated type III secretion system encoded on Salmonella pathogenicity island 1 

(SPI-1) (Zhou & Galán, 2001), with invasion of M cells being the predominant route of 

intestinal traversal (Watson & Holden, 2010). 

 

Figure I. 2 Diagram of Salmonella infection. The three main routes of Salmonella invasion of the intestinal epithelium are 

represented: direct invasion of intestinal epithelial cells (1), adhesion and translocation through M cells (2), and capture by 

dendritic cells (3). Adapted from (Fàbrega & Vila, 2013; Sansonetti, 2004). 
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Depending on the serovar and the host, Salmonella infections may have three different 

outcomes after invasion of intestinal epithelial cells: gastroenteritis, systemic infection, or 

asymptomatic chronic carriage.  

In gastroenteritis, the infection is localized in the intestine. Invasion of intestinal epithelial 

cells triggers an inflammatory reaction in the intestinal mucosa. Liquid accumulation in the 

intestinal lumen leads to diarrhea (Nunes et al., 2010; Santos et al., 2001b).  

In systemic infection, the pathogen crosses the epithelial barrier and is able to survive inside 

phagocytes due to functions encoded in SPI-2. Salmonella disseminates through the 

lymphatic system reaching deep tissues and colonizing target organs, particularly the spleen, 

the liver, the gall bladder and the bone marrow, where bacteria can proliferate, eventually 

causing death upon septic shock (Bäumler et al., 2011). 

A fraction of individuals that has survived systemic infection becomes asymptomatic, life-

long carriers of Salmonella, acting as reservoirs for future infections. In humans, serovar 

Typhi can undergo chronic carriage in the gall bladder (Bäumler et al., 2011). 

Salmonella virulence factors 

The interaction between Salmonella and the host requires a complex bacterial machinery to 

colonize and succeed in a variety of host environments, all of them challenging. This 

machinery includes genes required for chemotaxis, motility, adhesion, invasion, replication 

and survival within host cells covering the whole pathogenic process from the intestinal step 

to systemic dissemination. The virulence factors employed by the pathogen to achieve the 

infection process are described below. 

Type III secretion systems (TTSSs) 

Type III secretion systems (TTSSs) are specialized organelles whose main role is to inject 

bacterial proteins, called effectors, into eukaryotic cells (Cornelis & Van Gijsegem, 2000; 

Galán, 1999; Galán & Collmer, 1999), representing the principal virulence factors for 

Salmonella pathogenicity (LaRock et al., 2015). TTSSs are evolutionarily related to the 

flagellar export apparatus and are present not only in bacteria pathogenic for animals and 

plants but also in symbionts for plants or insects (Galán, 2001).   



 

TTSSs are usually composed of more than 20 proteins (Galán, 2001) that form a needle-like 

structure that spans both the inner and outer membranes of the bacterial envelope (Kubori et 

al., 1998). It is composed of a basal body localised in the bacterial membrane, a needle that 

protrudes outside the cell, and a translocon that can cross the eukaryotic plasmatic membrane 

(Moest & Méresse, 2013).  

Salmonella enterica encodes two TTSSs, and the corresponding genes are located in 

pathogenicity islands (SPI-1 and SPI-2). Each TTSS exerts its function at a different stage of 

the infection process. Salmonella pathogenicity island 1 (SPI-1) is located at centisome 63 of 

the chromosome (Galán, 1999) and is required for the initial interaction of Salmonella with 

intestinal epithelial cells (Galán, 2001). Salmonella pathogenicity island 2 (SPI-2) is located 

at centisome 31 and it is required for survival within macrophages during systemic infection 

(Hensel, 2000). 

Regulation of Salmonella pathogenicity island 1 (SPI-1) 

SPI-1 is a 40 Kb region of the Salmonella chromosome that contains all the genes necessary 

to produce a functional TTSS, several secreted effectors, and transcriptional regulators of 

bacterial invasion (Ellermeier & Slauch, 2007). The control of invasion involves regulators 

encoded both inside and outside SPI-1 that are able to integrate environmental signals and 

molecular factors (Bajaj et al., 1996).  

SPI-1 is tightly regulated by four transcriptional activators encoded within SPI-1 (HilA, HilC, 

HilD, and InvF) and by another regulators encoded outside the island such as RtsA or HilE. 

HilA belongs to the OmpR/ToxR family and hast raditionally been considered the master 

regulator of SPI-1, playing a central role in invasion (Bajaj et al., 1995). In support of this 

view, deletion of hilA is phenotypically equivalent to a deletion of the entire SPI-1 locus 

(Ellermeier et al., 2005). HilA controls genes encoding all the components necessary to build 

a functional TTSS (Bajaj et al., 1995; Lostroh & Lee, 2001) and indirectly regulates effector 

proteins by activating invF transcription (Bajaj et al., 1995; 1996; Darwin & Miller, 1999). 

Expression of hilA is controlled by the AraC-like activators HilD, HilC, and RtsA (Ellermeier 

& Slauch, 2003; Schechter & Lee, 2001). These regulators act by binding to the hilA 

promoter, as well as by inducing their own expression or activating other regulators 

(Boddicker et al., 2003; Ellermeier et al., 2005).  
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Figure I. 3 Diagram of the regulatory network of SPI-1. Lines ending in arrowheads indicate positive effects, whereas 

blunt lines indicate negative regulatory effects. Adapted from (Espinosa Alfaro, 2015).  

Recent studies describe HilD as one of the most relevant regulators of SPI-1, regulating SPI-1 

expression at different levels. HilD is able to regulate the expression not only of hilA but also 

of hilC, invF and rtsA upon binding upstream their promoters (Akbar et al., 2003; 

Olekhnovich & Kadner, 2002; Schechter & Lee, 2001). Various environmental signals, 

sensed by these regulatory systems, are integrated at the level of HilD production. Together 

with HilC and RtsA, HilD is involved in a complex feed-forward regulatory loop that can 

amplify the activation signal and act as a switch for hilA transcription (Ellermeier & Slauch, 

2007). The synthesis of HilD is subjected to tight regulation at the transcriptional and 

postranscriptional levels. RtsA, HilC, and HilD itself mediate hilD transcriptional regulation 

by binding to the hilD promoter (Ellermeier et al., 2005; Olekhnovich & Kadner, 2002). SirA 

and StdEF regulate HilD at the postrancripitonal level (López-Garrido & Casadesús, 2012; 

Teplitski et al., 2003). Recently, it was shown that the long 3’UTR of hilD mRNA mediates 

its decay, and it has been described as a target for the Hfq chaperone and for the Salmonella 

degradosome (López-Garrido et al., 2014). FliZ positively regulates SPI-1 at the level of 

HilD protein. HilE, a negative SPI-1 regulator, interacts with HilD interfering with its 

function (Baxter et al., 2003). HilD activity is not limited to SPI-1 regulation. Crosstalk 

Type III Secretion 
System

Effector proteins



 

between SPI-1 and SPI-2 through HilD has been previously reported (Bustamante et al., 

2008; la Cruz et al., 2015). HilD also activates transcription of the flagellar master operon 

flhDC, which is essential for Salmonella motility (Singer et al., 2014). Recently, novel targets 

for HilD have been described, many of them outside SPI-1 (Petrone et al., 2014; Smith et al., 

2016).  

Flagellum and chemotaxis  

The bacterial flagellum permits bacterial motility in liquid environments. The general 

structure and organization of the flagellum are well conserved among Gram-negative 

bacterial species. The flagellum constitutes a supramolecular complex formed by at least 

three parts: the basal body (reversible motor), which is joined to the filament (helical 

propeller) by the hook (universal joint). Four rings and a rod compose the basal body. The 

rings C, MS, P, and L are located in the cytoplasm, cytoplasmic membrane, peptidoglycan 

layer and outer membrane respectively. The rod is a drive shaft that traverses the periplasmic 

space. In response to chemotactic signals, the flagellar motor can operate in both the counter-

clockwise and clockwise directions, switching the direction of motor rotation (Minamino & 

Imada, 2015).  

The assembly and function of the flagellar and chemotaxis systems require the expression of 

more than 50 genes, divided in operons (Macnab, 2003) that are regulated at several levels in 

response to environmental and flagellar development signals (Chilcott & Hughes, 2000). In 

Salmonella, the flagellar, motility and chemotaxis genes form a regulon, and they are 

classified into three temporally regulated transcription classes: early, middle and late. 

(Kutsukake et al., 1990). The corresponding promoters are referred to as class 1, class 2 and 

class 3, respectively.  Class 1 includes a single promoter that transcribes the flhDC operon. 

FlhD and FlhC are active as an heterotetramer which is a key transcriptional activator of 

middle class promoters. This transcription responds to many environmental cues. Expression 

of middle class genes is necessary for the synthesis and assembly of the hook-basal body, and 

the transcriptional regulators FlgM and σ28 (fliA) are necessary for expression of late genes 

(Chilcott & Hughes, 2000). Late genes encode proteins later required in the assembly 

process, including flagellin, hook-associated proteins, stator components and chemosensory 

systems. Expression of late genes is a critical step for flagella production. FliA and FlgM 
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regulate, positively and negatively, class 3 promoters respectively (Gillen & Hughes, 1991; 

Kutsukake & Iino, 1994).   

Reduced motility has been observed in Dam– mutants in E. coli (Oshima et al., 2002) and 

Salmonella (Balbontín et al., 2006). Despite the increased expression of some flagellar genes 

like fliC or fliD in Dam– strains, reduced halo formation on motility plates is observed in 

Dam– mutant background (Balbontín et al., 2006). 

Flagellar and motility genes are expressed at the early exponential growth phase, and their 

expression is subject to crosstalk with other Salmonella virulence determinants. For example, 

the flagellar activator FliZ (middle gene class) has been reported to increase hilA 

transcription in a HilD-dependent manner, suggesting that FliZ activates hilA at 

postranscriptional level controlling HilD (Chubiz et al., 2010) and simultaneously repressing 

fimbrial genes (Saini et al., 2010).  

The Salmonella enterica virulence plasmid  

In Salmonella and in other bacteria such as E. coli, Shigella or Yersinia, certain virulence 

factors important for pathogenesis are encoded on plasmids. In Salmonella, plasmids have 

been found in a few serovars belonging to the subspecies I. These plasmids, called “serovar-

specific” have sizes of 50 to 90 Kb. They are very stable and their copy number is usually 1 

or 2 copies per cell (Rotger & Casadesús, 1999).  

The virulence plasmid in S. Typhimurium, pSLT (Jones et al., 1982), was shown to be 

mobilizable (Ahmer et al., 1999; García-Quintanilla & Casadesús, 2011; Jones et al., 1982; 

Ou et al., 1990; Sanderson et al., 1983) and self-transmissible by conjugation (Ahmer et al., 

1999). 

Expression of the transfer region (tra), encoded in the pSLT (Figure I. 4), permits pilus 

biogenesis, mating pair stabilization, DNA transfer, and surface exclusion. During the 

conjugation process, a donor cell build a conjugative pilus that recognizes a recipient cell, 

retracts, and brings the two cells to close contact. Plasmid DNA is then transferred to the 

recipient cell through the mating pore, converted to double-strand DNA, re-circularized, and 

established in the recipient cell. pSLT transfer increases in the ileum, the distal portion of the 

small intestine (García-Quintanilla et al., 2008), which may compensate plasmid loss during 



 

intestinal passage (García-Quintanilla et al., 2006). The virulence plasmid also contains the 

pef (plasmid-encoded fimbriae) locus, which is involved in bacterial adhesion to intestinal 

epithelial cells (Bäumler et al., 1996). The spv (Salmonella plasmid virulence) region, 

required for the systemic phase of disease (Gulig et al., 1993), is also encoded in the pSLT 

plasmid, among others loci (Figure I.  4A) 

 

Figure I. 4 pSLT genetic map in Salmonella enterica. A. Linear genetic map of the pSLT virulence plasmid of Salmonella 

enterica serovar Typhimurium. B. tra region in pSLT plasmid in S. enterica. Arrows represent transcripts initiated at the 

highlighted promoter. Adapted from (Bäumler et al., 1998; Espinosa Alfaro, 2015). 

Regulation of tra operon expression is complex and involves regulatory proteins encoded on 

both the host chromosome and the plasmid. Host-encoded factors involved in mating and pili 

synthesis include global regulators such as ArcA (Silverman et al., 1991), H-NS (Starcic-

Erjavec et al., 2003; Will et al., 2004), Lrp (Camacho & Casadesús, 2002), or Dam 

methylation. Dam methylation represses tra operon expression by controlling Lrp-mediated 

activation of traJ transcription (Camacho & Josep Casadesús 2002) and by maintaining high 

levels of FinP RNA (Torreblanca et al., 1999), among others.  

FinOP fertility inhibition system controls conjugation at the postranscriptional level. 

Synthesis of TraJ is controlled by FinP, an antisense RNA that inhibits traJ mRNA 

translation (Firth et al., 1996; Zatyka & Thomas, 1998). FinP binds to traJ mRNA 

sequestering its ribosomal binding site (RBS) and preventing its translation (Koraimann et 

al., 1996). The duplex FinP/traJ mRNA formed is then rapidly degraded by the RNase III.  

B

tra parspvrepCpefrepB
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FinO binds FinP preventing its degradation by RNase E (Jerome et al., 1999) and allowing 

the FinP concentration to increase to sufficient levels to mediate traJ repression.  

On the other hand, TraM is essential for nicking and unwinding the plasmid DNA during 

conjugation . In additon, TraM binds its own promoter and represses its transcription.  

 

Figure I. 5 Regulatory circuit of the tra region. Synthesis of TraJ is controlled by the antisense RNA, FinP (RNA 

molecules are represented with wave-shaped lines). FinP binds traJ mRNA, preventing its translation. TraM binds its own 

promoter and represses its transcription. Promoter positions and transcription are indicated by straight arrows. Arrows 

denote activation and blunt lines denote inhibition. Adapted from (Espinosa Alfaro, 2015; Gubbins et al., 2002). 

Adhesins 

Interaction between the pathogen and host cells is required for colonization. This process is 

mostly mediated by adhesins on the surface of the microbe. The adhesins are responsible for 

recognizing and binding to specific receptor moieties of host cells. This interaction involves 

diverse changes in both the bacterium and the host as a result of the attachment. S. enterica 

has different adhesion systems that have been divided into two categories, non-fimbrial and 

fimbrial adhesins, which differ in their assembly pathway. Additionally, the flagellum and 

type III secretion system (TTSS), whose main functions are not involved in adhesion, also 

contribute to attachment and colonization of host tissues (Soto & Hultgren, 1999).  
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Non-fimbrial adhesins 

This category comprises an heterogeneous group of proteins either secreted via type I 

secretion systems (SiiE and BapA) or autotransported across the bacterial membranes (ShdA, 

MisL, SadA) (Wagner & Hensel, 2011). 

Fimbrial adhesins 

Among the adhesion systems, fimbrial adhesins include the majority of Salmonella adhesins. 

Fimbriae are proteinaceous structures extending form the surface of a bacterial cell, and 

appear in several copies per cell. These structures facilitate adhesion to abiotic and biotic 

surfaces. Three pathways for the assembly of fimbrial adhesins have been described. 

I. Chaperon-usher dependent assembly Pathway (CUP).  Fimbrial subunits are directed to 

the periplasm through the general secretion pathway via an N-terminal secretion sequence 

that is cleaved off during transport. In the periplasm, chaperones prevent the premature 

assembly of fimbrial subunits and their degradation by proteases, and direct fimbrial subunits 

to the usher, which coordinates the assembly of the fimbriae. On the tip of the completed 

fimbriae, a receptor-binding site interacts with its host receptor. Based on the usher protein 

(the most conserved fimbrial protein), fimbriae belonging to the chaperone-usher pathway 

can be divided into 6 groups (γ, κ, π, β, � and σ) (Nuccio & Bäumler, 2007). Several 

chaperon/usher-type fimbrial operons present in S. enterica serotype Typhimurium belong to 

this group. 

II. Nucleator-dependent assembly pathway. The fimbrial subunits are transported into the 

periplasm via the general secretion pathway. Polymerization of the fimbrial subunits occurs 

outside of the bacterial cell envelope (Wagner & Hensel, 2011). In Salmonella, the fimbrial 

adhesins assembled through this pathway are designated as “thin aggregative fimbriae” or 

“curli”, and are encoded by the operons csgDEFG and csgBA. These fimbriae are known to 

mediate binding to proteins like fibronectin (Olsén et al., 1989) and are involved in biofilm 

formation (Brombacher et al., 2003; Gerstel & Römling, 2003; Prigent-Combaret et al., 2001) 

III. Assembly pathway for type IV fimbriae. In S. enterica, type IV pili are only encoded 

by SPI-7 in the strictly human-adapted serovar Typhi (Zhang et al., 1997; 2000). The 

subunits for the pilus formation are assembled in the periplasm at the inner membrane, and 
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are extruded through a secretin in the outer membrane as an intact pilus (Wolfgang et al., 

2000). 

As it was mentioned before, fimbriae expression involves crosstalk and participates in the 

coordination of the sequential expression of SPI-1, flagellar and fimbrial systems. Non-

fimbrial adhesins are also subject to crosstalked regulation, as it happens with the SPI-4-

encoded sii operon which is regulated by the SPI-1 SprB regulator (Saini & Rao, 2010).  

Hybridization analyses have shown high presence of fimbrial DNA sequences in multiple 

Salmonella serovars. Additionally, each serovar harbors a particular repertoire of fimbrial 

genes (Townsend et al., 2001). The selective pressure responsible for this uneven distribution 

is unknown (Humphries et al., 2001) and several tentative explanations have been proposed. 

On top of their role in attachment, it has been shown the contribution of fimbriae to biofilm 

formation (Ledeboer et al., 2006). Competitive infection experiments have revealed the 

participation of fimbriae in long-term colonization in mice (Weening et al., 2005). Each 

fimbrial operon appears to attach a specific target cell type (Bäumler et al., 1996), enabling 

the bacterial cell to distinguish among different epithelial cell types. Redundancy of fimbrial 

tools may counterbalance the loss of a single fimbrial operon, since the inactivation of an 

individual fimbrial operon results in only moderate attenuation (van der Velden et al., 1998). 

On the other hand, fimbrial appendages could, at the same time, pose a problem for the 

bacterium to evade the host immune system, since the fimbrial subunits likely act as antigens 

during host-pathogen interaction. This aspect could explain why fimbrial expression is 

commonly regulated by phase variation, generating fimbriated and non-fimbriated 

subpopulations (Humphries et al., 2001). Phase variation will be described below in more 

detail.  

The std fimbrial operon  

In S. enterica serotype Typhimurium, the elaboration of fimbriae on the surface of cells 

grown in nutrient broth and their ability to agglutinate yeast or red blood cells, was described 

in 1966 (Duguid et al., 1966). So far, laboratory-grown cultures of S. enterica have only been 

shown to elaborate type 1 fimbriae (Duguid et al., 1966), encoded by the fim operon (Clegg et 

al., 1987), and thin curled fimbriae (Grund & Weber, 1988; Stolpe et al., 1994), encoded by 

the csg operon (Römling et al., 1998). However, nine additional fimbrial operons, named bcf 



 

(Tsolis et al., 1999), stf (Emmerth et al., 1999; Morrow et al., 1999), saf (Folkesson et al., 

1999), stb, stc, std, sth, sti, and stj (McClelland et al., 2001), have been later identified by 

sequence analysis.  

The std fimbrial operon was first identified in S. enterica serovar Typhi (Townsend et al., 

2001) and later found in other Salmonella enterica serovars, including Typhimurium (Anjum 

et al., 2005; Chan et al., 2003; Humphries et al., 2001; Porwollik et al., 2004). However, it 

has not been detected in related enterobacterial species, suggesting an acquisition mediated 

by horizontal transfer (Porwollik et al., 2002). The std operon belongs to the π-fimbriae 

group. Members of the same group are well-characterized virulence factors such as 

pyelonephritis-associated (P) fimbriae of E. coli and the Mannose-resistant/Proteus-like 

(MR/P) fimbriae of Proteus mirabilis (Nuccio & Bäumler, 2007).  

Std fimbriae contribute to cecal colonization by binding to α (1,2) fucose residues, which are 

abundant in the cecal mucosa (Chessa et al., 2009), facilitating Salmonella attachment to the 

intestinal epithelium. Expression of the std operon, as many of the putative fimbrial operons, 

is tightly repressed under laboratory conditions (Humphries et al., 2003), and derepression 

occurs in the intestine of infected animals, where Std fimbriae are synthesized. Deletion of 

stdAB results in a competitive defect in colonizing the caecum of mice and in being shed with 

the faeces (Weening et al., 2005). Results from adhesion assays of Salmonella enterica 

serovar Enteritidis to intestinal epithelial cells as well as to the small intestine and caecum of 

poultry reveal decreased adhesion of the stdA mutant (Shippy et al., 2013). 

Recently, the std operon (Figure I. 6) was defined to contain 6 genes (stdA-F), all of them 

transcribed by the promoter located upstream the first gene (stdA; (López-Garrido & 

Casadesús, 2012)). 

 

Figure I. 6 Diagram of the std operon. std operon contains 6 genes (stdA-F), all of them transcribed by the promoter 

located upstream the first gene (PstdA). 
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The mechanisms that prevent std expression outside the animal environment remain 

unknown, but some of the bacterial functions involved in this regulation have been identified. 

Lack of RosE, an homolog to the E. coli ArgR repressor, allows std expression under 

laboratory conditions (Chessa et al., 2008). Dam methylation also prevents expression of the 

std operon, and Dam– mutants were found among Std-expressing isolates induced by 

transposon mutagenesis (Chessa et al., 2008). It was previously shown that the GATC-

binding protein SeqA is a repressor of the std operon, and that the poorly known HdfR 

protein (a LysR-like protein) is required for std expression in S. enterica Dam– mutants 

(Jakomin et al., 2008). The possibility that HdfR might activate std transcription in a Dam-

dependent manner is supported by the existence of three GATC sites upstream the std 

promoter, and unpublished results from our group suggest that HdfR binds the std promoter 

in a Dam methylation-dependent manner.  

Flow cytometry experiments in Dam- and SeqA- mutants show the existence of two 

subpopulations of Std cells: Std+ and Std– (Jakomin et al., 2008). The authors suggest the 

possibility of bistable or phase-variable std expression in the animal environment, and 

speculate that the competition between HdfR and SeqA or RosE might be the responsible for 

subpopulation formation. 

As in other fimbrial operons, structural and regulatory fimbrial proteins are encoded in the 

same operon. Recently, it was described that the Dam-dependent regulation of SPI-1 requires 

the last two genes of the std operon: stdE and stdF. Both genes repress SPI-1 expression 

through HilD at the postranscriptional level (López-Garrido & Casadesús, 2012). Lowered 

expression levels of the SPI-1 activator HilD would explain the reduced capacity of Dam– 

mutants to invade epithelial cells (García-Del Portillo et al., 1999).  

 HdfR 

HdfR is a poorly known protein that belongs to the widely distributed LysR-type family of 

transcriptional regulators (LTTRs). LTTRs are the largest group of prokaryotic DNA-binding 

proteins (Maddocks & Oyston, 2008), and act as homodimers or homotetramers (Zaim & 

Kierzek, 2003). LTTRs control the transcription of multiple operons involved in disparate 

functions such as amino acid metabolism, oxidative stress, nitrogen fixation, degradation of 

aromatic compounds, and bacterial virulence (Schell, 1993). Based on the secondary 



 

structure, a helix-turn-helix (HTH) motif has been proposed to conform the DNA-binding 

domain (Kullik et al., 1995). This type of transcriptional regulators often needs a small ligand 

acting as a coinducer. The binding site of the inducer has been mapped to the C-terminal part 

(Lahiri et al., 2009).   

Many LTTRs activate the expression of target genes but repress their own expression, 

frequently by the use of divergent promoters (Zaim & Kierzek, 2003). In E. coli, HdfR was 

shown to negatively control flhDC expression through direct binding to its promoter, while 

hdfR expression was negatively regulated by H-NS (Ko & Park, 2000).  In Salmonella few 

information is available aside from their role as an activator of std transcription in Dam– and 

SeqA– mutants (Jakomin et al., 2008).  

RcsCDB phosphorelay system 

The Rcs phosphorelay system appears to be conserved in the family Enterobacteriaceae 

(Pescaretti et al., 2009) and it is implicated in gene expresssion of a huge variety of genes, 

such as those controlling the biosynthesis of colanic acid (Stout & Gottesman, 1990), 

regulation of flagellum synthesis (Francez-Charlot et al., 2003), motility (Cano et al., 2002) 

or O-antigen chain length determination (Delgado et al., 2006), among others.  

Rcs regulon is activated by cell interaction with surfaces (conditions that lead to biofilm 

formation) and plays a role in later stages of biofilm formation (Danese et al., 2000; 

Majdalani & Gottesman, 2005). Perturbation in the cell surface induces the Rcs system. 

Mutations in rfa genes (synthesis of lipopolysaccharide) or mdo genes (membrane derived 

oligosaccharides or periplasmic glucans) implicate induction of Rcs system (Ebel et al., 1997; 

Majdalani & Gottesman, 2005). In Salmonella typhimurium, mutations in tolB (periplasmic 

component of Tol system) were found to increase Rcs regulon activity (Mouslim & 

Groisman, 2003).   

The Rcs system is composed by three proteins: RcsC, RcsD, and RcsB. Environmental 

signals are transmitted to RcsC, the sensor kinase, which in turn transfers a phosphate to a 

conserve aspartate on RcsB, the cognate response regulator. RcsD is the intermediary in the 

phosphoryl transfer (Majdalani & Gottesman, 2005). The main rol of RcsB is as a  positive 

transcriptional regulator of a wide range of genes (capsule synthesis, membrane proteins), but 
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it has also been reported to behave as a negative regulator (flagellar synthesis) (Francez-

Charlot et al., 2003). RcsB may act alone or in combination with other regulators, such as 

RcsA. RcsA is an unstable regulatory protein that acts with RcsB as an auxiliary regulator in 

some processes such as the capsule (cps loci) synthesis in E. coli, where the overexpression 

of rcsB is sufficient to increase cps levels in the absence of RcsA (Brill et al., 1988). On the 

other hand, RcsB is essential, independendly of RcsA levels (Majdalani & Gottesman, 2005).  

Dam methylation 

Base methylation at specific DNA sequences by DNA methyltransferases is a DNA 

modification common in all kingdoms of life. In α-Proteobacteria and γ-Proteobacteria, 

postreplicative N6 methylation in adenosine moieties lowers the thermodynamic stability of 

DNA (Engel & Hippel, 1978) and alters DNA curvature (Diekmann, 1987), influencing the 

interaction between DNA-binding proteins and their cognate DNA sequences (Wion & 

Casadesús, 2006). The methylation state of such sites can be used as a signal, thereby 

permitting spatial or temporal control of the interaction between DNA binding proteins and 

DNA (Messer & Noyer-Weidner, 1988). 

In bacteria, two types of DNA methyltransferases perform base modifications: DNA 

methyltransferases associated with restriction-modification systems (Bickle & Krüger, 1993; 

Loenen et al., 2014) and solitary DNA methyltransferases (Wion & Casadesús, 2006). Dam 

methylase of γ-proteobacteria is a solitary methyltransferase. 

Dam methylation is found in the orders Enterobacteriales, Vibrionales, Aeromonadales, 

Pasteurellales, and Alteromonadales (Løbner-Olesen et al., 2005). In E. coli and Salmonella, 

dam mutations produce pleiotropic defects but viability is not (or very little) impaired 

(Torreblanca & Casadesús, 1996). However, in Vibrio cholerae and in some strains of 

Yersinia Dam methylation is essential (Julio et al., 2001; Marinus, 1996). 

The Dam methylase transfers a methyl group from S-adenosyl-methionine to the N6 amino 

group of the adenosine moiety of 5’-GATC-3’ sites (Marinus, 1996). Methylation occurs 

shortly after DNA replication, and methylates transiently hemimethylated GATC sites.  

Nevertheless, the Dam enzyme can methylate both hemimethylated and nonmethylated 

GATC sites with similar efficiency (Marinus, 1996). Flanking sequences of the GATC sites 



 

influence the DNA binding ability of the Dam methylase and/or the efficiency of methyl 

group transfer (Peterson & Reich, 2006).  

The Dam protein shares significant identity with DpnII, MboI and other DNA 

methyltransferases that are part of restriction-modification systems (Low et al., 2001; 

Løbner-Olesen et al., 2005). This relatedness suggests that Dam has evolved from an 

ancestral restriction-modification system. An essential difference, however, is that the Dam 

methylase is highly processive, being able to achieve several methylation reactions without 

dissociating from the DNA molecule, while restriction-modification methylases are 

distributive (Urig et al., 2002).  

N6-methyl-adenine is used as a signal for genome defense, DNA replication and repair, 

nucleoid segregation, regulation of gene expression, control of transposition, and host-

pathogen interactions (Low et al., 2001; Løbner-Olesen et al., 2005; Marinus, 1996) (Figure 

I. 5). 

                 

Figure I. 7 Roles of N6-methyl-adenine in enteric bacteria. Methylation-sensitive DNA-binding proteins involved in each 

process are indicated. Adapted from (Wion&&&Casadesús,&2006). 

Dam methylation plays an important role in the initiation of chromosome replication in E. 

coli. Chromosome replication starts when DnaA, the initiator protein, binds the oriC 
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replication origin, and separates the two strands of the double helix. DnaA binding is only 

possible if the oriC GATCs are methylated; a hemimethylated origin is inactive (Boye et al., 

2000). The oriC region contains 11 GATC sites in 254 bp, a density ten fold higher than the 

average expected in the E. coli chromosome (Zyskind & Smith, 1992). 

The GATC sites of the oriC remain hemimethylated for up to one-third of the cell cycle after 

DNA replication (Campbell & Kleckner, 1990). The protein SeqA avoids further rounds of 

replication by binding to hemimethylated GATC sites (Taghbalout et al., 2000). SeqA also 

binds to newly synthesized hemimethylated GATC sites along the chromosome, organizing 

the daughter chromosomes into nucleoid domains (Han et al., 2003). 

During DNA replication, mismatched base pairs errors are common. Dam methylation has an 

important role in mismatch repair by permitting the identification of the template DNA strand 

(Hsieh, 2001). The new strand is temporarily nonmethylated. MutS protein recognizes the 

mismatched base pair and recruits and assembles the MutHLS complex. This assembly 

activates the endonucleasa activity of MutH, which cleaves the nonmethylated DNA strand at 

the nearest hemimethylated GATC site, ensuring that the parental template strand is not cut 

(Friedhoff et al., 2003).  

As it was mentioned before, in E. coli and Salmonella, dam mutations produce pleiotropic 

defects such as lower colonization capacity, reduced motility, envelope instability, ectopic 

expression of fimbriae, sensitivity to bile salts, lower expression of virulence genes, and 

altered LPS O-antigen chain length (Cota et al., 2015; López-Garrido & Casadesús, 2010; 

Marinus & Casadesús, 2009). These pleiotropic virulence-related defects may explain the 

extreme attenuation of Dam– mutants upon oral inoculation in the mouse model (Badie et al., 

2007; García-Del Portillo et al., 1999). 

Gene regulation by Dam methylation can be divided into two main categories (Low & 

Casadesús, 2008) : 

 I.  Clock-like controls, in which the methylation state of the DNA is used as a signal 

to couple gene expression to a specific stage of the cell cycle. Hemimethylation may activate 

transcription (conjugal transfer gene, traJ (Camacho & Casadesús, 2005)) or repress it 

(chromosome replication gene, dnaA (Kücherer et al., 1986).  



 

 II. Switch-like controls, in which differential methylation patterns of GATC sites, 

typically found at or near the promoters of phase variation systems, modulate gene 

expression (van der Woude, 2011). Binding of proteins to DNA may prevent Dam 

methylation of certain GATCs, generating hemimethylated GATCs, and nonmethylated 

GATCs if the block persists during two consecutive DNA replication rounds (Casadesús & 

Low, 2006). DNA sequences surrounding specific GATCs sites may also decrease the 

processitivity of Dam methylation (Peterson & Reich, 2006). 

Phase variation systems regulated by Dam methylation  

As mentioned above, some envelope structures such as fimbriae, flagella or the LPS O-

antigen show phase variation and are under epigenetic control (Cota et al., 2015; Cummings 

et al., 2006; Kingsley et al., 2002; Nicholson & Low, 2000). In phase variation systems, gene 

expression alternates between active (ON phase) and inactive (OFF phase) states, and often 

depends on differential DNA methylation patterns (Switch-like controls). Binding of certain 

transcriptional regulators hinders Dam methylation and creates heritable DNA methylation 

patterns (Figure I. 8). 

pap  

The pap operon encodes pyelonephritis-associated pili that mediate adhesion of 

uropathogenic E. coli to the urinary mucosa (Hernday et al., 2004). Synthesis of Pap pili is 

subjected to phase variation, and Dam methylation controls the switching between ON and 

OFF states (Hernday et al., 2002).  

The regulatory region of the pap operon contains six binding sites for the leucine-responsive 

regulatory protein, Lrp. Sites 5 and 2 contain GATC motifs known as GATCdist and 

GATCprox, respectively. In the OFF state, Lrp binds cooperatively and with high affinity to 

sites 1-3 avoiding RNA polymerase binding (Casadesús & Low, 2006; Hernday et al., 2002; 

2004). Lrp binding at sites 1-3 reduces the affinity of Lrp for sites 4-6, and preserves the 

nonmethylated state of GATCprox while GATCdist remains methylated. The high affinity of 

Lrp for nonmethylated GATCprox and its incapability to bind a methylated GATCdist generates 

a feedback loop that propagates the OFF state (Hernday et al., 2002; 2004). Switching to the 

ON state needs translocation of Lrp to sites 4-6. Translocation involves the auxiliary protein 
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PapI. The PapI/Lrp complex has higher affinity for GATC sites 4-6 than for 1-3 GATCs 

(Hernday et al., 2003). Binding of Lrp to sites 4-6 hinders methylation of GATCdist and 

permits methylation of GATCprox, favoring the propagation of the ON state (Hernday et al., 

2004).  

agn43 

The agn43 gene of E. coli encodes Agn43, an autotransporter protein whose expression is 

subjected to phase variation under control of Dam methylation and OxyR (Henderson & 

Owen, 1999; Henderson et al., 1997). Three GATC sites are contained within the binding site 

of OxyR at agn43 regulatory region (Wallecha et al., 2002). OxyR binding to nonmethylated 

agn43 GATCs represses transcription and prevents GATC methylation. On the other hand, 

methylation of GATC sites avoids OxyR binding (Haagmans & van der Woude, 2000; 

Henderson et al., 1997; Waldron et al., 2002). agn43 expression thus depends on the 

competition between OxyR binding and Dam methylation, and switching may occur upon 

DNA replication (Waldron et al., 2002; Wallecha et al., 2002).  

opvAB 

The Salmonella enterica opvAB operon shows phase variation and creates bacterial lineages 

with standard (OpvABOFF) and shorter (OpvABON) O-antigen chains in the 

lipopolysaccharide. Transcription of OpvAB is controlled by the LysR-type factor OxyR and 

by Dam methylation. The opvAB regulatory region contains four sites for OxyR binding 

(OBSA-D), and four GATC motifs (GATC1-4) which are targets for Dam methylation. 

OpvABOFF and OpvABON cell lineages present opposite DNA methylation patterns in the 

opvAB regulatory region: (i) in the OpvABOFF state, GATC1 and GATC3 are non-methylated, 

whereas GATC2 and GATC4 are methylated; (ii) in the OpvABON state, GATC2 and GATC4 

are non-methylated, whereas GATC1 and GATC3 are methylated (Cota et al., 2015).  

The OBSA and OBSC sites of opvAB are identical to the consensus sequence for OxyR 

binding while OBSB and OBSD are not. This difference may explain the higher stability of 

the OpvABOFF lineage, resulting in a ∼600-fold difference in the ON→OFF and OFF→ON 

transition rates. The predominant OFF state involves binding of OxyR to the OBSA and 

OBSC sites, which protects GATC1 and GATC3 from methylation. In this configuration, 



 

GATC2 and GATC4 are unprotected and therefore are methylated by Dam. In the ON state, 

OxyR binds to the OBSB and OBSD sites. As a consequence, GATC2 and GATC4 are 

protected from methylation and remain non-methylated, while GATC1 and GATC3 are 

methylated. RNA polymerase is successfully recruited to the opvAB promoter and 

transcription of opvAB takes place. RNA polymerase may contact OxyR and other LysR-type 

transcription factors within the DNA region occupied by the regulator (Zaim & Kierzek, 

2003). Additional factors involved in the formation of OpvAB cell lineages are the GATC-

binding protein SeqA (which contributes to the stability of the OpvABOFF lineage) and the 

nucleoid protein HU (which contributes to the OpvABON lineage) (Cota et al., 2015). 

 

Figure I. 8 Diagrams for Dam methylation-dependent regulation of pap, agn43 and opvAB phase variation. For 

simplicity, binding sites, Dam methylase and RNA polymerase are not represented. Adapted from (Broadbent et al., 2010; 

Cota et al., 2015). 

Phenotypic heterogeneity in bacteria population 

Reversible bistability or phase variation involves switching of gene expression from OFF to 

ON and vice versa (van der Woude, 2006; 2011; van der Woude & Bäumler, 2004). Phase 

variation can be generated by diverse mechanisms, either genetic (homologous or site-

specific recombination, slipped strand mispairing at DNA repeat tracks) or epigenetic (DNA 

methylation) (Bayliss, 2009).  

Switching between the ON and OFF states is a stochastic event, but may be modulated by 

external factors (van der Woude & Bäumler, 2004).  
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Bimodal gene expression generates phenotypic heterogeneity in the population. This strategy, 

often observed in loci encoding envelope components or proteins involved in the envelope 

modification, has been considered a way of avoiding immune responses during animal 

infection or a way to generate variants with altered ability to colonize niches in the host (van 

der Woude, 2011; van der Woude & Bäumler, 2004).  

The biological significance of bacterial subpopulations can be understood as the consequence 

of two different strategies: cooperation and bet-hedging (Ackermann, 2013; Lambert et al., 

2014; Veening et al., 2008). Cooperation implies that there is an interaction between different 

phenotypes, so that, in a given environment, both subpopulations together are fitter than any 

of them separately. Bet-hedging or risk spreading occurs when each subpopulation is fitter 

than the other in a particular environment, so that the population as a whole is fitter in a 

variety of conditions and is prepared to adapt to a sudden environmental change.  
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When this Thesis work started, the literature contained very little information on the std 

operon. The pioneering study that had described the existence of the operon in the genome of 

Salmonella enterica serovar Typhimurium had also reported that std expression occurs in the 

large intestine of animals but not in the laboratory (Humphries et al., 2003). An independent 

study had shown that repression of std expression under laboratory conditions is mainly 

exerted by DNA adenine (Dam) methylation (Jakomin et al., 2008) and to a lesser extent by a 

repressor named RosE (Chessa et al., 2008). Transcription of the std operon in Dam– mutants 

had been shown to require a poorly known LysR-type transcription factor known as HdfR 

(Jakomin et al., 2008). The same study had raised the possibility that std expression might 

undergo bistability or phase variation. More recently, a study had shown that two products of 

the std operon, StdE anf StdF, downregulated Salmonella pathogenicity island 1 (SPI-1) and 

prevented invasion of epithelial cells (López-Garrido & Casadesús, 2012).  

Based on these antecedents, the initial objective of the Thesis (Objective 1) was to investigate 

whether std expression was subjected to phase variation outside the large intestine. Results 

obtained in this section of the Thesis revealed the existence of StdON and StdOFF 

subpopulations outside the animal intestine. Objective 2 was aimed at understanding the 

molecular mechanisms that control std transcription and generate phase variation. Objective 3 

pursued the characterization of StdON state using transcriptomic analysis, chromatin 

immunoprecipitation, and phenotypic analysis. The main aim of this objective was to 

determine the extent and physiological significance of StdEF-mediated control of Salmonella 

genes outside the std operon. These objectives can be summarized as follows: 

Objective 1. Surveys of std phase variation in S. enterica ser. Typhimurium by single cell 

analysis.  

Objective 2. Molecular analysis of the factors and mechanisms that control std transcription 

and phase variation, with emphasis on the roles of Dam methylation, HdfR, StdE, and StdF. 

Objective 3. Characterization of the StdEF regulon of Salmonella enterica serovar 

Typhimurium.
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Bacterial strains and strain construction 

Salmonella enterica and Escherichia coli strains used in this Thesis are listed in Table M1. 

Salmonella enterica strains belong to serovar Typhimurium and derived from the mouse-

virulent strain SL1344 or ATCC14028. For simplicity, Salmonella enterica serovar 

Typhimurium is often abbreviated as S. enterica. 

Table M 1. Strains of Salmonella enterica and E.coli used in this study.  

Strain 
Name Genotype Reference 

S. enterica 

SL1344 Wild type (Hoiseth & Stocker, 1981) 

SV5367 SL1344 ∆dam231 (Balbontín et al., 2006) 

SV8479 SL1344 stdA::gfp This study 

SV8480 SL1344 ∆dam231 stdA::gfp This study 

SV8481 SL1344 ∆hdfR stdA::gfp This study 

SV9311 SL1344 ∆dam231 ∆hdfR stdA::gfp This study 

SV8528 14028 rcsC11 stdA::gfp This study 

SV5182 14028 stdA::lacZ (Jakomin et al., 2008) 

SV5183 14028 ∆dam231 stdA::lacZ (Jakomin et al., 2008) 

SV9312 14028 ∆dam231 rcsB56N stdA::lacZ This study 

SV9313 14028 ∆dam231 rcsC11 stdA::lacZ This study 

SV9314 14028 ∆dam231 ∆tolB stdA::lacZ This study 

SV9315 14028 ∆dam231 p-rcsB stdA::lacZ This study 

SV5264 14028 ∆dam231  (López-Garrido & Casadesús, 2010) 

SV5815  14028 ∆dam231 rcsB56N This study 

SV9316  14028 ∆dam231 rcsC11 This study 

SV9317  14028 ∆dam231 ∆tolB This study 

SV9318  14028 ∆dam231 p-rcsB This study 

SV8487 SL1344 ∆dam231 hdfR-3xFLAG This study 

SV7889 SL1344 hdfR::lacZ This study 



 

SV9319 SL1344 ∆dam231 hdfR::lacZ This study 

SV8188 SL1344 stdA::lacZ This study 

SV8449 SL1344  PLtetOhdfR  This study 

SV8477 SL1344  PLtetOhdfR stdA::lacZ This study 

SV9292  SL1344 PLtetOhdfR stdA::gfp This study 

SV9123 SL1344 pIC552 This study 

SV9124 SL1344 /pIZ2320 This study 

SV9125 SL1344 ∆hdfR /pIZ2320  This study 

SV8192 SL1344  stdA::lacZ /pBR328  This study 

SV8194 SL1344 stdA::lacZ /pIZ2318  This study 

SV9320 SL1344 stdA::lacZ /pIZ2319  This study 

SV8189 SL1344 ∆hdfR stdA::lacZ This study 

SV8193 SL1344 ∆hdfR  stdA::lacZ /pBR328 This study 

SV8195 SL1344 ∆hdfR stdA::lacZ /pIZ2318   This study 

SV9321 SL1344 ∆hdfR  stdA::lacZ /pIZ2319 This study 

SV9322  SL1344 PLtetOstdEF stdA::gfp This study 

SV9323 SL1344 ∆stdEF stdA::gfp This study 

SV9279 SL1344 ∆dam231 ∆stdEF stdA::gfp This study 

SV9001 SL1344 ∆dam231  PLtetOstdEF stdA::gfp This study 

SV8507 SL1344 PLtetOstdEF stdA::lacZ This study 

SV9324 SL1344 ∆dam231  stdE-3xFLAG This study 

SV9325 SL1344 ∆dam231  stdF-3xFLAG This study 

SV8526 SL1344 ptp166 stdA::gfp This study 

SV9205 SL1344 stdE::gfp This study 

SV9207 SL1344 ∆dam231 stdE::gfp This study 

SV9206 SL1344 ∆hdfR stdE::gfp This study 

SV9208 SL1344 ∆pstdA-stdC stdE::gfp This study 

SV6503 14028 PLtetOstdEF (Cmr) (López-Garrido & Casadesús, 2012) 

SV6634 14028 PLtetOΔstdEF (Cmr) (López-Garrido & Casadesús, 2012) 

SV8141 SL1344 PLtetOstdEF (Cmr) This study 
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SV8142 SL1344 PLtetO∆stdEF (Cmr) This study 

SV7553 SL1344 PLtetOstdEF (KmR) This study 

SV7552 SL1344 PLtetO∆stdEF (KmR) This study 

SV7554 SL1344 PLtetOstdEF spvA This study 

SV7555 SL1344 PLtetOΔstdEF spvA This study 

SV7556 SL1344 spvA::tn5dKm This study 

SV4938 SL1344 trg::mudQ  pSLT- (García-Quintanilla & Casadesús, 2011) 

SV7551 SL1344 traB::lacZ This study 

SV7550 SL1344 PLtetOstdEF traB::lacZ This study 

SV7549 SL1344 PLtetOΔstdEF traB::lacZ This study 

SV8152 SL1344 ∆ygiD This study 

SV9326 SL1344 PLtetOstdEF ∆hdfR This study 

SV9327 SL1344 PLtetO∆stdEF ∆hdfR This study 

SV9288 SL1344 flhC::lacZ This study 

SV9289 SL1344 PLtetOstdEF flhC::lacZ This study 

SV9290 SL1344 PLtetO∆stdEF flhC::lacZ This study 

SV9328 SL1344 ∆hdfR flhC::lacZ This study 

SV9329 SL1344 PLtetOstdEF ∆hdfR flhC::lacZ This study 

SV9320 SL1344 PLtetO∆stdEF ∆hdfR flhC::lacZ This study 

SV9331 SL1344 PLtetOstdEF ∆hdfR spvA This study 

SV9332 SL1344 PLtetOΔstdEF ∆hdfR spvA This study 

SV9333 SL1344 ∆hdfR  spvA This study 

SV8185 SL1344 sipB::lacZ This study 

SV8186 SL1344 PLtetOstdEF sipB::lacZ This study 

SV8187 SL1344 PLtetO∆stdEF sipB::lacZ This study 

SV8109 SL1344 ∆flhC sipB::lacZ This study 

SV8110 SL1344 PLtetOstdEF ∆flhC  sipB::lacZ This study 

SV8111 SL1344 PLtetO∆stdEF ∆flhC sipB::lacZ This study 

SV8103 SL1344 fliC::lacZ This study 

SV8104 SL1344 PLtetOstdEF fliC::lacZ This study 



 

SV8105 SL1344 PLtetO∆stdEF fliC::lacZ This study 

SV8106 SL1344 ∆flhC fliC::lacZ This study 

SV8107 SL1344 PLtetOstdEF ∆flhC  fliC::lacZ This study 

SV8108 SL1344 PLtetO∆stdEF ∆flhC fliC::lacZ This study 

SV8023 SL1344 ∆flhC traB::lacZ This study 

SV8024 SL1344 PLtetOstdEF ∆flhC  traB::lacZ This study 

SV8025 SL1344 PLtetO∆stdEF ∆flhC traB::lacZ This study 

SV9287 SL1344 PLtetOstdEF-3xFLAG This study 

SV9109 SL1344 PLtetOstdEF ∆flhC This study 

SV9110 SL1344 PLtetOΔstdEF ∆flhC This study 

SV9309 SL1344 PLtetOstdEF PLtetOhilD This study 

SV9310 SL1344 PLtetOΔstdEF PLtetOhilD This study 

SV9113 SL1344 PLtetOstdEF invH::lacZ This study 

SV9114 SL1344 PLtetOΔstdEF invH::lacZ This study 

SV9119 SL1344 PLtetOstdEF PLtetOhilD invH::lacZ This study 

SV9120 SL1344 PLtetOΔstdEF PLtetOhilD invH::lacZ This study 

SV9273 SL1344 ∆dam231  ∆stdEF This study 

SV7890 SL1344 PLtetOstdEF hdfR::lacZ This study 

SV7891 SL1344 PLtetO∆stdEF hdfR::lacZ This study 

TR5878 
galE496 r(LT2)– m(LT2)– r(S)+ ilv-542 metA22 
trpB2 Fels2– fliA66 strA120 xyl-404 metE551 
hspL56 hspS29 

J.R. Roth 

E. coli 

DH5α 
supE44 ∆lacU169 (Φ80 lacZ∆M15) 

hsdR17 recA1 endA1 gyrA96 thi-1 reA1 
(Hanahan, 1983) 

BL-21 F- dcm ompT hsdS (rB- mB-) gal (malB+) 

K-12 (λS) 
Stratagene 

 BL-21 pET28a-stdE This study 

 

 

 



Materials and Methods 

55 

Targeted gene disruption was achieved by Datsenko and Wanner method (Datsenko & 

Wanner, 2000). This method is based in the λ Red recombination system. The strategy 

consists in replacing the chromosomal sequence by an antibiotic resistance marker (contained 

in pKD3, pKD4 or pKD13) that is generated by polymerase chain reaction (PCR) using 

oligonucleotides that harbor 40 nucleotides of homology with the sequence to be replaced. λ 

Red recombination gene expression is carried out under an inducible promoter inside a 

thermosensitive low copy number plasmid (pKD46).  

Cultures harbored pKD46 plasmid (this plasmid expresses the λ Red system under the araB 

promoter which is inducible by arabinose) grown in LB with ampicillin at 30ºC were diluted 

1:100 into LB with ampicillin and arabinose 1 mM and incubated in a shaker at 30ºC until 

O.D.600 ~ 0.8. The competent cells were prepared and electroporation was done as further 

described.  

After selection, antibiotic resistance cassettes introduced during strain construction can be 

excised by recombination with plasmid pCP20 (Datsenko & Wanner, 2000). pCP20 plasmid 

can be transduce with P22. This transduction is incubated at 30ºC for 1h and spread in LB 

with ampicillin. To eliminate the plasmid, green plates were prepared without antibiotic and 

incubated at 37ºC. To confirm the excision of the marker, the strains were streaked in plates 

of LB ampicillin and plates of LB with chloramphenicol or kanamycin. The excision of the 

antibiotic marker was checked by colony PCR with external oligonucleotides.  

The oligonucleotides used for gene disruption (named as UP and DO) and allele verification 

(named as E1 and E2) by the polymerase chain reaction (PCR), are listed in Table M2.  

For construction of lac fusions in the Salmonella chromosome, FRT sites generated by 

excision of KmR cassettes with pCP20 (Datsenko & Wanner, 2000) were used to integrate 

either pCE37 or pCE40 (Ellermeier et al., 2002).  

For strain construction operations involving chromosomal markers we used transduction with 

P22 HT 105/1 int201 ((Schmieger, 1972) and G. Roberts, unpublished). The recipient strain 

was transduced using a P22 lysate from a strain with the desirable genetic marker. All the 

markers used in this thesis were selected directly by spreading the transduction mixture on 

selective media.!Transduction protocol is described below. 

 



 

Table M 2. Oligonucleotides used in thi study. 

Oligonucleotide name sequence (5’!3’) 

stdA129GFP UP tttcactggtaccatcaccaactcaccctgtgatatcgcataagaaggagatatacatatg 

stdAGFP DO ccgtggacggcttctccctgtcgttatttaccgcgtgaaattatcacttattcaggcgta 

stdA E1 ggaaagttcaggtgcttcg 

stdAE2 gctttcggtgttgtcgtcc 

PLtetOhdfR UP atatcgattagtcgtcgtaaagctttccgccatcctgcacaggcttacccgtcttactgtc 

PLtetOhdfR DO ggaaagtttttaacaattccgtatccactgtgctctccacaaaacctctccataactggg 

hdfR E1 ggagagcacagtggatacgg 

hdfR E2 gattatctgatcaggtaatc 

promotorhdfRBglII FOR agctagatctccgtgacgagagaatccacg 

promotorhdfRXhoI REV agctctcgaggatacgaaagctcaccgcgg 

PLtetOstdEF pStd UP gttttctgctgcaatacccgttactgttacctataactaaaggcttacccgtcttactgtc 

PLtetOstdEF pStd DO tcagggcacataaaacctctccataactgggtaaatgatgtgctcagtatctctatcactgatag 

stdE21GFP UP ccagttatggagaggttttatgtgccctgataatacacactaagaaggagatatacatatg 

stdEGFP DO ttaccgacccggcgttttgataccagcggcggtccggcttttatcacttattcaggcgta 

stdE E1 tgctgcaatacccgttactg 

stdE E2 caggctgcctgtatgcg 

PLtetO sense ttggaacctcttacgtgcc 

mutpStdA-stdC UP  ccttttacttgcattatatccagttttttatgctaccagtgtgtaggctggagctgcttc 

mutpStdA-stdC DO gatgtcgcccctgcgtccttaaacgcgcagttcagggcatcatatgaatatcctccttag 

Km PLtetOUP ttaatgtcatgataataatggtttcttagacgtcgatatcgtgtaggctggagctgcttc 

Km PLtetODO cttggattctcaccaataaaaaacgcccggcggcaaccgacatatgaatatcctccttag 

NdeIstdE-FOR ttttcatatgtgccctgataatacaca 

EcoRIstdE-REV ttttgaattcttatgttccgtcatcctcatcc 

std-PLtetOUP attcacccgcttataattac 

std southern DO cagctaatgcctaatcagttg 
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EMSA-std300 FOR attcacccgcttataattac  

EMSA-std735 FOR cgcattaatatcccccagcc 

EMSA-std REV attacgcatagataatatgtc  

8032 EMSA-Fwd Pdps gcgctattacttcgtc 

8033 EMSA-Rev Pdps  cgggatccctcatatcctcttgatgtttgtgt 

pBR328-Fw actgtccgaccgctttgg 

pBR328-Rv gccagcaaccgcacctg 

ygiD UP ggttatctgagttcttcctctgtgaagaaagcgtatggtggtgtaggctggagctgcttc 

ygiD DO cgccatcgggcaatcattcagcgccttatccggcctaccccatatgaatatcctccttag 

ygiD E1 tatcaatttgccgtccgaacc 

ygiD E2 tcgaaggatagattctcctg 

RT-hilD FOR agtttgctttcggagcggta 

RT-hilD REV agcaccaacatcccaggttc 

RT-promotorstd FOR cattaaaaagtatttctttgatg 

RT-promotorstd REV gaaaattcttattcaaattaaaac 

RT-flgE DIR gacggtacgacaacgaacac 

RT-flgE REV aaaaccgttctggctaatcg 

RT-hilA DIR gaatcttttcatggctggtca 

RT-hilA REV gggtccaattttaaacactcgt 

RT-motA DIR taggggcgttcattgtcg 

RT-motA REV acgggatagctttcatcgtg 

RT-sipB DIR gtaatggtggccgatgaaat 

RT-sipB REV cgcctgctgaataaacgac 

RT-traA DIR gtacggtcaaggcgacattt 

RT-traA REV ccgcgagaataacccactt 

RT-trg DIR cggggtcgtacaaacgat 

RT-trg REV gcggtaatttccgagattttt 



 

RT-hdfR DIR ttggcgttatattgcagcag 

RT-hdfR REV ccagccgcagataattgagt 

RT-cheA DIR cggtgatgtcgattcgtatg 

RT-cheAREV tctacctgcttgcccagttt 

RT-cheM DIR gaaggttcggatgcgattta 

RT-cheM REV acgggaagagaggtcggtat 

RT-cheB DIR gctgctcagttcggaaaaac 

RT-cheB REV gcacatgtcggatagcttca 

RT-stdA DIR catcaccaactcaccctgtg 

RT-stdA REV aaatctgtccaaacggaacg 

RT-rfaH DIR tcagccattttgtgcgctt 

RT-rfaH REV tttaggatcgacaacgcctt 

Construction of the relevant strains 

For the construction of the strains SV8479 (stdA::gfp) and SV9205 (stdE::gfp), a fragment 

containing the promoterless green fluorescent protein (gfp) gene and the chloramphenicol 

resistance cassette was PCR-amplified from pZEP07 (Hautefort et al., 2003) using the pair of 

oligonucleotides stdA129GFP UP and stdAGFP DO; and stdE21GFP UP stdEGFP DO 

respectively. The fragment was integrated into the chromosome of S. enterica using the 

Lambda Red recombination system (Datsenko & Wanner, 2000), and verified with the pair of 

oligonucleotides stdA E1 and stdA E2; or stdE E1 and stdE E2. stdA::gfp and stdE::gfp 

transcriptional fusions were formed defective in StdA and StdE synthesis, since only the first 

129nt and 21nt of the genes are kept in the construct.   

The construction of the strains SV8141 (SL1344 PLtetOstdEF) and SV8142 (SL1344 

PLtetOΔstdEF) was performed by transduction of S. enterica SL1344 cells using lysates from 

the previously described strains SV6503 (14028 PLtetOstdEF) and SV6634 (14028 

PLtetOΔstdEF) (López-Garrido & Casadesús, 2012). In both constructions, the PLtetOpromoter 

is inserted upstream stdE on the Salmonella chromosome. Insertion of the PLtetO promoter 

removed the upstream genes in the std operon and the native promoter upstream stdA. A 

chloramphenicol resistance cassette (CmR) is linked to the PLtetO promoter in these cells. For 
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mating experiments described below, the resistance cassette was changed from CmR to 

kanamycin (KmR). To do so, the KmR cassette (including the FRT sites) was amplified from 

pKD4 (Datsenko & Wanner, 2000), with oligos KmPLtetO UP and KmPLtetO DO. The resulting 

PCR product was transformed into SL1344 PLtetOstdEF and SL1344 PLtetOΔstdEF cells 

containing the pKD46 plasmid, and positive clones were selected by their ability to grow in a 

kanamycin containing medium. Finally, the KmR cassette introduced during construction was 

excised by recombination with plasmid pCP20 (Datsenko & Wanner, 2000). 

The same PLtetO insertion upstream stdEF gene was performed but maintaining the upstream 

genes in the std operon together with the native promoter upstream stdA. To do so, we used  

the oligonucleotides PLtetOstdEF pStd UP and PLtetOstdEF pStd DO and verified with PLtetO 

sense and stdE E2. Strains SV9322, SV9001 and SV8507 were generated by transduction.  

Strain SV8449 (PLtetOhdfR) contains the PLtetO promoter upstream hdfR coding region on the 

Salmonella chromosome. PLtetO promoter was used in order to achieve a constitutive and 

moderate expression of hdfR. To construct this strain, the PLtetO promoter was amplified from 

SV7553 (SL1344 PLtetOstdEF (KmR)) with oligos PLtetOhdfR UP and PLtetOhdfR DO. The 

resulting PCR product was integrated into the chromosome of S. enterica using the Lambda 

Red recombination system (Datsenko & Wanner, 2000) by transformation into SL1344 cells 

containing the pKD46 plasmid, and positive clones were selected by their ability to grow in a 

kanamycin containing medium. Finally, the KmR cassette introduced during construction can 

be excised by recombination with plasmid pCP20 (Datsenko & Wanner, 2000). Insertion of 

the PLtetO promoter removed the native promoter of hdfR avoiding transcriptional regulation 

of this gene.  

Bacteriophages  

Bacteriophage P22 H5 is a virulent derivative of bacteriophage P22 that carries a mutation in 

the c2 gene (SMITH & H, 1964) , and was kindly provided by John R. Roth, University of 

California, Davis. For simplicity, P22 H5 is abbreviated as P22.  



 

Culture media and growth conditions 

Luria-Bertani broth (LB) was used as standard rich medium (10 g/l tryptone, 5 g/l yeast 

extract and 10 g/l NaCl ). Solid media contained agar at 1.5% final concentration. Green 

plates (Chan et al., 1972) called EBU plates as well, were used to discard the presence of 

lysogenic isolates after transductions are made of LB medium supplemented with 10 ml/l 

K2HPO4 25%, 5 ml/l glucose 50%, 2.5 ml/l fluorescein 1% and 1.25 ml/l Evans blue 1%.  

Salmonella enterica cultures were grown usually at 37ºC, and exceptionally at 30ºC (strains 

containing the thermolabile pKD46 or pCP20 plasmids). Liquid cultures were shaken at 200 

rpm for aeration. Any other conditions of growth would be indicated.  

Antibiotics were used at the final concentrations described previously (Prieto et al., 2004) and 

listed below, in Table M. 3, together with other chemicals employed, as the 5-bromo-4-

chloro-3-indolyl-β-D-galactopyranoside (X-gal; Sigma-Aldrich) used as indicator for 

monitoring β-galactosidase activity in plate test.  

Table M 3. Final concentration of antibiotics and other chemicals used in this Thesis. 

Chemical Final concentration 

Antibiotics  

Ampicillin (Ap) 100 µg/ml 

Chloramphenicol (Cm) 20 µg/ml 

Kanamycin (Km) 50 µg/ml 

Tetracycline (Tet) 5 µg/ml 

Other chemicals  

EGTA 0.004 µg/ml 

X-gal 40 µg/ml 
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Bacterial transduction 

P22 lysates 

To prepare P22 lysates, 4 ml of P22 stock (100 ml NB (3 g/l meat extract and 5 g/l peptone), 

2 ml E50x (300 g/l H3C6H5O7
.H2O, 14 g/l MgSO4, 1965 g/l K2HPO4

.3H2O, 525 g/l 

NaNH4HPO4
.H2O), 1ml glucose 20% and 0.1 ml P22 phage) was mixed with 1 ml of the 

donor strain. The mixture was incubated at 37ºC and 200 rpm for 4-8 h. Bacterial debris was 

removed by centrifugation for 10 min at 4,500 rpm. The supernatant was recovered in a glass 

fresh tube, and 800 µl of chloroform were added and vortexed. The lysates were maintained 

at room temperature for a few hours and then stored at 4ºC. 

Transduction in liquid medium  

100 µl of an overnight culture of the recipient strain and 10-20 µl of the lysate of the donor 

strain were mixed in a sterile 1.5 ml tube. This mixture was incubated at 37ºC (pCP20 

transduction is incubated at 30ºC) and 200 rpm for 30-60 min (depending on the marker to be 

transduced). The mixture was spread on selective plates that were incubated at 37ºC until 

colonies appeared.  

Detection of lysogenic transductants  

Transductants harboring a selective marker could have been infected by P22 phage and 

become pseudolysogenic (the int mutation avoids integration, and delays the formation of 

true lysogens). As time goes on, pseudolysogens become resistant or immune to new P22 

infections and cannot be lysed or transduced again. Pseudolysogeny should thus be avoided. 

To obtain phage-free isolates, transductants were purified by streaking on green plates (with 

antibiotics if necessary), prepared according to Chan et al. (Chan et al., 1972). On these 

plates, pseudolysogens are dark colored and P22-free colonies are light colored. This!color 

difference is due to!cell lysis in the pseudolysogenic colony, which causes acidification of the 

medium and turning of the pH indicator, darkening the agar. A transductant was considered 

P22- free when streaking did not give rise to any dark colony.! 



 

P22 sensitivity assay  

In EBU plates, isolates that form light colour colonies could be lysogens that do not undergo 

visible lysis. These isolates are P22-resistant and can be mistaken by real P22-free isolates. 

To avoid this situation, an assay to detect P22-sensitive strains is advisable. A streak with a 

P22 H5 lysate is done on an LB or EBU plate, and air-dried. The test strain is then streaked in 

a perpendicular way to the H5 streak. P22-sensitive strains grow until they reach the H5 

streak, while P22-resistant strains grow over the streak.  

DNA manipulation and transfer 

Plasmids 

Plasmids used in this study are listed in Table M4.  

Table M 4. Plasmids used in this study. 

Plasmid Description Reference 

S. enterica 

pCP20  bla cat cI857 λPR flp pSC101 oriTS, ApR, CmR  (Cherepanov & Wackernagel, 1995) 

pIC552 galK' lac+, ApR  (Macián et al., 1994) 

pKD3 bla FRT cat FRT PS1 PS2 oriR6K, ApR, CmR (Datsenko & Wanner, 2000) 

pKD4 bla FRT aph FRT PS1 PS2 oriR6K, ApR, KmR  (Datsenko & Wanner, 2000) 

pKD13 bla FRT aph FRT PS1 PS4 oriR6K, ApR, KmR  (Datsenko & Wanner, 2000) 

pKD46 bla PBAD gam bet exo pSC101 oriTS, ApR  (Datsenko & Wanner, 2000) 

pZEP07 pZEP06 derivative, t0T1, CmR (Hautefort et al., 2003) 

pET28a vector used to construct 6His fusions ,ApR  Novagen  

pTP166 Cloned dam gene (Marinus et al., 1984) 

prcsB pUHE2-21 lacIq containing rcsB gene (Pescaretti et al., 2009) 

pIZ2318 pBR328std This work 

pIZ2319 pBR328std∆stdF This work 

pIZ1991 pET28a-stdE-6His  This work 

pIZ2320 pIC552-hdfRpromoter region, ApR  This work 
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For construction of pIZ1991, a DNA fragment containing stdE coding region was amplified 

using oligonucleotides NdeIstdE-FOR and EcoRIstdE-REV and cloned into pET28-a 

(Novagen) using the NdeI and EcoRI sites.   

Plasmid pIC552 is a promoter-less vector used to construct transcriptional lacZ fusions; in 

this plasmid, the lacZ ORF is preceded by the translational start site of galK (Macián et al., 

1994). The galK ribosomal binding sites and this adjacent region guarantee a high efficiency 

of the lacZ translation, so that the β-galactosidase activity is directly proportional to the 

transcriptional activity of the fragment cloned. The suspected promoter region of the hdfR 

gene was amplified using the oligonucleotides promotorhdfRBglII FOR and 

promotorhdfRXhoI REV listed in Table M2, and clone into pIC552 plasmid, generating the 

plasmid pIZ2320 listed in Table M4.  

Extraction of plasmid DNA 

Commercial system GenElute TM Plasmid Miniprep Kit, provided by Sigma-Aldrich Co (St. 

Louis, Missouri, USA) was used for the extraction of plasmid DNA.  

Extraction of genomic DNA 

For the extraction of genomic DNA, 5 ml of cells from a stationary culture (O.D.600∼2) were 

collected and re-suspended in 0.4 ml of buffer lysis (50 mM Tris-HCl pH8, 10 mM EDTA, 

100 mM NaCl and 0.2% SDS ), 4 µl of RNAse (10 mg/ml) were added and the mixture was 

incubated at 37ºC for 30 minutes. After that, 20 µl of proteinase K (20 mg/ml) was added and 

it was incubated for 2 h at 65ºC. Finally, were performed 3 or 4 extractions with 

phenol:chloroform-isoamyl alcohol in a 2:1 proportion. Optionally, one extraction with 

chloroform:isoamyl alcohol (24:1) can be performed. DNA was precipitated al -20º C by 

adding 1/10 volume of sodium acetate 3 M and 2.5 volumes of ethanol. After precipitation, 

genomic DNA was washed with 70% ethanol and re-suspended in 50 µl of water.  

Digestion, modification and ligation of DNA fragments 

Restriction endonucleases were supplied by Roche Diagnotics GmbH (Indianapolis, Indiana, 

USA), New England Biolabs (Beverly, Massachusetts, USA) and Promega Biotech 

(Madison, Wisconsin, USA). Enzymes were used following the manufacturer’s instructions.  



 

For ligation of DNA fragments with the appropriated vector (properly digested), 1 U of T4 

DNA ligase (1 U/µl, Roche Diagnosstics) was used in the buffer supplied by the 

manufacturer. Routinely, the mixture was incubated at 16ºC overnight.  

Electrophoresis in an 0.8% agarose (Low Electro Endosmosis agarose-Pronadisa, Conda, 

España) gel made up in TAE 1x buffer (40 mM Tris-acetate and 10 mM EDTA pH7.7) was 

used to test the quality of DNA extraction, to determine DNA fragments after plasmid 

restriction, to estimate the efficiency of endonuclease restriction, etc. The loading buffer used 

was 10X Loading buffer supplied by Takara. The 1 Kb ladder (GIBCO BRL, Life 

Technologies, New York, USA) was used as molecular weight marker. Ethidium bromide 

(0.5 µg/ml final concentration) was added to the gels to make bands visible. Gels were 

illuminated with UV and pictures were taken with Gel DocTM Imager- BioRad.  

Bacterial transformation 

High efficiency E. coli transformation  

Competent cells were prepared using a variation of the Inoue method (Inoue et al., 1990), 

which guarantees high transformation efficiency (5x107 to 5x108 transformants per µg of 

plasmid DNA). An E. coli DH5α/BL-21 overnight culture was diluted 100-1000 times in 200 

ml of SOB (20 g/l tryptone, 5 g/l yeast extract, 0.5 g/l NaCl, 0.19 g/l KCl, adjust with NaOH 

to pH7 and 5 ml MgCl2 2 M after autoclaving), and incubated at 22ºC and 200 rpm until 

OD600 ∼0.5 was reached. The culture was chilled quickly on ice and kept on ice for 10 

minutes. Cells were harvested by centrifugation at 2,500 g and 4ºC for 10 min. The pellet was 

resuspended in 20 ml of cold filtrated TB (10 mM PIPES, 15 mM CaCl2, 250 mM KCl, 

adjust to pH6.7 with KOH, 55 mM MnCl2 ), and 1.5 ml of dimethyl sulfoxide (DMSO) was 

added. After 10 min incubation on ice, aliquots of 0.2-0.5 ml were prepared, freezed in liquid 

nitrogen, and stored at -80º C.  

For transformation, an aliquot of competent cells was slowly thawed on ice and was mixed 

with the plasmid. The mixture was incubated on ice for 30 minutes, subjected to heat shock 

(42oC, 45 s), and cooled on ice for 1 min. One ml of LB was then added. The mixture was 

incubated at 37oC for 1 h; finally, the cells were concentrated in 100 µl and spread on 

selective media.  
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Salmonella electroporation  

An overnight culture was diluted 1/100 in LB and, depending on the strain, was grown at 

37oC or 30oC (strains with a thermolabile plasmid like pKD46) until an OD600 ∼0.8 was 

reached. The cultured was chilled on ice and kept on ice for 5 minutes. 20 ml cells were 

harvested by centrifugation at 4000 rpm for 5 min at 4oC. The supernatant was discarded and 

the bacterial pellet was softly re-suspended in 1 ml of cold ddH2O. Once cells were re-

suspended, 19 ml of cold water were added, and cells were washed again. Finally, cells were 

harvested and re-suspended in 250 µl of water.  

Electroporation was performed by mixing 1 µl of plasmid DNA or 10 µl of PCR product with 

50 µl of competent cells. The mixture was transferred to a cuvette that had 2 mm gap between 

the plates. The cuvette was subjected to an electric discharge in the electroporator (2.5 KV, 

200 Ω and 25 µF). The electroporator employed was a BTX Electrocell Manipulator 600 

(Harvard Apparatus, Holliston, Massachusetts, USA). After the discharge, 1 ml of LB was 

added to the cells, and the mixture was transferred to a 10 ml tube, which was incubated at 

37o C with shaking for 1 h. Finally, cells were concentrated in 100 µl and spread on selective 

media.  

pBR328-based plasmid library genetic screen 

pBR328-based multicopy plasmid library of the Salmonella enterica genome was used to 

search for factors that might activate expression of the std operon in a wild type (Dam+) 

background stdA::lacZ strain (SV5182).  

This library was previously constructed and described (López-Garrido & Casadesús, 2012). 

Briefly, Salmonella enterica Serovar Typhimurium SL1344 was partially digested with 

Sau3A. DNA fragments ranging between 7-11 kb long were ligated to the pBR328 vector, 

previously digested with BamHI and dephosphorylated. Salmonella strain TR5878 was 

transformed with the ligation products, and ampicillin–resistant clones were selected on LB 

with Ap plates. Pools of approximately 1000 independent transformants were collected and 

lysed with phage P22 HT 105/1 int201. As a quality control, the ability of the library pools to 

complement null mutations in araA (required for growth with L-arabinose as the sole carbon 

source) or xylA (required for growth with D-xylose as the sole carbon source) were tested. 



 

Lysates that permitted successful complementation were stored and used for plasmid delivery 

to recipient strains in subsequent genetic screens.  

The genetic screen was done by mixing 100 µl of a saturated stdA::lacZ culture with 10 µl of 

each P22 lysate of the pBR328 plasmid library pools. After 45 minutes, the transductions 

were plated in LB Cm and X-gal agar plates and incubated at 37ºC overnight. 10 

transductions were made for each of the 9 different pools (90 transductions total). The 

following day, the stdA::lacZ background colonies with increased X-gal activity were culture 

in LB Cm liquid medium. Minipreps were done to recover the pBR328 plasmid derivatives. 

Positive plasmids were re-transformed into SV5182 to corroborate the positive phenotypes. 

β-galactosidase activity of the selected candidates was tested and the plasmids were sent for 

Sanger DNA sequencing of the inserts using pBR328 specific oligonucleotides that flanked 

the region of the insertion. pIZ2318 and pIZ2319 obtained from the genetic screen are listed 

in Table M4.  

β-galactosidase assays 

Levels of β-galactosidase activity were assayed using the CHCl3-sodium dodecyl sulphate 

permeabilization procedure (Miller, 1972). β-galactosidase activity data are the averages and 

standard deviations from ≥3 independent experiments.  

 Motility assays  

Motility assays were carried out in motility agar plates, containing 10 g/l tryptone (Difco), 5 

g/l NaCl, and 0.25% Bacto-agar (Cano et al., 2002). A sterile stick was soaked in saturated 

bacterial cultures grown in LB, and used to inoculate motility agar plates. Bacterial motility 

halos were compared after growth at 37ºC for 6 hours. 

Phenotypic assays for biofilm formation 

Salmonella strains (SL PLtetOstdEF, SL PLtetOΔstdEF and SL ΔygiD) were tested for their 

ability to produce biofilm in LB medium (Latasa et al., 2012). The culture was grown at 22ºC 
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for 7-10 days in static. For better visualization biofilm was stained with a 0.1% solution of 

crystal violet. 

Matings 

Cultures of the donor and the recipient were grown overnight in LB broth. Cells were 

harvested by centrifugation and washed with LB. 1 ml aliquots of both strains, were sucked 

onto a membrane filter 0.45 mm pore size. The donor/recipient ratio was 1:1. The filters were 

placed on LB plates and incubated during 4h at 37ºC in GasPak microaerophilic jars 

(Camacho & Casadesús, 2002) and microaerophilic conditions were obtained by a GENbox 

Anaer bag, supplied by BioMériex (Marcy l’Etoile, France). An anaerobic indicator was used 

to monitor microaerophilic conditions. Filters were place in 10 ml tubes with 1 ml of fresh 

LB and vortex for recovering the cells. Serial dilutions were done before plating. Conjugation 

frequencies were calculated per donor cell, as previously described (Camacho & Casadesús, 

2002; García-Quintanilla et al., 2008). 

Subcellular fractionation  

Subcellular fractionation was performed as previously described (Pucciarelli et al., 2002), 

with some modifications. Briefly, bacteria were grown in LB medium at 37ºC and spun down 

by centrifugation at 15,000 g for 5 min at 4ºC, then resuspended twice in cold phosphate-

buffered saline (PBS pH 7.4, 0.137 M NaCl, 2,7 M KCl, 4.3 mM Na2HPO4
.7H20, 1.4 mM 

KH2PO4). Unbroken cells were further removed by low-speed centrifugation (5,000 g, 5 min, 

4ºC). The supernatant was centrifuged at high speed (100,000 g, 30 min, 4ºC) and the new 

supernatant was recovered as the cytosol fraction. The pellet containing envelope material 

was suspended in PBS with 0.4% Triton X-100 and incubated for 2 h at 4ºC. The sample was 

centrifuged again (100,000 g, 30 min, 4ºC) and divided into the supernatant containing 

mostly inner membrane proteins and the insoluble fraction corresponding to the outer 

membrane fraction. An appropriate volume of Laemmli buffer (SB4x: 0.000125% 

bromophenol blue, 200 mM Tris-HCl pH 6.8, 20% β-mercaptoethanol, 40% glycerol and 8% 

SDS) was added to each fraction. After heating (100ºC, 5 min) and clearing by centrifugation 

(15,000 g, 5 min, room temperature), the samples were analysed for protein content by 



 

Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) described by 

Laemmli (Laemmli, 1970).  

Protein extracts and Western blotting analysis  

Total protein extracts were prepared from bacterial cultures grown at 37ºC in LB medium 

until stationary phase (O.D.600 ~2). A volume containing ~2.5 x 108 cells were collected by 

centrifugation and suspended in 50 µl of Laemmli sample buffer (SB4x: 0.000125% 

bromophenol blue, 200 mM Tris-HCl pH 6.8, 20% β-mercaptoethanol, 40% glycerol and 8% 

SDS). Proteins were resolved by SDS-PAGE (Laemmli, 1970) using 12% gels. Conditions 

for protein transfer have been described elsewhere (Jakomin et al., 2008). Primary antibody 

was anti-Flag M2 monoclonal antibody (1:5,000, Sigma-Aldrich, St. Louis, MO). Goat anti-

mouse horseradish peroxidase-conjugated antibody (1:5,000; Bio-Rad, Hercules, CA) was 

used as secondary antibody. Proteins recognized by the antibody were visualized by 

chemoluminescence using the luciferin–luminol reagents of Supersignal West Pico 

Chemiluminiscent Substrate (Thermo Scientific, Waltham, MA, USA) and developed in a 

LAS3000 mini system (Fujifilm, Tokyo, Japan).  

Purification of StdE protein and antibody generation 

A DNA fragment containing stdE was amplified using oligonucleotides StdEprotUP and 

StdEprotDO, and cloned into pET28a (Novagen) using the NdeI and EcoRI sites. The 

recombinant plasmid (pIZ1991) was verified by restriction analysis and DNA sequencing. 

For 6×His-StdE purification, plasmid pIZ1991 was transformed into E. coli BL-21. BL-

21/pIZ1991 was grown in LB broth containing Kanamycin, and expression of 6×His-StdE 

was induced with 1 mM isopropyl β-D-thiogalactopyranoside (IPTG). After 3 h of induction, 

cells were centrifuged and resuspended in 10 ml of lysis buffer (20 mM Tris, 300 mM NaCl, 

10 mM imidazole) per g of pelleted cells, and were lysed by sonication. The suspension was 

centrifuged at 10,000 rpm for 20 min at 4º C and the supernatant containing the soluble 

fraction of 6×His-StdE was transferred to a HisTrap HP nickel affinity chromatography 

column (GE Healthcare, Wauwatosa, WI, USA). The column was washed 3 times with 4 ml 

of washing buffer (20 mM NaH2PO4·H2O, 0.5 mM NaCl, 30 mM imidazole). Protein elution 

was performed with 3 ml of elution buffer (20 mM NaH2PO4·H2O, 0.5 mM NaCl, 300 mM 
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imidazole). Aliquots of each fractios were loaded in SDS-PAGE gel and stain with 

Coomassie Brilliann Blue R-250 (Sigma-Aldrich) solution (0.25% (w/v) Coomassie Brilliant 

Blue R-250, 10% (v/v) acetic acid and 10% (v/v)  ethanol). Elution fractions enriched in 

6×His-StdE were selected. Imidazole was removed by dialyzing in cellulose membranes with 

PBS 1X. Purified 6×His-StdE protein was sent to Biomedal S.L (Sevilla, Spain) for 

polyclonal antisera production in rabbits. Working dilution was made based on manufacture 

recommendations. 

RNA isolation 

To prepare cells for RNA extraction, 3 ml of fresh LB was inoculated with a 1:100 dilution 

from an overnight bacterial culture, and incubated with shaking at 200 rpm in an Infors 

Multritron shaker at 37ºC. A 2 ml aliquot from a stationary culture (O.D.600∼2) was 

centrifuged at 13000 rpm, 4ºC, during 5 min. The pellet was resuspended in 100 µl of a 

solution of lysozyme (3 mg/ml in water; Sigma Chemical Co.). Cell lysis was facilitated by a 

freeze-thaw cycle. After lysis, RNA was extracted using 1 ml of TRIsure reagent following 

manufacture’s instructions (Bioline, Taunton, Massachusetts, USA). Total RNA was 

resuspended in 30 µl of RNase-free water, and subsequently clean by extraction with acidic 

phenol, followed by a second extraction with chloroform:isoamilic alcohol (24:1). After 

extraction, RNA was precipitated with ethanol and 3 M sodium acetate, and the dried pellet 

was resuspended in RNase-free water. The quantity and quality of the RNA was determined 

using a ND-1000 spectrophotometer (NanoDrop Technologies). 

Quantitative reverse transcriptase PCR (qRT-PCR)  

For qRT-PCR, Salmonella RNA was extracted from stationary phase cultures (O.D.600∼2) as 

described above, and the concentration was determined using a ND-1000 spectrophotometer 

(NanoDrop Technologies). An aliquot of 1 µg of RNA was used for cDNA synthesis using 

QuantiTec® Reverse Transcription Kit (Quiagen) following manufacturer’s instructions. 

Quantitative RT-PCR reactions were performed in a Light Cycler 480 II apparatus (Roche). 

Each reaction was carried out in a total volume of 10 µl on a 480-well optical reaction plate 

(Roche) containing 5 µl SYBR mix, 0.2 µl DYE II (Takara), 4 µl cDNA (1/10 dilution) and 

two gene-specific primers at a final concentration of 0.2 mM each. Real-time cycling 



 

conditions were as follows: (i) 95ºC for 10 min and (ii) 40 cycles at 95ºC for 15s, 60ºC for 

1min. A non-RT control was included for each primer set. Triplicates were run for each 

reaction, and the Ct value is averaged from them. Absence of primer dimers was corroborated 

by running a dissociation curve at the end of each experiment to determine the melting 

temperature of the amplicon. Melting curve analysis verified that each reaction contained a 

single PCR product. Gene-specific primers were designed with ProbeFinder software 

(http://www.universalprobelibrary.com) from Roche Applied Science and are listed in Table 

M2. 

For quantification, the efficiency of each primer pair was determined to be between 90%-

110%, following the instructions for efficiency determination described in the “Guide to 

Performing Relative Quantification of Gene Expression Using Real-Time Quantitative PCR” 

(Applied Biosystems). These efficiencies indicate that the amount of DNA is doubled in each 

PCR cycle, and allows for direct comparison between different genes. Relative RNA levels 

were determined using the ∆∆Ct method as described in the above mentioned guide. Briefly, 

each gene Ct value is normalized to the Ct value for the internal control (rfaH), which gives 

the ∆Ct value. This value is then related to a given gene in the reference strain (S. enterica, in 

this case) giving us the ∆∆Ct value. Since the amount of DNA doubles in each PCR cycle, 

the relative amount of input cDNA can be determined by using the formula 2-∆∆Ct. Each ∆∆Ct 

determination was performed at least in three different RNA samples (three biological 

replicates), and the results are representative example of such determinations.  

Analysis of hilD mRNA decay 

Use of quantitative RT-PCR to monitor mRNA decay has been previously described (Baker 

et al., 2007). An overnight LB culture of the strain under study was diluted 100 fold, and 

incubated at 37ºC with shaking until O.D.600∼2). Transcription initiation was stopped by 

adding rifampicin (500 mg/ml). Cultures were kept at 37ºC and aliquots were extracted at 1 

min intervals. Each aliquot was immediately immersed in liquid N2 and kept frozen until 

RNA extraction. RNA was extracted using the standard protocol above described and 

amounts of hilD mRNA were determined with qPCR, using oligos  RT-hilD FOR and RT-

hilD REV as described above. Three independent qRT-PCR reactions were performed. 
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Southern blot  

Genomic DNA was isolated as previously described from stationary cultures in LB (O.D.600 

~2). Forty µg of each DNA sample were digested with SspI (New England Biolabs, Ipswich, 

MA), purified and divided into four fractions, three of which were subsequently digested with 

DpnI, MboI or Sau3AI (New England Biolabs). After digestion the samples were run in a 

denaturing 8% TBE-polyacrilamide (19:1) 8 M urea gel. Electrophoresis was carried out in a 

Hoefer SE400 (Hoefer Scientific Instruments, San Francisco, California) subjected to an 

electric field of 35 mA for 60 minutes.  

DNA was transferred to an Amersham Hybond-N+ membrane (GE Healthcare, Wauwatosa, 

WI, USA) using a semidry Electroblotting system (Thermo Scientific, Waltham, MA, USA). 

The DNA in the membrane was then immobilized by UV crosslinking. A radioactive probe 

was prepared by PCR using dCTP [α-32P] (Perkin Elmer, Waltham, MA) and 

oligonucleotides stdPLtetOUP and std southern DO. After the PCR reaction, non-incorporated 

nucleotides were removed by treatment in a Sephadex G-25 column (Illustra MicroSpin G-25 

columns, GE Healthcare, Wauwatosa, WI) following manufacturer’s instructions. Prior to 

hybridization the double-stranded DNA probe was denatured by heating at 95ºC for 3 min, 

followed by incubation on ice. Hybridization with the probe was performed overnight at 52ºC 

in hybridization buffer (0.5 M sodium phosphate pH 7.2, 10 mM EDTA, 7% SDS). Excess 

probe was removed with washing buffer (40 mM sodium phosphate pH 7.2, 1% SDS) at 48ºC 

(three washes, 30 min each). The membrane was developed using a FLA-5100 Scanner 

(Fujifilm, Tokyo, Japan).  

Microarray procedures and data analysis  

Salmonella enterica comparative transcriptomic analyses were performed in a strain that 

constitutively expressed stdEF (SL1344 PLtetOstdEF- SV8141) and in a control strain carrying 

an in-frame deletion of both genes (SL1344 PLtetO∆stdEF- SV8142). RNA from two 

biological replicates of each strain was isolated and used for the assay.  

Transcriptomic analyses were performed using Salmonella enterica serovar Typhimurium 

SL1344 4X72K array, custom prepared for Dr. Antonio Juarez (Paytubi et al., 2014). 

Hybridation and microarray scanning were performed at the Functional Genomics Core of 



 

the Institute for Research in Biomedicine, Baldiri Reixac, Barcelona, Spain 

(http://www.dnaarrays.org/). Normalization of the expression signals was done with RMA 

(Irizarry et al., 2003) using Partek Genomics suite6.5 (6.11.0207). Raw transcriptomic data 

were deposited at the Gene Expression Omnibus, G.E.O, database 

(http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE45488. Raw transcriptomic 

data was analysed building the ratio between the two conditions of interest by subtracting. 

Those genes with a difference higher than 4-fold in expression were further study.  

Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) and 

data analysis 

ChIP-seq assays were used to determine chromosome-wide DNA binding profiles of StdE 

and StdF in Salmonella enterica serovar Typhimurium SL1344. PLtetOstdEF-3xFLAG strain 

(SV9287) was used to perform ChIP-seq experiments. 20 ml of fresh LB was inoculated with 

a 1:100 dilution from an overnight bacterial culture, and incubated with shaking at 200 rpm 

in an Infors Multritron shaker at 37ºC. Cells collected at O.D.600 ∼2 were crosslinked with 

1% formaldehyde (37% solution) at 37ºC for 25 min, following by quenching the unused 

formaldehyde with 450 mM glycine for 5 min. Crosslinked cells were harvested by 

centrifugation at 9000 rpm at 4ºC for 10 min and washed with 10 mL of TBS pH7.6 (2.42 g/l 

Trizma base, 8 g/l NaCl). The washed cells were re-suspended in 1 mL of lysis buffer (10 

mM Tris-HCl pH 8, 20% sucrose, 50 mM NaCl, 10 mM EDTA) and after an additional 

centrifugation step, the cells were re-suspended in 0.5 mL of lysis buffer with lysozyme (20 

mg/ml in water; Sigma Chemical Co.). The cells were incubated for 30 min at 37°C and then 

treated with 4 mL of IP buffer (50 mM HEPES-KOH pH 7.5, 150 mM NaCl, 1 mM EDTA, 

1% Triton X-100, 0.1% Na deoxycholate, 0.1% SDS and 1mg/mL phenylmethylsulfonyl 

fluoride (PMSF). The lysate was then sonicated using a Bioruptor (Diagenode) with 5 cycles 

of 7 minutes (30″ON/30″OFF) at high intensity. Cell debris was removed by centrifugation at 

13000 rpm at 4°C for 201min and the resulting supernatant was used as cell extract for the 

immunoprecipitation. The range of the DNA size resulting from the sonication procedure was 

100 - 500 bp, and the average DNA size was 300 bp.  

To immunoprecipitate StdE-DNA and StdF-DNA complexes, 800 µL of chromatin, 20 µL of 

Ultralink Immobilised protein A/G beads (Pierce) and 2 µL of the corresponding antibody 
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were used. Control sample (mock-IP) was performed with no antibody added. Four samples 

were used for each antibody and four samples for the control. They were then incubated for 

90 minutes at room temperature on a rotating wheel. Beads were transferred to a Spin-X 

column tube (Costar) and centrifuge at 3000 rpm for 1min. Beads were gently re-suspended 

in 500 µL of IP buffer and incubated on wheel for additional 3 min. This step was done 

twice. Beads were washed with 500 µL of IP salt buffer (50 mM HEPES-KOH pH 7.5, 150 

mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% Na deoxycholate, 0.1% SDS, 1mg/mL 

phenylmethylsulfonyl fluoride (PMSF) and 500 mM NaCl), IP wash buffer and TE pH 8.0 

(10 mM Tris-HCl and 1 mM EDTA) by re-suspending and re-centrifuging sample. The 

column was transferred to a fresh tube and the beads were re-suspended in 100 µL of elution 

buffer (50 mM Tris-HCl at pH 7.5, 10 mM EDTA, and 1% SDS) and incubated at 65ºC for 

20 min. After centrifuging at 3000 rpm for 1 min the flow-through was treated with 10 µL of 

40 mg/mL of a mixture of proteases (Pronase, Roche) made up in TBS pH7.6 (2.42 g/l 

Trizma base, 8 g/l NaCl). The samples were heat at 42ºC for 2h and 65ºC for 6 hours. The 

reactions were then kept at 4ºC overnight. The samples were clean up by using a PCR clean 

up Kit (Promega) and re-suspended in 50 µL of H2O. 



 

 

Figure M. 1 Chromatin Immunoprecipitation (ChIP). The diagram sums up the Chromatin Immunoprecipitation process 

and the final enrichment of the IP sample in the desired DNA fragments (dashed line).  

Input and ChIP DNA samples were sent for sequencing at the Functional Genomics Core 

Facility of the Institute for Research in Biomedicine, Barcelona (Spain). Next generation 

sequencing was carried out using Illumina’s sequencing technology. Ultra DNA Library Prep 

Kit (Illumina) was used for library preparation. Libraries were sequenced on Illumina’s 

Genome Analyzer II system. 50 nucleotides single end reads were obtained strictly following  

manufacturer’s recommendations. Illumina sequencing data were pre-processed with the 

standard Illumina pipeline version 1.5. 

BAM files reported by the sequencing facility of the Functional Genomics Core Facility were 

converted to FASTQ format with the BAM2FASTQ tool 

(http://www.hudsonalpha.org/gsl/information/software/bam2fastq). The quality of the 

sequence reads was examined using FASTQC (Andrews, 2010) that reported the presence of 

Illumina adapters. The adapters were trimmed with the FASTX_CLIPPER tool of the 
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FASTX-Toolkit suite (http://hannonlab.cshl.edu/fastx_toolkit/). Reads shorter than 40 nt 

were discarded. 

NCBI GCA_000210855.2 genome assembly of S.enterica SL1344 was used as reference 

genome. Mapping was performed with Bowtie (Langmead et al., 2009) allowing only two-

mismatches for  unique alignment. 

Peaks were called using CisGenome version 2.0 (Ji et al., 2008) using default parameters. 

The IGV browser (Thorvaldsdóttir et al., 2013) was used for data visualization. Genes closest 

to a ChIP peak were identified using the bedtools suite (Quinlan & Hall, 2010). Peak 

boundaries sequences were extracted from the reference genome using the fastaFromBed 

utility from the BEDTools suite (Quinlan & Hall, 2010).  

Chromatin Immunoprecipitation followed by quantitative PCR (ChIP-

qPCR) 

ChIP-qPCR assays were used to check StdE, StdF and HdfR binding to the std promoter 

region. SL1344 ∆dam stdE-3xFLAG, SL1344 ∆dam stdEF-3xFLAG and SL1344 ∆dam 

hdfR-3xFLAG strains were used to perform ChIP-qPCR experiments. The Chromatin 

Immunoporecipitation protocol used was previously described for ChIP-seq assay. After 

DNA purification, quantitative PCR was performed following the protocol previously 

described and using specific oligonucleotides RT-promotorstd FOR and RT-promotorstd REV 

for the amplification of the std promoter region in both IP sample and mock IP sample.  

Inmunofluorescence microscopy 

Cells from 1.5 ml of an exponential culture (OD600∼ 0.5) of Salmonella enterica SL1344 

were collected by centrifugation, washed, resuspended in 1ml TE buffer and fixed by adding 

the same volume of cold 70% ethanol. Ethanol-fixed cells (100 µl) were stained with 

polyclonal rabbit anti-StdA serum (Baumler’s lab) (1:250). After extensive PBS + Gelatin 

0.02% washing, a goat anti-rabbit antibody conjugated to (Fluorescein isothiocynate) FITC 

(1:500) was used. Inmunostained cells were stained with Hoechst 33258, 1.5 mg ml-1, in 10µl 

mounting medium (40% glycerol in 0.02 M phosphate buffered saline, pH 7.5). 20µl of 



 

ethanol-fixed cells was spread onto a poly-L-lysine-coated slide, and dried at room 

temperature. Slides of stained samples were stored at room temperature in the dark. Images 

were obtained by using an Olympus IX-70 Delta Vision fluorescence microscope (Olympus, 

Tokyo, Japan) equipped with a 100X UPLS Apo objective. Pictures were taken using a 

CoolSNAP HQ/ICX285 camera (Roper Technologies, Sarasota, FL) and analysed using 

ImageJ software (Wayne Rasband, Research Services Branch, National Institute of Mental 

Health, MD).  

Flow cytometry  

Bacterial cultures were grown at 37ºC in LB until exponential (O.D.600 ~0.4) or stationary 

phase (O.D.600 ~2). Cells were then diluted in PBS to a final concentration of ~107/ml. Data 

acquisition and analysis were performed using a Cytomics FC500-MPL cytometer (Beckman 

Coulter, Brea, CA). Data were collected for 100,000 events per sample, and were analysed 

with CXP and FlowJo8.7 software. Data are shown either by a dot plot (forward scatter [cell 

size] vs fluorescence intensity) or histograms (% cell counts vs fluorescence intensity).  

Statistical analysis  

The Student’s t test was used to determine if the differences in our experiments were 

statistically significant. 
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Expression of the std operon 

It has been described that the std fimbrial operon is tightly repressed in Salmonella enterica 

in a Dam-dependent manner (Balbontín et al., 2006). Dam– mutants show high expression of 

the std operon (Balbontín et al., 2006), and this expression is dependent on the HdfR protein 

(Jakomin et al., 2008). Moreover, bimodal expression for this operon has been suggested 

(Jakomin et al., 2008), since the authors observed two subpopulations in Dam– and SeqA– 

backgrounds. 

To further understand the expression conditions of the std operon, and based on the 

possibility of heterogeneous expression suggested by Jakomin et al., 2008, single cell 

analysis of stdA expression was performed using an stdA::gfp transcriptional fusion. This 

fusion is defective in StdA synthesis, since only the first 129 nt of the stdA gene are present 

in the construction. However, the downstream genes of the operon are expressed since the 

construct does not contain a transcriptional terminator downstream of the gfp gene. Flow 

cytometry assays were performed using strains stdA::gfp, ∆dam231 stdA::gfp (non-polar 

deletion of dam), ∆dam231 ∆hdfR stdA::gfp, ∆hdfR stdA::gfp. A representative experiment is 

presented in Figure C1. 1.  

 

Figure C1. 1 Regulation of the Dam-dependent std operon and role of HdfR. GFP fluorescence intensity in a strain 

carrying an stdA::gfp fusion in different genetic backgrounds (∆dam, wt, ∆hdfR). The Dam– mutant shows bimodal 

expression of the stdA::gfp fusion and the expression is dependent on HdfR, as described by (Jakomin et al., 2008). In a wild 

type background, a minor subpopulation (0.3% of the cells, StdON) appears to express stdA::gfp. The subpopulation 

disappears in a HdfR- background, underlining the essential role of HdfR in std regulation.  

The experiment shows that std expression is repressed by Dam methylation in a HdfR-

dependent manner as previously described. Just ∼ 0.3 to 3% of cells produce stdA::gfp in a 
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wild type background. As observed for expression in a Dam–  background, this expression is 

also dependent on HdfR. This observation indicates that expression of the std operon occurs 

only in a fraction of the population under laboratory conditions, suggesting bistable 

expression of the operon. 

Also, upon labeling Std fimbriae and under the fluorescence microscope, only a small 

fraction of Salmonella enterica wild type cells appeared to be Std-frimbriated (Figure C1. 2). 

Bacteria were labelled with rabbit anti-StdA serum (obtained from A. Baümler’s lab) and 

goat anti-rabbit IgG FITC conjugate for the detection of Std fimbriae. This observation, along 

with previous studies of phase variation of fimbrial operons (Hernday et al., 2004; Humphries 

et al., 2001; Norris et al., 1998), supports the idea that the std fimbrial operon undergoes 

heterogeneous expression. 

 

Figure C1. 2 Detection of StdA fimbriae in Salmonella enterica. Immunofluorescence microscopy for the detection of 

StdA fimbriae in Salmonella enterica in a wild type background. Left column (panels A and D) shows bacterial cells of 

Salmonella enterica (Hoechst stain). Panel B shows StdA detection with anti-StdA antiserum and goat anti-rabbit antibody 

conjugated to FITC (green signal). In panels C, E and F both channels were merged.   
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Both flow cytometry and fluorescence microscopy approaches reveal that expression of stdA 

(and in consequence, expression of std operon) occurs in a small fraction of the population. 

Based on flow cytometry results, the StdON subpopulation varies from 0.3 to 3% of the 

population depending on the growth phase of the cells. However, no expression was detected 

when using the stdA::lacZ fusion on X-gal plates, despite the fact that the stdA::lacZ fusion 

behaves as expected in a  Dam-  background (∆dam stdA::lacZ ), showing blue colonies on X-

gal plates.  

Transcriptional regulation of the std operon 

The mechanisms that prevent expression of the std operon outside the animal intestine are not 

well understood. It is already well-known that several factors repress std expression, such as 

Dam methylation (Balbontín et al., 2006; Chessa et al., 2008), RosE, an homolog of E. coli 

ArgR, and the GATC-binding protein SeqA (Chessa et al., 2008). On the other hand, the poorly 

known HdfR protein (a LysR-like factor) is required for std expression in S. enterica Dam– 

mutants (Jakomin et al., 2008), and it is also needed for std expression in a wild type 

background.  

During this Thesis, we had the chance of working in collaboration with the group of Dr. 

Mónica Delgado, INSIBIO, CONICET-UNT, Argentina. This group is interested in the 

regulatory mechanism of the signal transduction system RcsCDB. Previous results showed 

that a RcsC11 mutant undergoes constitutive activation of the RcsCDB system, and this 

activation leads to attenuation of S. typhimurium virulence (Costa & Antón, 2001; Mouslim 

& Groisman, 2003; Mouslim et al., 2003; 2004), partially through the repression of hilA, 

invF, sipC and invG genes (Delgado et al., 2006; Mouslim et al., 2004). Unpublished data 

from Delgado’s group reveals that the rcsC11 strain has a defective phenotype of adhesion to 

Caco-2 cells. These observations led us to speculate about a potential relation between 

constitutive expression of rcsB and std operon expression.  

In order to study whether the RcsCDB system controls std operon expression, we used the 

chromosomal stdA::gfp transcriptional fusion mentioned above. The gfp fusion was 

introduced into an RcsC11 background, and the distribution of GFP activity during 

exponential growth (O.D ∼0.8) was determined.  



 

 

 

Figure C1. 3. Distribution of stdA::gfp activity in wild type and rcsC11 backgrounds. The stdON subpopulation 

disappears in the strain rcsC11 stdA::gfp, indicating repression of std when rcsB is constitutively expressed.   

As observed in Figure C1. 3, constitutive expression of rcsB (in a RcsC11 mutant 

background) eliminates the StdON subpopulation, indicating that RcsB represses std 

expression. In order to further understand the regulatory mechanism that controls std 

expression through rcsB, the β-galactosidase activity assay of the stdA::lacZ translational 

fusion was monitored in different Dam– genetic backgrounds. Note that Dam– background 

was chosen in order to have enough stdA::lacZ expression. From the results summarized in 

Figure C1. 4, we can conclude that constitutive expression of rcsB (RcsC11 mutant) ends up 

in a 10-fold reduction of stdA::lacZ expression in the Dam– mutant.   

 

Figure C1. 4 Regulation of stdA::lacZ expression by RcsB A. β-galactosidase activity of stdA::lacZ translational fusion in 

different genetic backgrounds. B. Relative mRNA levels of stdA in different genetic backgrounds. RNA levels were 

determined for at least 3 biological replicates and a representative experiment is shown.  
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In contrast, inactivation of RcsB (the rcsBD56N strain contains a point mutation in the rcsB 

gene that inactivates RcsB by a single amino acid change) in a Dam- background increases 

stdA::lacZ expression two fold compared with the Dam– mutant (Figure C1. 4A).  

Previous reports from Dr. Delgado’s group demonstrated that the RcsCDB system is 

activated by a tolB mutation (TolB is involved in the integrity of cell envelope) and by rcsB 

overexpression from the prcsB plasmid (Mouslim & Groisman, 2003, Pescaretti et al., 2010). 

As we expected, the β-galactosidase activity levels obtained in dam tolB and dam prcsB (+ 

IPTG to overexpress rcsB) strains were similar to those observed in the dam rcsC11 (Figure 

C1. 4A). When IPTG was not added to the culture medium of the dam prcsB strain, the β-

galactosidase activity levels produced were similar to those observed in the Dam- mutant 

(Figure C1. 4A). To further confirm these results, transcription of stdA was monitored by 

qRT-PCR. As shown in Figure C1. 4B, the results correlate well with those obtained by 

monitoring β-galactosidase activity, and the stdA expression levels in dam rcsC11, dam tolB 

and dam prcsB (+ IPTG) strains were significantly lower than those observed in the Dam-

mutant. Moreover, the stdA transcription levels of the Dam- RcsBD56N double mutant were 

higher than those observed in the Dam- mutant. These results, together with the observations 

presented above, indicate that the RcsCDB system downregulates stdA gene expression, both 

in wild type and Dam– backgrounds.  

In addition, we studied whether std downregulation is due to specific binding of RcsB on the 

std promoter region. For this purpose, we first carried out a bioinformatic analysis using the 

std promoter region to identify a putative RcsB-binding site. The architecture of the std 

promoter including the GATC sequences, -10 and -35 modules, and the +1 transcription site 

was described by Jakomin et al. (2008) (Figure C1. 5A). As shown in Figure C1. 5A, a 

consensus RcsB-binding site, already described in other RcsB-regulated genes (Carballès et 

al., 1999; Mouslim & Groisman, 2003; Wehland & Bernhard, 2000), was found overlapping 

the -35 box of the std regulatory region. 

These findings suggest that RcsB binding to the -35 box may prevent binding of RNA 

polymerase, thereby inhibiting transcription of std. Binding of RcsB to this region was further 

confirmed by Dr. Delgado`s group, showing that migration of 300 pb and 735 bp PCR 

products (generated with EMSA-std300 FOR and EMSA-std REV; and EMSA-std735 FOR 

and EMSA-std REV pair of oligonucleotides respectively), both containing the std promoter 

and the putative RcsB-binding site, were retarded in Electrophoretic Mobility Shift Assay 



 

 

(EMSA) with increasing RcsB concentration (Farizano, JV, personal communication). A 234 

bp DNA fragment was used as a negative control and, as expected, no retardation was 

observed (Figure C1. 5B). Altogether, these observations indicate that RcsB is a repressor of 

std expression, and that it acts by direct binding to the std promoter.  

 

Figure C1. 5 RcsB binds to std promoter A. In silico analysis showing RcsB putative binding sites in the std promoter. In 

blue are highlighted the three GATC sites in the std promoter, in green the start codon of the stdA gene, underlined are 

highlighted the -35, -10 and +1 sites and the RcsB putative binding site is distinct with a box. B. Electrophoretic Mobility 

Shift Assay (EMSA) of the std promoter with increasing concentrations of RcsB protein shows the slow mobility of the 

RcsB-stdA DNA complex compared with the control DNA.   

Expression and autoregulation of the transcription factor HdfR 

HdfR is essential for std expression in both the wild type (this study) and the Dam– 

background (Jakomin et al., 2008). Three GATC sites are present upstream the std promoter, 

in positions -243, -230 and -221 upstream of the transcription start of std. The methylation 

state of GATC sites can be affected by DNA-protein interactions. Therefore, Dam 
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methylation can act as a regulator of transcription by influencing binding of RNA polymerase 

or transcriptional factors (Wion & Casadesús, 2006). Previously in the lab, purified HdfR-

His6 was used to study the interaction of HdfR with the std promoter region (from -295 to 

+11) in vitro, and to test the effect of Dam methylation on HdfR binding. Unpublished data 

show that HdfR binds the std regulatory region when the three GATCs of this region are non-

methylated, while it is unable to bind when the three GATCs are methylated or 

hemimethylated.  

Chromatin Immunoprecipitation (ChIP) coupled with quantitative PCR was used to 

investigate HdfR-std promoter interaction in vivo using the strain ∆dam hdfR-3xFLAG. A 

chromatin fragment containing the std promoter was 13 fold enriched in the 

inmunoprecipitated (IP) sample compared with the mock IP sample. Therefore, confirming  

in vitro data, HdfR binds to the non-methylated std promoter (Figure C1. 6).  

                                                

Figure C1. 6 Chromatin Immunoprecipitation (ChIP) coupled with quantitative PCR analysis of HdfR binding to the 

std promoter.   

However, and as shown above, std expression in wild type cells is only detected in a small 

subpopulation, whereas Dam– cells show high level of expression. We wondered if these 

differences in expression were due to a difference in the level of the expression of hdfR. To 

address this question, the β-galactosidase activity of an hdfR::lacZ fusion was measured in 

the wild type and in a Dam– strain in exponential and stationary cultures (Figure C1. 7). No 

significant differences were observed in hdfR expression, indicating that the differences in std 

expression observed between Dam– and wild type Salmonella cannot be explained by 

different hdfR expression levels.  
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Figure C1. 7 β-galactosidase activity of hdfR::lacZ in exponential and stationary phase in a wild type and Dam –  

backgrounds.  

HdfR is a LysR-type transcriptional regulator, and these transcription factors commonly 

activate the expression of target genes but repress their own expression. To investigate 

whether HdfR represses its own expression, the intergenic region between hdfR and the 

upstream gene in the chromosome (yifE), which most likely contains the hdfR promoter, was 

cloned on the promoter-probe vector pIC552 (Macián et al., 1994), generating a 

transcriptional fusion with the lacZ gene (pIZ2320) (Figure C1. 8A). The activity of the 

phdfR::lacZ fusion was monitored in HdfR+ and HdfR– backgrounds to determine whether 

HdfR undergoes autogenous transcriptional regulation. 

 

Figure C1. 8 Autoregulation of hdfR. A. Diagram of the hdfR promoter region. The DNA fragment cloned on pIC552 is 

represented. The fragment contains the hdfR promoter region.  B. β-Galactosidase activities of pIC552 and pIC552 phdfR in 

the presence and in the absence of HdfR. 

0

100

200

300

wt 

O.D ~ 0.8  

dam

400

500

O.D ~ 2  

lacZ

hdfRyifE

hdfR::lacZ

0

1000

2000

3000

pIC552 

 hdfR +  

pIC552
phdfR

4000

hdfR -

phdfR::lacZ

M
il

le
r 

U
ni

ts

M
il

le
r 

U
ni

ts

A

hdfRyifE
phdfR

lacZ
phdfR

pIZ2320

0

1000

2000

3000

pIC552 

HdfR +  

pIC552
phdfR

4000

HdfR - 

phdfR::lacZpIC552

M
il

le
r 

U
ni

ts

B



Chapter I 

89 

As shown in Figure C1. 8B, HdfR undergoes autogenous repression of the hdfR promoter, in 

a fashion analogous to other LysR-type transcription factors. Autogenous repression might 

ensure a constant intracellular level of the protein. Moreover, as it will be shown in Chapter 

2, we have identified additional factors that affect hdfR expression. 

In order to determine whether high HdfR levels might affect std expression, we placed hdfR 

under the control of the heterologous promoter PLtetO. Despite the fact that PLtetO is a moderate  

promoter, higher hdfR expression levels were obtained (Figure C1. 9A), and the 

autorepression was avoided. The expression of the stdA::gfp and stdA::lacZ fusions was 

monitored by fluorescence analysis and β-galactosidase assays, respectively.  

 

Figure C1. 9 Constitutive expression of hdfR increase stdON subpopulation. A. Constitutive expression from the 

heterologous promoter PLtetO increases 100 fold the expression of hdfR compared with the wild type strain. Data are 

normalized to the RNA level obtained in wild type Salmonella cells (Value for wild type=1; not shown). B. Constitutive 

expression from the heterologous promoter PLtetO increases 10 fold the expression of the stdA::lacZ fusion compared with the 

wild type strain. C. Fluorescence intensity of the stdA::gfp fusion in a PLtetOhdfR  shows an increase of the mean 

fluorescence and an increment of the stdON subpopulation. C.  stdA::lacZ PLtetOhdfR on X-gal plates shows colonies with 

different stdA::lacZ expression (blue colonies pointed with arrows). 
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Increased hdfR expression results in increased stdA transcription (Figure C1. 9B), and in an 

enrichment of the StdON subpopulation (Figure C1. 9C). The latter observation was made not 

only by flow cytometry but also on X-gal plates, where two types of colonies were 

distinguished (Figure C1. 9D). In this case the heterogeneity of the population cannot be due 

to different levels of HdfR in the cells since expression is driven from a constitutive 

promoter. Therefore another factor must govern variability in the expression of std. 

Although several repressors of std expression have been described in previous studies and 

also in this work, the mechanisms that permit std expression inside the animal intestine were 

unknown. To search for factors that might activate expression of the std operon in a wild type 

(Dam+) background, a genetic screen for activators of the std operon was performed using a 

pBR328-based multicopy plasmid library of the Salmonella enterica genome (López-Garrido 

& Casadesús, 2012). A Dam+ strain carrying a stdA::lacZ translational fusion (SV5182; 

(Jakomin et al., 2008)), was used as reporter for the screen. This strain does not show lacZ 

expression at all, since transcription is driven by the std promoter which is strongly repressed 

under laboratory conditions. Strain SV5182 was transduced with 9 pools of the plasmid 

library, each containing around 1,000 independent clones. Transductants were selected on LB 

plates containing chloramphenicol and X-gal. Forty-five colonies with increased β-

galactosidase activity (blue colonies) were chosen, and 22 independent candidates that 

retained high β-galactosidase activity after re-transformation of their plasmid were further 

analyzed. The DNA fragments contained in the plasmid of 15 candidates were sequenced 

using specific primers flanking the insertion site. Surprisingly, DNA sequencing revealed that 

14 candidates contained the std fimbrial gene cluster (pBR328std, annotated as pIZ2318), 

among other neighboring genes, and one candidate contained the std fimbrial operon except 

stdF (pBR328std∆stdF, annotated as pIZ2319). These results indicate that activators of the 

std operon were contained inside the operon itself; in other words, they suggest self-

regulation of the operon. Furthermore, they revealed that the StdF might play a role in 

autogenous activation since stdA::lacZ expression decreased considerably when the 

downstream gene stdF was not present. Expression is dependent on HdfR, highlighting again 

the major role of this protein in std expression (Figure C1. 10).  
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Figure C1. 10 Autoregulation of the std operon. β-galactosidase activity of a stdA::lacZ fusion in the presence of plasmid 

containing the std operon, in HdfR+ and HdfR- genetic backgrounds. 

Interestingly, previous results from our lab had identified the gene products of stdE and stdF 

as repressors of SPI-1 expression (López-Garrido & Casadesús, 2012). These results, 

together with the fact that in other fimbrial operons both structural and regulatory elements 

are encoded in the same operon, fueled further studies on the involvement of StdE and StdF 

in self-regulation of std expression. The strain carrying the stdA::gfp fusion was used to test 

the effect of StdE and StdF on expression of the std operon. For this purpose, we placed the 

heterologous promoter PLtetO (Lutz & Bujard, 1997; McQuiston et al., 2008) upstream of 

stdEF (PLtetOstdEF) to ensure constitutive expression on both genes. (Figure C1. 11A). 

Expression of stdA was monitored by flow cytometry. As observed in Figure C1. 11B, 

deletion of stdEF, PLtetO∆stdEF, results in loss of the cell subpopulation that expresses gfp. In 

turn, constitutive expression of stdEF slightly increases gfp mean fluorescence and 

significantly increases the size of the stdON subpopulation (from 0,3% to 3%). Interestingly, 

in a Dam– background, deletion of stdEF causes a decrease in gfp expression, whereas 

constitutive expression increases gfp expression and results in an altered pattern of expression 

in the cell population (higher heterogeneity) (Figure C1. 11B). The same pattern was 

observed using the stdA::lacZ fusion in a PLtetOstdEF background on X-gal plates: an 

increment of blue colonies was observed, with some of them showing a darker blue (Figure 

C1. 11C).  
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Figure C1. 11 Effect of constitutive expression of stdEF on stdA::gfp expression. A. Diagram showing the construction 

used to monitor stdA::gfp fusion under stdEF constitutive expression. B. Single cell analysis of stdA::gfp-expressing cells in 

different genetic backgrounds. C. PLtetOstdEF stdA::lacZ  on X-gal plates with colonies showing and increase of  stdA::lacZ 

basal expression and some colonies with higher  stdA::lacZ expression (darker blue colonies pointed with arrows). 

These results (Figure C1. 11) confirm that StdE and StdF have a role in the expression of the 

std operon, not only in the wild type strain but also in the Dam– mutant background.   

To determine if StdE and StdF were able to bind the std promoter region, we used Chromatin 

Immunoprecipitation (ChIP) coupled with quantitative PCR to investigate a putative 

StdE/StdF-std promoter interaction in vivo. The strains used were ∆dam stdE-3xFLAG and 
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∆dam stdF-3xFLAG, since the Dam– background ensures a higher expression level of stdE 

and stdF.  

                                            

Figure C1. 12 Chromatin Immunoprecipitation (ChIP) coupled with quantitative PCR analysis of binding to the std 

promoter.  ChIP-qPCR performed with ∆dam stdE-3xFLAG and ∆dam stdF-3xFLAG. 

According to the results presented in Figure C1. 12, the chromatin fragment containing the 

std promoter immunoprecipitated with StdF-3xFLAG is enriched 6 times compared with the 

mock immunoprecipitated sample, indicating that StdF binds to the std promoter in vivo and 

suggesting a pivotal role for StdF in std transcription. However, no binding was observed for 

StdE, which might suggest that this protein is not relevant for expression of the std operon or 

that it plays an indirect role. Note that ChIP-qPCR assay do not allow to distinguish between 

direct or indirect binding to the DNA sequence. On the other hand, these data corroborate the 

major role of StdF unveiled by the genetic screen described above (in which a candidate 

lacking the downstream gene of the operon showed a decreased in stdA::lacZ expression). 

Figure C1. 13 shows a diagram of the players identified in the std regulation. The diagram 

simulates the std operon in the ON state. As it was already known, under these 

circumstances, the Dam methylase does not act over the GATC sites of the std promoter; 

therefore the GATCs are non-methylated and HdfR binds the std regulatory region. In turn, 

stdF expression, as described in this Thesis, supports std expression through an 

autoregulatory positive loop and StdF binds the std promoter region in a Dam-independent 

manner. In addition, wild type levels of RcsB do not bind the std promoter, but high levels of 

RcsB do bind and as shown in Figure C1. 5 repress std expression in Dam– and wild type 

backgrounds.   
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Figure C1. 13 Regulation of the std operon by StdF, HdfR and RcsB. Positive effects are indicated by lines ending in 

arrowheads, whereas blunt lines indicate negative regulatory effects. Dashed lines indicate regulation that do not apply under 

the diagram circumstances. The three black squares represent the three GATC sites in the regulatory region of the std 

operon, that in the circumstances detailed above would be non-mehylated. 

Methylation state of the std operon 

Expression of std  is detected in a Dam– background, whereas in a wild type strain expression 

is strongly repressed (Balbontín et al., 2006; Jakomin et al., 2008). Only a minor 

subpopulation expresses the std operon, according to single cell analysis described above. 

The std promoter region contains three GATC sites in positions -243, -230 and -221 upstream 

of the start of std transcription. Experiments carried out in our laboratory have shown that the 

transcription factor HdfR, needed for std expression, binds to the std promoter region when 

the GATC sites are non-methylated. HdfR is unable to bind either methylated nor 

hemimethylated DNA (unpublished results). These observations raise the possibility that the 

DNA methylation pattern of the std upstream activating sequence (UAS) might be different 

in StdON and StdOFF subpopulations. If this view is correct, only a small number of cells might 

harbor the DNA methylation pattern that allows HdfR binding and, as a consequence, std 

expression. The hypothesis of a different methylation pattern within the population is 

supported by the partial loss of StdON subpopulation upon overproduction of Dam methylase 

(cloned on pTP166) (Figure C1. 14). 
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Figure C1. 14 Regulation of std expression and formation of std subpopulations by Dam methylation. stdA::gfp 

fluorescence intensity in ∆dam, wild type and in a strain that overproduces Dam methylase (pTP166).  

To identify the methylation state of the std promoter in vivo, Southern blot experiments were 

performed. The methylation state of individual GATC sites was inferred from restriction 

analysis using enzymes that cut GATC sequences depending on their methylation state 

(MboI- non methylated, DpnI- methylated, and Sau3AI- methylated and non methylated). A  

Dam- mutant was used as a control (Figure C1. 15A) 

 

Figure C1. 15 Methylation state of GATC sites in the std regulatory region in wild type and Dam- backgrounds. A. 

Diagram of the SspI-SspI fragment and patterns of fragments obtained after cleavage of the different GATC sites. Sample 3 

refers to a wild type strain with the GATC3 mutated and treated with Sau3AI, that results in 97, 76 and 13 bp fragments. 

Another control, sample 1, refers to a wild type strain with the GATC1 mutated and treated with Sau3AI, that results in 110, 

67 and 9 bp fragments. B. Southern blot of genomic DNA obtained from wild type and Dam- cultures and digested with SspI 

(control, NC) and DpnI, MboI or Sau3AI.  
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As shown in Figure C1. 15B, the three GATC sites (GATC1, GATC2, and GATC3) are fully 

methylated in a wild type background. Considering that the majority of the population is in 

an StdOFF state, in the Southern the wild type strain largely corresponds to the StdOFF 

subpopulation.  

These results correlate well with previous assays of HdfR binding to the std promoter, in 

which binding occurred exclusively to non-methylated DNA. Identification of the DNA 

methylation pattern of the StdON subpopulation was difficult due to its small size (only 0,3 to 

3%) of the population.  

StdE and StdF are located in the cytoplasm of Salmonella enterica 

StdE and StdF are homologues of known transcriptional regulators. Specifically, StdE shares 

40-50% identity with the transcriptional activators GrlA from E.coli and CaiF from 

Enterobacter cloacae. In turn, StdF is related to the SPI-1 Salmonella protein SprB, a 

transcriptional regulator that represses the hilD promoter and activates the siiA promoter 

(López-Garrido & Casadesús, 2012). This homology with transcriptional regulators correlates 

well with the data presented in this chapter indicating that these proteins exert autogenous 

regulation of std transcription and also control hdfR expression (see above).  

The subcellular location of StdE and StdF was studied using 3xFLAG-tagged versions of the 

proteins in a Dam- background. Electrophoretic separation of cell fractions (cytoplasm, inner 

membrane and outer membrane) was performed, followed by Western blot analysis of the 

separated protein samples using a commercial anti-FLAG antibody. Based on the results 

obtained, we can conclude that both StdE and StdF are cytoplasmic proteins in Salmonella 

enterica (Figure C1. 16). 
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Figure C1. 16 Subcellular localization of StdE and StdF proteins in S. enterica subcellular fractions. 3XFLAG versions 

of the proteins were localized with anti-FLAG Western hybridization for different subcellular fractions (cytoplasm, inner 

membrane and outer membrane).  

Search for an internal promoter in the std operon 

Because a fraction of the bacterial population expresses the std operon under conditions in 

which the main promoter appears to be inactive, we wondered whether expression of the 

StdE and StdF activators might occur independently of the std main promoter. Previous 

results in the lab had shown that the stdE and stdF genes were transcribed from the std 

promoter (upstream of stdA) in a Dam- background (López-Garrido & Casadesús, 2012). 

However, the same study raised the possibility that an internal promoter might exist that 

allow transcription of these two genes independently. To test this possibility we constructed a 

stdE::gfp fusion, in which the upstream genes (up to stdD) were deleted (together with the 

main promoter) (Figure C1. 17A). As observed in Figure C1. 17 B, low expression is 

observed when cells are run in a flow cytometer. We are confident that this expression, no 

matter if very low, is real, since it was repeatedly observed for 10 biological replicates run in 

different days, and previous studies had reported an expression of stdE that was not detected 

for the remaining std genes (López-Garrido & Casadesús, 2012). This result suggests the 

presence of a promoter that may drive the expression of stdE, and probably also of stdF.  

Several attempts have been done to identify this putative internal promoter. Cloning of 

different gene fragments onto the promoter-probe plasmid pIC552 did not reveal promoter 

activity. 5´RACE experiments performed in wild type and Dam– genetic backgrounds failed 

also in the identification of such promoter. We are currently working an alternative solution 

for this identification since we do think that an std internal promoter exists.  
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Figure C1. 17 Evidence of the existence of an internal promoter upstream stdE. A. Diagram of the ∆pStdA-stdC 

stdE::gfp construction. B. stdE::gfp expression in different genetic backgrounds. Dam- and HdfR- backgrounds are used to 

define stdE::gfp expression.  

 

!
!
!
!
!
!

!
!
!
!
!
!
! !

GFP fluorescence intensity

%
 c

el
l c

ou
nt wt strain (no GFP)

stdE::gfp

∆dam stdE::gfp

∆hdfR stdE::gfp

∆pStdA-stdC stdE::gfp

stdE::gfp

∆pStdA-stdC stdE::gfp

A

B



 

 

 

Chapter II: Impact of stdE and stdF overexpression in 

Salmonella enterica 
  



 

 

  



Chapter II 

101 

Transcriptomic analysis of S. enterica cells constitutively expressing stdEF 

In order to identify genes regulated by stdE and stdF, comparative transcriptomic analyses 

were performed in a strain that constitutively expressed stdEF and in a control strain carrying 

an in-frame deletion of both genes. To achieve moderate, constitutive expression of stdE and 

stdF, strain SV8141 was used (PLtetOstdEF). In this strain, transcription of both genes is 

driven by the PLtetO promoter (Lutz & Bujard, 1997; McQuiston et al., 2008). To avoid 

potential artefacts, the native stdA promoter and all the genes upstream of stdE in the std 

operon (Figure C2. 1A) were deleted, and the PLtetO promoter was placed upstream of stdE in 

the chromosome. The control strain contained the same insertion of the PLtetO promoter in the 

chromosome, lacking the upper part of the std operon but carrying also a deletion of stdE and 

stdF (SV8142; PLtetO∆stdEF, (Figure C2. 1B).   

                   

Figure C2. 1. Diagrams of the std operon and of the strains SV8141 and SV8142. A. The std operon and surrounding 

genes in a Salmonella enterica wild type strain. Transcription of the operon is driven by the stdA promoter (PstdA). B. 

Diagrams of the std operon and surrounding genes in the strains used for transcriptomic analysis (PLtetOstdEF; SV8141 and 

PLtetO∆stdEF; SV8142) is shown.  

Transcriptomic analysis was performed using an array custom prepared by Dr. A. Juárez and 

co-workers (Paytubi et al., 2014), with RNA isolated from cells grown to stationary phase 

(OD600~2). Raw data from transcriptomic analysis have been deposited at the Gene 

Expression Omnibus (G.E.O) database (Edgar et al., 2002), with accession number 

GSE45488. 

The results show that, under the conditions used in the study, a large number of Salmonella 

loci showed differences in their RNA levels in an StdEF-dependent manner. Relevant data 

are summarized in Figure C2. 2 in which genes showing a higher than 4-fold difference in 
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their RNA amount are depicted. Complete data from the transcriptomic analysis, along with 

gene descriptions and fold changes, are shown in Supplementary Table SM.1. 

                        

Figure C2. 2 Pie chart summarizing the microarray data obtained. Numbers of genes up- and down-regulated, and 

physiological processes in which they are involved. 

As shown in Figure C2. 2, almost 200 genes showed a difference in expression higher than 4 

fold upon constitutive expression of stdEF. About 85% of these genes appear to be down-

regulated by StdEF, suggesting that these proteins may be often repressors of gene expression 

in Salmonella. Among the down-regulated loci, genes involved in virulence and motility are 

highly represented. Regarding virulence, genes belonging to pathogenicity islands SPI-1 and 

SPI-4 are repressed by StdEF. As mentioned before, motility related genes are also found 

among down-regulated genes. The list includes not only flhDC, which encodes the master 

regulator of flagellar synthesis (Kutsukake et al., 1990), but also the flg, flh, fli, and motAB 

operons (Supplementary Table SM.1) are also repressed. FlhDC has been described as an 

activator of SPI-1 genes (Chubiz et al., 2010; Saini et al., 2008), which might explain the 

presence of strongly down-regulated SPI-1 genes in our transcriptomic analysis and in a 

previous study focused on the involvement of StdEF in Salmonella virulence (López-Garrido 

& Casadesús, 2012). Among down-regulated genes, we also find ygiD, annotated as a 

hypothetical protein, which seems to be involved in biofilm formation (Supplementary 

Table SM.1).  The che operon and the trg and aer genes involved in chemotaxis were also 

found to be down-regulated (Figure C2.2).   

Among the up-regulated loci, we observe a high representation of genes involved in general 

metabolism, along with genes of the tra operon encoded on the pSLT plasmid 

(Supplementary Table SM.1). The only up-regulated gene that may be involved in 
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virulence is the SL0982 locus, annotated as a “Gifsy-2 prophage attachment and invasion 

protein homolog”, which shows a 64-fold increase compared with the control strain. 

Interestingly, we also found yifA among the up-regulated genes, with an 8.4-fold change of 

expression. yifA (henceforth, hdfR) encodes the transcriptional activator HdfR, which is 

responsible for the expression of the std operon not only in a Dam- mutant (Jakomin et al., 

2008) but also in a wild type background, as it was shown in Chapter 1. Regulation of hdfR 

by StdEF defines a positive feedback loop for autogenous control of the std operon. 

Additional results regarding mechanisms of self-regulation of the std operon were presented 

in Chapter 1.  

Validation of transcriptomic data 

To validate the transcriptomic data described above, we performed quantitative RT-PCR 

analysis of some of the genes differentially expressed in the presence of StdEF. We analysed 

expression of genes involved in motility (motA, flgE), conjugation (traA), chemotaxis (trg), 

virulence (hilA, sipB) and the transcriptional regulator of the std operon, hdfR. Data presented 

in Figure C2. 3 show that all the genes analysed undergo a change in expression in cells that 

constitutively express stdEF (PLtetOstdEF), compared with the control (PLtetO∆stdEF) and with 

wild type S. enterica. Changes in gene expression correlate well with those observed in the 

array, with fold-changes higher than 10-fold in all cases.  

                                   

Figure C2. 3 Validation of microarray data. RNA levels for some of the genes under stdEF control identified by 

microarray data in strains PLtetOstdEF and PLtetO∆stdEF. Data are normalized to the RNA level obtained in wild type 

Salmonella cells (Value for wild type=1; not shown). RNA levels were determined for at least 3 biological replicates and a 

representative experiment is shown.  
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Although, as shown in chapter 1, the std operon is tightly repressed under the conditions 

employed in our microarray analysis (lab conditions), the expression levels of the analysed 

genes in the PLtetO∆stdEF strain vary slightly from the normalized Salmonella wild type 

strain. The existence of a small fraction of the population that expresses std (StdON cells) may 

explain this tiny difference, reinforcing the view that std is expressed under laboratory 

conditions in a subpopulation of bacterial cells.  

Functional validation of the transcriptomic data was also performed. In the case of 

Salmonella pathogenicity island-1 (SPI-1), regulation by StdEF had been previously proven 

in a study from our laboratory (López-Garrido & Casadesús, 2012). Constitutive expression 

of stdE and stdF had been shown to down-regulate SPI-1 genes, to decrease invasion of HeLa 

cells in vitro, and to attenuate Salmonella virulence upon infection of BALB/c mice (López-

Garrido & Casadesús, 2012). The results presented in this Thesis correlate well with such 

data since a large number of SPI-1 genes appear to be down-regulated in the transcriptomic 

analysis. As a further functional validation of the transcriptomic analysis, we carried out tests 

of motility, biofilm formation, and conjugation in Salmonella strains that constitutively 

expressed the stdE and stdF genes (Figure C2. 4).  

The three phenotypes under examination respond to stdEF expression. Regarding motility, 

Salmonella cells expressing stdEF show no motility on a soft agar plate, indicating that 

constitutive expression of stdEF impairs motility of S. enterica cells. This phenotype 

correlates well with the transcriptomic data that show down-regulation of flagellar genes. 

Interestingly, the control strain (PLtetO∆stdEF) is more motile than Salmonella wild type cells 

(Figure C2. 4A). Control cells are wild-type cells in which the std operon has been deleted, 

as described in Materials and Methods and shown in Figure C2. 1B. This result confirms a 

role of the std operon in repression of motility, and reinforce the view that the std operon is 

expressed in a small fraction of the population (0.3-3%), under laboratory conditions.  
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Figure C2. 4 Functional validation of the transcriptomic analysis. A. Motility agar plates (see Materials and Methods) 

were used to test the motility of the strains used in this study. The experiments were performed in triplicate, and a 

representative plate is shown. B. The biofilm formed by S. enterica SL1344 (wt) and the strains PLtetO-stdEF and PLtetO-

∆stdEF was stained with crystal violet as described in Materials and Methods. The experiments were performed in triplicate, 

and a representative assay is shown.  C. Effect of stdEF on conjugal transfer of pSLT in microaerobiosis. The recipient was 

SV4938 in all matings. Donors were wild type Salmonella SL1344, and strains PLtetO-stdEF and PLtetO-∆stdEF. Data are 

averages and standard deviations  from 3 independent matings.  

Balbontín et al. described that Salmonella Dam– mutants have a defect in motility (Balbontín 

et al., 2006). Since std overexpression impairs motility in S. enterica cells and std expression 

occurs in a Dam– mutants, we cannot rule out the possibility that Dam-dependent regulation 

of Salmonella motility is mediated by std expression. To corroborate this possibility we 

determined the motility of a Dam– mutant lacking stdEF.  
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Figure C2. 5 Dam-dependent regulation of Salmonella motility is partially mediated by std expression. Motility agar 

plates (see Materials and Methods) were used to test the motility of the strains SL1344, ∆dam and ∆dam ∆stdEF used in this 

study. The experiments were performed in triplicate, and a representative plate is shown.  

As shown in Figure C2. 5, the defect in motility observed in a Dam- mutant is, at least, 

partially due to the expression of stdEF, since the motility defect in ∆dam Salmonella is 

partially restored in the absence of StdEF.  

Regarding biofilm formation, we used crystal violet staining to analyse the ability of the 

PLtetOstdEF strain to form biofilm. As observed in Figure C2. 4B, biofilm formation 

decreases in cells that express stdEF (PLtetOstdEF), compared with the wild type and with a 

PLtetO∆stdEF strain. In the transcriptomic analysis, the gene ygiD appears to be down-

regulated. This gene has been annotated as a putative biofilm formation locus in Salmonella 

enterica like its Escherichia coli counterpart (Groisman & Ochman 1997; Kelly et al. 2009). 

To confirm the involvement of ygiD in biofilm formation, we analysed the capacity of an 

YgiD– null mutant to form biofilm. However, the amount of biofilm formed by the mutant 

was similar or identical to that of the wild-type strain. This observation indicates that reduced 

biofilm formation upon stdEF overexpression is not due to ygiD repression only, and that 

more genes that we have not been identified are likely to be involved in the process (Figure 

C2. 6). 
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Figure C2. 6 Biofilm formation by S. enterica SL1344 cells (wt), and by the ∆ygiD strain, detected with crystal violet 

staining. Three replicates are shown. 

The performance of the PLtetOstdEF strain in conjugation was also tested (Figure C2. 4C). 

When this strain was used as donor, the frequency of pSLT transfer increased 1.5 orders of 

magnitude. This increase in conjugation ability is probably due to an increase in the 

expression of the tra operon upon constitutive synthesis of StdEF (Supplementary Table 

SM.1). These results were further confirmed by determination of the β-galactosidase activity 

of a traB::lacZ transcriptional fusion in a Salmonella PLtetOstdEF strain, in a PLtetO∆stdEF 

strain, and in the wild type. A four-fold increase in traB::lacZ activity was observed upon 

stdEF expression (Figure C2. 7A).  

It has been described that Dam methylation represses tra operon expression by maintaining 

high levels of FinP RNA in the cell. FinP is an antisense RNA whose target is the traJ 

messenger RNA, while TraJ is an activator of the tra operon expression. Under these 

premises, and since a Dam– mutant has high levels of StdEF, we considered the possibility 

that Dam-dependent regulation of the tra operon might be mediated by StdEF, in a way 

similar to that described for SPI-1 (López-Garrido & Casadesús, 2012). 

wt∆ygiD



 

 

 

Figure C2. 7 StdEF controls traB lacZ expression and mediates Dam-dependent regulation of tra operon but not finP 

expression. A. β-galactosidase activity of a traB::lacZ fusion. B. RNA levels of traA in wt, dam and dam ∆stdEF 

background .  C. RNA levels of finP in wt, ∆dam and ∆dam ∆stdEF background. Data are normalized to the RNA level 

obtained in wild type Salmonella (Value for wild type=1).  

Figure C2. 7B shows that upregulation of traA expression in a Dam- background is supressed 

in the strain lacking stdEF  (∆dam ∆stdEF), suggesting that StdE, StdF or both are necessary 

for tra operon upregulation in Dam mutants. However, finP repression remains Dam-

dependent in the strain lacking stdEF, indicating that these genes are not required for the 

Dam-dependent control of finP (Figure C2. 7B).   
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StdEF global regulation is independent of the transcription factor HdfR 

Based on the transcriptomic results obtained, we could not rule out the possibility that the 

global regulation observed might be exerted through one or more intermediate regulators. 

One potential regulator was HdfR, whose locus appeared up-regulated in the transcriptomic 

data. HdfR is a LysR-type transcriptional regulator known to be essential for std 

transcription. Other LysR-type proteins are known to be global transcriptional regulators, as 

OxyR or LeuO (Broadbent et al., 2010; Haagmans & van der Woude, 2000). To ascertain 

whether the regulation observed upon constitutive expression of stdEF was indeed caused by 

HdfR we performed qRT-PCR of several genes in wild type and hdfR-null genetic 

backgrounds (Figure C2. 8A). Despite the different expression levels found in wild type and 

∆hdfR backgrounds, the pattern of expression remained the same in both backgrounds, 

suggesting that StdEF-mediated global regulation is independent of HdfR.   

It has been described in E. coli that HdfR binds to the flhDC promoter repressing its 

expression (Ko & Park, 2000). To investigate whether a similar mechanism might operate in 

our system so that stdEF-dependent regulation on flhDC might require HdfR, additional β-

galactosidase assays were performed in appropriate genetic backgrounds using a flhC::lacZ 

transcriptional fusion. As observed in (Figure C2. 8B), the β-galactosidase activity of the 

flhC::lacZ fusion increased slightly in a hdfR null mutant as described for E. coli. However, 

constitutive expression of stdEF caused a similar decrease in flhC:lacZ activity both in the 

wild type and in a ∆hdfR background. We thus conclude that StdEF-mediated regulation of 

the flhC promoter is independent of HdfR.  

Finally we also examined whether conjugation, another traitt regulated by StdEF, was HdfR-

dependent. As observed in Figure C2. 8C, similar rates of plasmid transfer were observed in 

wild type and hfdR-null genetic backgrounds when these strains were used as donors. This 

observation rules out the involvement of HdfR in conjugation control. 



 

 

 

Figure C2. 8 Role of HdfR in StdEF-mediated regulation. A. RNA levels for StdEF-regulated genes in a ∆hdfR-null 

genetic background. Data are normalized to the RNA level obtained in wild type Salmonella cells (Value for wild type = 1; 

not shown). A representative experiment is shown. B. β-galactosidase activity of a flhC::lacZ fusion in wild type and ∆hdfR-

null backgrounds. C. Conjugation assays using wild type and ∆hdfR-null donors. Data are averages and standard deviations  

from 3 independent matings.  

StdEF regulation of SPI-1 and conjugation is independent of FlhDC. 

Keeping in mind the transcriptomic data described above, another possible regulator that 

might control the plethora of genes regulated by StdEF was FlhDC. The flhDC operon is 

essential for transcription of all the genes in the flagellar cascade. The two operon products, 

FlhD and FlhC, are known to act together in an FlhD2FlhC2 heterotetramer which is the 

master regulator of the flagellar regulon (Claret & Hughes, 2000; Ikebe et al., 1999; Liu & 

Matsumura, 1994). Regarding invasion, StdEF-mediated regulation of SPI-1 expression 

requires post-transcriptional decrease of hilD mRNA. Although the actual mechanism is 

unknown (López-Garrido & Casadesús, 2012), it has been described that FlhDC regulates 

SPI-1 expression through FliZ (Chubiz et al., 2010). Because FlhDC down-regulates FliZ, it 

was conceivable that StdEF-mediated regulation of SPI-1 genes might be mediated by 
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FlhDC. β-galactosidase assays were performed in order to determine whether StdEF-

mediated regulation of SPI-1, tra, and flagellar genes depend on FlhDC. For this purpose, a 

∆flhC genetic background was used. Data presented in Figure C2. 9 indicate that SPI-1 

downregulation mediated by StdEF is independent of FlhDC. The same conclusion was 

obtained for regulation of the tra operon. However, as expected, flagellar regulation requires 

FlhDC.  

    

Figure C2. 9 β-Galactosidase activity of traB::lacZ, sipB::lacZ and fliC::lacZ fusions in different genetic backgrounds.  

Given that, neither HdfR, nor FlhDC mediate the plethora of processes affected by stdEF and 

knowing that StdF binds the std promoter region (Chapter 1), we do not discard, that these 

molecules might have a direct involvement in the global regulation. Therefore, we performed 

Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) analysis to probe this 

hypothesis. 
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ChIP-seq analysis of Salmonella enterica cells constitutively expressing 

StdEF-3xFLAG. 

The strain used for the ChIP-seq experiment expressed stdEF under the control of PLtetO (like 

the strain used in transcriptomic analysis) and contained an StdF variant labelled at its C-

terminal end by a 3xFLAG epitope (PLtetOstdEF-3xFLAG; SV7850). This construction, 

depicted in Figure C2. 10, permitted detection of StdE with a cognate anti-StdE antibody, 

and of StdF using an anti-FLAG antibody. Because StdE is unaltered and StdFx3FLAG 

remains functional, transcription of the stdEF regulon was unaffected. 

               

Figure C2. 10 Diagram of the strain used for ChIP-seq analysis (PLtetOstdEF-3xFLAG). 

Chromatin immunoprecipitation was performed with cultures grown to stationary phase until 

OD600~2 (the same conditions used for microarray analysis). Bound proteins were 

crosslinked to DNA by formaldehyde treatment to form covalent unions. Cells were lysed 

and chromatin was sheared. Fragmentation of chromatin is a key point of ChIP sequencing 

since 300 bp fragments are required for the preparation of an optimal sequencing library, and 

for sequencing of the immunoprecipitated fragments. After immunoprecipitation of the 

specific proteins (and their bound DNA), de-crosslinking of the sample is performed to 

discard the proteins obtaining naked DNA fragments for the sequencing step. It is worth 

noting that the crosslinking step anchors the proteins to the bound DNA but also locks 

protein-protein interactions. Therefore our assays cannot discriminate between direct binding 

of the protein to DNA or indirect binding (through another protein). The controls used for the 

assay were: (i) total sheared and decrosslinked chromatin and (ii) mock IP sample. The mock 

IP is a sample that follows the same protocol as the IP sample but without adding the 

antibody. Despite the fact that the results from both controls were similar, we decided to use 
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the mock IP control for analysis of results because we considered it more reliable than the 

total sheared chromatin. 

From the results shown in Supplementary Table SM.2 we concluded that StdE and StdF are 

able to bind to multiple sites in the Salmonella genome. Figure C2. 11 indicates the numbers 

of binding sites for StdE, StdF and for both StdE and StdF. StdE binds to 316 sites and StdF 

binds to 166 sites. StdE and StdF share the 20% of the sites. A higher number of DNA 

sequence reads were found upon inmunoprecipitation with the specific StdE antibody, 

suggesting that StdE binds to the Salmonella genome more efficiently than StdF, and that 

they bind in an independent manner.  

                                                      StdE               StdF 

 

Figure C2. 11 Number of StdE, StdF and both StdE and StdF binding sites along Salmonella enterica genome. 

Looking at the binding sites for StdE and StdF, we observed that some of such sites may 

permit the interpretation of the data provided by the transcriptomic analysis. In other words, 

the StdEF binding patterns might help to explain StdEF-mediated regulation of a variety of 

physiological processes (e. g., by direct binding of the proteins to promoters or regulatory 

regions of genes). However in Supplementary Table SM.2 we can observe that there are 

also binding sites that do not seem to be involved in transcriptional regulation. A tentative 

explanation may be that the amount of StdE and StdF proteins present in our system is 

relatively high, and this might produce non-specific or non/physiological bindings to the 

DNA. An alternative possibility is that regulation might occur under conditions different 

from those used in this Thesis for transcriptomic analysis.   



 

 

Repression of the flagellar master operon by StdE and StdF binding 

As shown in Figure C2. 12, a significantly higher number of DNA sequencing reads were 

found in the promoter region of the flhDC genes for both StdE and StdF 

immunoprecipitations. As mentioned above, flhDC is the master operon for flagellar 

regulation (Kutsukake et al., 1990), and we have observed that StdEF–mediated regulation of 

flagellar genes is fully dependent on FlhC (Figure C2. 9). These results suggest that 

transcription of the flhDC operon may be regulated by direct StdE and StdF binding to its 

promoter. 

                              

Figure C2. 12 StdE and StdF regulation of the flagellar system through FlhDC. Chip-seq data show StdE and StdF 

binding peaks at the flhDC promoter. StdE-C and StdF-C denote control reactions (mock IP) for StdE and StdF 

inmunoprecipitations, respectively,  

Regulation of chemotaxis by StdE and StdF is mediated by FlhDC 

Transcriptomic data described above showed that StdE and StdF repress the che operon, as 

well as the trg and aer genes involved in chemotaxis and aerotaxis. Analysis of the ChIP-seq 

results did not show a binding peak close to those operons. However, it is well known that 

chemotaxis regulation is dependent on the flhDC master regulator (Chilcott & Hughes, 2000). 

Based on this fact, we wondered whether regulation by StdEF might be mediated by FlhDC. 

To investigate this possibility, quantitative RT-PCR was performed to evaluate the mRNA 

levels of genes differentially expressed in the presence of StdE and StdF according to the 

transcriptomic data (cheA, cheM, che, and trg) in FlhC+ and FlhC– backgrounds.  
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Figure C2. 13 Regulation of chemotaxis by StdE and StdF is mediated by flhDC. A. ChIP-seq data shows no relevant 

peaks surrounding the che operon. B. Ratios of the mRNA levels of genes involved in chemotaxis between the strains 

PLtetOstdEF and PLtetO∆stdEF. RNA levels were determined for at least 3 biological replicates and a representative 

experiment is shown.  

Data presented in Figure C2. 13B confirm that regulation of chemotaxis by StdEF is actually 

mediated by the flagellar master regulator FlhDC. This observation reminds of results 

described in both Salmonella and E. coli, where FlhDC is the transcriptional activator of σ28  

(fliA) (among other second class operons). FliA drives transcription of class 3 flagellar 

operons, such as tar-tap-cheRBYZ and motAB-cheAW (Chilcott & Hughes, 2000). Similar 

observations have been made in other motility or chemotaxis related genes such as trg and 

aer (Ghigo, 2001; May & Okabe, 2008) whose transcription is dependent on RpoF (fliA-σ28) 

(Fitzgerald et al., 2015). 

StdE binds the hilD-coding region 

StdEF downregulate SPI-1 expression, and downregulation takes place through hilD at the 

post-transcriptional level (López-Garrido & Casadesús, 2012). We examined the data 

obtained from the ChiP-seq analysis in the SPI-1 region, and we found that only StdE appears 



 

 

to bind within the region, and that binding occurs at the end of the hilD coding region 

(Figure C2. 14). Based on the data from the ChIP-seq analysis (Supplementary Table 

SM.2) other minor binding peaks in SPI-1 region were found in sipB and sipC genes, which 

encode effector proteins. Outside SPI-1, no binding was detected in genes known to code for 

SPI-1 regulators (e. g., hilE).   

 

Figure C2. 14 StdE binding to the hilD coding region.  

Previous work on StdEF-mediated regulation of SPI-1 (López-Garrido & Casadesús, 2012) 

concluded that regulation involved post-transcriptional repression of HilD, and that the main 

player in this regulation was StdE. These data correlate well with our ChIP-seq data: only 

StdE seems to bind the region. Hence, we considered the possibility that binding of StdE to 

the hilD coding region might somehow affect the stability of hilD mRNA. In these 

experiments, expression of hilD was driven by the PLtetO promoter. This choice was based 

upon the fact that the levels of hilD mRNA upon stdEF constitutive expression were very 

low, thereby making difficult the calculation of hilD mRNA half-life. We first verified that 

the strain PLtetOstdEF PLtetOhilD was able to maintain the regulation pattern of SPI-1 genes in 

the same way as when hilD was transcribed from its own promoter. Data in Figure C2. 15A 

show that regulation occurs as expected, and that StdEF-mediated regulation of SPI-1 genes 

does not require hilD to be transcribed from its native promoter. Although the hilD mRNA 

level was lower in the strain that constitutively expressed StdEF, the stability of hilD mRNA 

was similar in both strains (t ½  for PLtetOstdEF PLtetOhilD and PLtetO∆stdEF PLtetOhilD is 2,98  

and 2,82 min respectively), ruling out a mechanism of regulation involving hilD mRNA 

decay (Figure C2. 15B).   
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Figure C2. 15 Stability of hilD mRNA. A. β-Galactosidase activity of the invH::lacZ fusion. B. Stability of hilD mRNA in 

PLtetO∆stdEF PLtetOhilD and PLtetOstdEF PLtetOhilD strains. Values are averages from 3 independent qRT-PCR reactions. Error 

bars are not shown because the estándar deviations were extremely small.  

The mechanism of post-transcriptional regulation of hilD upon StdE binding to its coding 

sequence cannot be easily explained. One speculation is that StdE binding at the downstream 

portion of the coding region might interfere with the DNA-RNA hybrid formed during 

transcription, reducing the transcription rate. Another possibility is that binding of StdE to the 

hilD coding region might regulate the expression of a putative antisense RNA, resulting in a 

decrease of hilD mRNA 

Control of pSLT conjugal transfer by StdEF 

Transcriptomic data (Supplementary Table SM.1) and phenotypic assays (Figure C2. 4C), 

show increased conjugal transfer of the Salmonella virulence plasmid (pSLT) if the donor 

strain constitutively expresses stdEF (SV8141). This increase in plasmid transfer may be 

correlated, at least in part, with up-regulation of tra operon genes upon StdEF constitutive 

synthesis. 
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Figure C2. 16 ChIP-seq data showing pSLT plasmid region.  In the upper part, peaks along the tra operon are shown. 

StdE and StdF binding peaks are detected along tra operon. In the lower part of the figure, the tra operon region is zoomed-

in.  

A closer look to the ChIP-seq data in the tra operon shows an increase of StdE and StdF 

binding peaks, mainly upstream of traA and upstream of traK (Figure C2. 16). In the 

microarray (Figure C2. 17), the most up-regulated gene in the tra operon is traA with a 24-

fold increase. 

Gene Fold change  
PLtetOstdEF/PLtetO∆stdEF 

traA 24.3 

traY 16.0 

traL 11.3 

traE 10.6 
traP 6.5 

traB 3.0 
 

Figure C2. 17 Expression of tra genes in PLtetOstdEF vs PLtetO∆stdEF strains.  
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Based on the strength of regulation, the binding peak closer to traA gene might be functional, 

and binding to the traA promoter might activate transcription. Moreover, traB appears as the 

less up-regulated gene in the tra operon, which suggests that the peak upstream traK and traB 

is not functional. StdEF-mediated regulation might thus involved the traA promoter. 

StdE and StdF binding sites identified in hdfR and std promoters  

Transcriptomic data and functional validation congruently indicate that increased StdEF 

synthesis in the strains that carry the PLtetOstdEF construct increase the level of hdfR 

expression, the transcriptional regulator of the std operon. Therefore, std expression increases 

the amount of the transcription factor needed for keeping the transcription of std operon, 

generating a self-regulatory positive loop (see Chapter 1). 

ChIP-seq upon StdE immunoprecipiation identified a peak upstream of the hdfR gene 

(Figure C2. 18), suggesting a direct activation of transcription by the StdE binding to the 

hdfR promoter. 

                                       

Figure C2. 18 ChIP- seq data obtained in the hdfR locus.  

Regarding std autoregulation, a binding peak was found upstream of the std promoter 

(Figure C2. 19), as expected according to the results presented in Chapter 1. However, we 

were lucky to identify this binding site, since the PLtetOstdEF-3xFLAG strain used for the 

ChIP-seq assay was constructed placing the PLtetO promoter upstream of the stdE gene and 

deleting the remaining sequences of operon upstream of stdE (which included the std 

promoter). The binding site identified by ChIP-seq is located 40 nt upstream of the deletion 



 

 

fragment, and 80 nt upstream of the first GATC site, suggesting a mechanism of 

autoregulation in which binding of StdF in this region favours std transcription. This result 

confirms previous data from the genetic screen (see Chapter 1) that outlined the importance 

of StdF for autoregulation of the std operon. It is interesting to point out that the binding site 

upstream of the std operon is the only one case in which StdF binds independently of StdE. 

The fact that StdF binding sites are mostly shared by StdE suggests a mechanism in which 

StdF binding to DNA might be accessory for regulation. An alternative possibility is that 

StdF does not bind directly DNA and its presence at the site is due to an interaction with 

other DNA-binding proteins (i.e., HdfR). For instance, StdF might act as a chaperone to 

facilitate binding of the regulator to cognate DNA.  

 

Figure C2. 19 ChIP-seq data showing StdF binding to std promoter region.  

Based on the ChiP-seq data, together with the results presented in Chapter 1, we propose a 

mechanism in which StdE binding to the hdfR promoter activates its expression, therefore 

maintaining HdfR levels high enough to allow expression from the std promoter, and to keep 

the autoregulatory loop active. StdF binding to the std promoter favours its transcription, and 

the accessory role of StdF might be either assisting HdfR binding, favouring a positive 

regulation, or by obstructing Dam methylation, which represses expression, therefore 

resulting in the positive regulation observed. Based in the results presented in Figure C2. 20 

it might be suggested that StdF is involved in HdfR binding. In a wild type strain, both HdfR 

and StdF are essential for expression of the std operon. In a Dam– mutant, were there is no 

methylation, HdfR is essential but also StdF. Hence, when no blocking action is needed,  

StdF seems to be still essential for std expression.  
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Figure C2. 20 Role of StdF in std activation. Heat maps represent GFP fluorescence intensity in S. enterica strains carrying 

an stdA::gfp fusion in different backgrounds.  

Based on these results and others described in Chapter 1, we confirm that StdE and StdF have 

a crucial role in autoregulation the std operon (Figure C2. 21). The involvement of these 

regulators takes place at two different levels. StdE binds the hdfR promoter region and 

increases hdfR transcription. It would be interesting to figure out if the increase is due to an 

active StdE action over the hdfR promoter or to blocking HdfR negative loop. On the other 

hand, StdF binds to the std promoter and may act as an auxiliary protein that cooperates with   

HdfR to activate std transcription. 
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Figure C2. 21 Tentative model of std autoregulation. Positive effects are indicated by lines ending in arrowheads, whereas 

blunt lines indicate negative regulatory effects. Dashed lines indicate regulations that do not apply under the diagram  

circumstances. The three black squares represent the three GATC sites in the regulatory region of the std operon, that in the 

circumstances detailed above would be non-mehylated.  
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Variable and unpredictable environments can confer selective value to adaptive phenotypes. 

Traditionally it was assumed that bacteria adapt to changing environments by transcriptional 

and postranscriptional regulation. According to this view, regulatory networks integrate 

signals of environmental alterations, and an improved phenotype may be generated. These 

adaptive procedures are slow, and in certain harsh environments can be insufficient (Turner 

et al., 2009). During the last decade, single cell analysis has provided examples indicating 

that, in certain clonal populations of bacteria, not all the cells show the same phenotype under 

the same selective pressure. Bacterial phenotypic heterogeneity can originate from genetic 

changes, including programmed genetic rearrangement (Silverman et al., 1979) and 

contraction or expansion of DNA repeats at genome regions known as contingency loci 

(Moxon et al., 1994; 2006). Phenotypic heterogeneity can also be epigenetic, without any 

change in the DNA sequence (Casadesús & Low, 2013). Phenotypic variability can increase 

the fitness of the bacterial population either by permitting division of labor or by bet-hedging 

(anticipation of future challenges) (Veening et al., 2008). This view is not merely intuitive: 

game theory analysis supports it (Beaumont et al., 2009; Grafen, 1999; Wolf et al., 2005). 

Relevant examples of non-genetic heterogeneity in isogenic populations involve envelope 

structures such as fimbriae, flagella, and the LPS O-antigen (Cota et al., 2015; Cummings et 

al., 2006; Kingsley et al., 2002; Nicholson & Low, 2000). In the Dam-regulated std fimbrial 

operon of Salmonella enterica (Balbontín et al., 2006), the existence of subpopulations of 

StdON and StdOFF cells was observed in Dam– and SeqA– mutants (Jakomin et al., 2008). 

Results obtained in this Thesis indicate that this phenotypic heterogeneity occurs also in the 

wild type strain, where a large subpopulation StdOFF cells and a small subpopulation of StdON 

cells are found. The existence of bistability is also supported by the visualization of the StdA 

fimbrial protein by immunofluorescence microscopy in a small fraction of the population. 

Bimodal expression had been previously reported for other fimbrial operons such as lpf and 

pef (Kingsley et al., 2002; Nicholson & Low, 2000; Norris et al., 1998). 

The transcriptional factor HdfR had been shown to be essential for std expression in a Dam– 

background (Jakomin et al., 2008), and data presented in this Thesis indicate that HdfR 

activates std transcription in the wild type strain as well. In fact, constitutive expression of 

hdf increases the size of the StdON subpopulation. Given the importance of HdfR availability 

for std expression, one might think that lack of std expression in the wild type (which occurs 

in the majority of cells) might be due to HdfR shortage. Far for being the bottleneck, the 



 

 

amount of HdfR in the wild type strain is roughly the same as in a Dam– mutant where std 

expression is considerably higher. The maintenance of a steady level of HdfR seems to be 

due, at least in part, to the existence of an auto-regulatory loop that maintains hdfR expression 

at moderate levels. Like other LysR-type transcription factors, HdfR undergoes autogenous 

transcriptional repression. This loop operates both in the wild type and in a Dam– mutant. In 

the latter, however, increased expression of stdEF increases the amount of HdfR because 

hdfR transcription is up-regulated by StdEF (see below). 

Besides Dam and HdfR, SeqA (Jakomin et al., 2008) and RosE (Chessa et al., 2008) have 

been described as regulators of the std transcription. While searching for additional regulators 

of std expression, circumstantial evidence suggested that Std products might be activators of 

std transcription, providing a positive feedback loop for std operon control. Constitutive 

expression of the stdEF genes increases the expression of the std operon and the size of the 

StdON subpopulation. On the contrary, absence of the stdEF genes decreases the size of the 

StdON subpopulation. Based on these observations, we conclude that the products of the two 

downstream genes of the std operon (StdE and StdF) are positive regulators of std 

transcription. However only StdF seems to bind the std promoter (see below).  

With these observations in mind, a model for std operon control may be proposed. The Dam 

methylase, the transcription factor HdfR, and the StdF protein may compete for binding to 

the std regulatory region. In fact, HdfR binds the std UAS when the GATC sites are non-

methylated, protecting them from methylation. As mentioned above, increased levels of 

HdfR increase both the size of the StdON subpopulation and the mean fluorescence of the 

population. In our tentative model, the std-hdfR-std feedback loop can be expected to 

generate amounts of HdfR high enough to unbalance the pulse between Dam and HdfR for 

occupying the std regulatory region. The reason why HdfR excludes the Dam methylase only 

in a fraction of cells remains unknown but a model involving the StdF gene product can be 

presented. The StdF protein binds the std promoter region, and two observations suggest that 

it may cooperate with HdfR, rather than hindering Dam methylation: (1) the presence of the 

StdEF products is still necessary to hinder Dam methylase activity when the expression levels 

of hdfR are high enough (std expression is higher in a PLtetOhdfR background than in a ∆dam 

background); and (2) in the absence of Dam methylation the stdEF genes are still necessary 

for std transcription. Furthermore, analysis of std expression in different backgrounds (wild 

type, Dam–, and PLtetOhdfR) reveals that the StdON subpopulation is always detected when 
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StdE and StdF are present, suggesting that StdF binding to the std UAS may be the key factor 

to generate StdON cells. 

To better understand the mechanisms that converge at the regulatory region, determination of 

the methylation state of the std promoter in StdOFF and StdON cells might provide relevant 

information. However, a handicap emerges here because of the existence of two phenotypic 

subpopulations, one of them tiny. In the major subpopulation (StdOFF), the three GATC sites 

in the regulatory region of the std operon are fully methylated. Based on the changes in std 

expression observed when the main regulators are overexpressed or absent, a different pattern 

can be expected for the StdON subpopulation. This possibility is reinforced by the decrease of 

the StdON subpopulation upon DNA methylase overproduction. However, the methylation 

state of the std UAS in the StdON subpopulation remains to be determined. 

If synthesis of StdE and StdF is low and noisy, differences from cell to cell may explain why 

HdfR-mediated activation and concomitant formation of nonmethylated GATCs occurs in 

certain cells only. An observation that may support this view is the detection of a weak 

internal promoter upon measuring the fluorescence activity of an stdE::gfp fusion in the 

presence and in the absence of the main promoter. Several attempts have been made while 

preparing this Thesis to identify the putative internal promoter. However, cloning of internal 

std fragments onto the promoter-probe vector pIC552 did not reveal the existence of an active 

promoter. Inconclusive results were also obtained by 5´RACE experiments performed in both 

the wild type and a Dam mutant. The experiments performed using the promoter-probe 

plasmid pIC552 may have failed due to the existence of unknown repressors that may control 

stdE expression. In the case of 5’RACE, expression of the stdE gene in the wild type strain 

may be too low to detect the RNA molecules. Unfortunately, a Dam– mutant cannot be used 

in 5'RACE experiments because in this background the main std promoter is active.   

Autoregulation of the std operon by the StdE and StdF products is not a unique example: the 

involvement of fimbrial products in the regulation of fimbrial synthesis had been previously 

reported. To give just an example, expression of the major fimbrial subunit of type 1 fimbriae 

of Salmonella enterica (fimA) is positively regulated by FimY and FimZ (Saini et al., 2009; 

Tinker & Clegg, 2000), and FinM binds the fimA promoter (Yeh et al., 1995).  

Aside from the repressors of the std operon already known (Dam methylation, SeqA and 

RosE), we have identified a new repressor, RcsB, the response regulator of the RcsCBD 



 

 

signal transduction system. RcsB represses std expression. This regulation takes places not 

only in a Dam– background but also in the wild type strain, decreasing the fraction of StdON 

cells in the population. Based on the results presented here, this regulation is not dependent 

on Dam methylation, since repression is observed both in the presence and in the absence of 

Dam methylation. RcsB may exert transcriptional regulation by binding directly to the std 

promoter region, and in silico analysis has identified a putative binding site for RcsB near the 

-35 module of the std promoter. A footprint assay will be necessary to confirm the existence 

of RcsB binding to the putative binding site identified. The significance of RcsBCD-mediated 

repression of the std operon is difficult to grasp, even in a speculative manner, as the 

environmental signals that activate the RcsBCD signal transduction system remain largely 

unknown (Majdalani & Gottesman, 2005). 

Fractionation assays have identified StdE and StdF as cytoplasmic proteins, and in silico 

information reveals that StdE and StdF are homologues of known transcriptional regulators. 

StdE shares 40-50% identity with the transcriptional activators GrlA from E. coli and CaiF 

from Enterobacter cloacae. In turn, StdF is related to the SPI-1 Salmonella protein SprB, a 

transcriptional regulator that represses the hilD promoter and activates the siiA promoter 

(López-Garrido & Casadesús, 2012). Homology with transcriptional regulators correlates 

well with our results, although no DNA binding motifs were identified in silico. 

In 2012, López-Garrido & Casadesús proposed that the std operon may be the link between 

Dam methylation and SPI-1 regulation: the downregulation of SPI-1 expression observed in 

Dam– mutants (Balbontín et al., 2006) is suppressed upon deletion of two std genes, stdE and 

stdF (López-Garrido & Casadesús, 2012). This antecedent, combined with the fact that this 

Thesis has uncovered an active role of StdE and StdF as transcriptional activators of their 

own operon, led us to wonder whether these products of the std operon might have other roles 

in Salmonella enterica. To our surprise, microarray analysis revealed that StdE and StdF are 

global regulators of transcription, mainly as repressors. Constitutive expression of stdE and 

stdF downregulates not only SPI-1 expression as previously reported (López-Garrido & 

Casadesús, 2012) but also represses loci involved in motility and chemotaxis. On the other 

hand, StdEF activate transcription of the pSLT tra operon and, interestingly, of hdfR.  

Since StdEF activate hdfR expression and LysR-type transcription factors are often global 

regulators, we could not role out the possibility that some or all the global regulatory 

activities of StdE and StdF were actually performed by HdfR. However, we obtained 
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evidence that HdfR is not a global regulator but merely one of the many targets within the 

StdEF regulon. With hdfR transcriptional activation, the std operon may ensure its own 

transcription as HdfR is needed for std transcription. This regulatory pattern generates a 

positive feedback loop for std expression. A tempting speculation is that StdEF may increase 

the level of HdfR through direct binding of StdE to the regulatory region of the hdfR gene, 

thereby impairing autogenous repression by HdfR.  

Another possible intermediary in StdEF-mediated global regulation is the FlhDC master 

regulator, known to control invasion, motility and fimbriation (Saini et al., 2010). 

Furthermore FliZ, a product of FlhDC regulatory cascade, has been described as a 

postranscriptional regulator of SPI-1 through hilD (Chubiz et al., 2010). However, our results 

discard FlhDC as the connector between StdEF and their targets. FlhDC does regulate the 

flagellar system as well as chemotaxis (as expected), but none of the other processes under 

StdEF control.   

Because the potential intermediary factors considered above were not involved in global 

regulation by StdEF and we had previously observed that StdF acts as a transcription factor 

promoting std expression, we considered the option of direct regulation by StdEF. ChIP-seq 

analysis was thus performed to ascertain whether StdE and StdF are DNA-binding proteins. 

This analysis confirmed that StdE and StdF have DNA-binding ability, thus supporting the 

possibility that they may directly regulate gene expression. StdE binds twice more frequently 

than StdF but both proteins share 20% of the binding sites. This kind of assay does not 

distinguish direct binding from indirect binding. Hence, in certain cases we cannot rule out 

the involvement of both proteins in regulation.  

Although we cannot propose a mechanism regarding SPI-1 regulation, we have confirmed the 

occurrence of postranscriptional regulation of hilD as previously described (López-Garrido & 

Casadesús, 2012). Moreover, the relevant role that we assigned to StdE in SPI-1 regulation 

correlates well with the data presented by Lopez-Garrido et al. (2012) showing that the 

decrease of SP1-1 regulation is stronger when StdE is present than when only StdF is present. 

As discussed above, the ChIP-seq assay does not allow to distinguish between direct binding 

of a protein to the DNA and indirect binding through another protein. However, it would be 

interesting to study in depth how is it possible that StdE controls hilD expression by 

interacting with the downstream portion of its coding region. An attractive idea involves the 

hybrid DNA-RNA formed during transcription. StdE might impair RNA processing, thereby 



 

 

affecting translation of the HilD protein. As a consequence, disturbance of SPI-1 regulation 

might occur, and also disruption of the hilD self-regulatory loop. Regulation of the 

expression of a putative antisense RNA can be also considered, but in silico analysis based on 

data provided by Jay Hinton's lab seem to discard the possibility of an additional transcription 

start site aside from those already known in the region.  

Concerning the regulation of motility and chemotaxis, the ChIP-seq data raise the possibility 

that both StdE and StdF bind directly to the flhDC promoter. Regulation at the highest level 

in the hierarchy of the flagellar network (FlhDC) seems to explain why all the operons 

involved in regulation of motility appear to be under StdEF control. Regulation of 

chemotaxis is also controlled through FlhDC, probably involving the Class III transcription 

factor, FliA. A priori, it seems to make sense that the motility system is not active if the 

ability to sense the environment is not working and vice versa. Interestingly, we have 

observed that the regulation of the flagellar system mediated by Dam methylation is, at least 

partially, due to StdEF, in a way reminiscent of the crosstalk previously described for SPI-1 

regulation. 

Even though StdE and StdF appear to be mainly repressors of transcription, it is noteworthy 

that the conjugal transfer operon tra and the hdfR gene are activated by StdEF. We cannot 

propose a mechanism for StdEF-mediated regulation of conjugation, but it is clear that StdE 

and StdF binds massively along the tra operon. We cannot ascertain if one or both proteins 

are involved in tra operon control nor define the specific target(s). However, based on the 

expression level of the target genes, the traA regulatory region might be the most appropriate 

for regulation by StdE, StdF, or both.  

At this point, and considering that the most widespread role of StdE and StdF appears to be to 

act as repressors of transcription, one may consider the possibility that up-regulation 

mediated by stdEF might be actually performed by repressing a repressor. We have already 

mentioned that StdEF-dependent regulation of hdfR may involve impairment of HdfR 

binding to its own promoter. Something similar may happen with StdEF-dependent 

regulation of tra operon. Unfortunately, among the transcriptomic data we have not found an 

appropriate candidate. However, we have observed that Dam methylation-dependent 

regulation of the tra operon is, as described previously for the flagellar regulation, also due to 

StdEF. So StdEF are involved in Dam dependent regulation of SPI-1 (López-Garrido & 

Casadesús, 2012), flagellar synthesis and conjugation. In the case of conjugation, StdEF-
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mediated activation of tra might boost Lrp-mediated activation of traJ (Camacho & 

Casadesús, 2002) and counter or balance FinP-mediated repression (Camacho & Casadesús, 

2005). The latter two mechanisms of conjugation control are also Dam-dependent, albeit in 

opposite ways: Dam methylation activates transcription of finP and represses transcription of 

traJ. The existence of overlapping controls acting in opposite manners may illustrate, like 

many other examples, the complexity of bacterial regulatory networks. 

A major outcome of this Thesis work is that the study provides a novel example of 

phenotypic variation within a clonal population. Two bacterial subpopulations, made of 

fimbriated and non-fimbriated Salmonella cells, appear to exist. Formation of two 

subpopulations may be viewed as a preadaptation of Salmonella enterica to perform two 

types of infection, acute and chronic. Because Std fimbriae permit adhesion to the epithelium 

of the caecum (Weening et al., 2005), StdON cells will be able to colonize the large intestine, 

and this colonization may result in persistent or chronic infection. In turn, StdOFF cells will be 

able to undergo invasion of the small intestine epithelium, causing salmonellosis or systemic 

infection. The fact that the StdON and StdOFF subpopulations differ in additional phenotypic 

traits may contribute to adaptation by fine-tuning the interaction of each subpopulation with a 

specific host environment. 
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1. Populations of Salmonella enterica cells undergo bistable expression of the std fimbrial 

operon. The StdON subpopulation is small in the wild type (0.3-3% cells) under laboratory 

conditions. 

2. Formation of the StdON subpopulation requires the StdE and StdF proteins, which are 

products of the promoter-distal genes of the std operon. StdE is necessary to activate 

transcription of the hdfR gene, which encodes the main transcriptional activator of the std 

operon. In turn, StdF may be necessary to facilitate binding of HdfR to the std promoter. 

3. StdE and StdF are global regulators in Salmonella enterica, and regulate SPI-1 expression, 

flagellar synthesis, chemotaxis, biofilm formation, and conjugal transfer of the virulence 

plasmid.  

4. StdE and StdF are DNA-binding proteins that show homology with other transcriptional 

regulators, and may control transcription by direct binding to DNA. An exception is the hilD 

gene, which undergoes postranscriptional regulation under StdE control. The mechanism 

underlying hilD regulation is unknown. 

5. The StdOFF subpopulation is able to invade epithelial cells, while the StdON subpopulation 

is deficient in epithelial cell invasion. This difference may endowe the StdOFF subpopulation 

with the ability to cause salmonellosis or systemic infection. In turn, production of Std 

fimbriae by the StdON subpopulation may permit adhesion to the caecum, causing chronic 

infection.  

6. As a consequence of global regulation of gene expression by StdEF, the StdON 

subpopulation is nonmotile, and undergoes altered biofilm formation, repression of 

chemotaxis genes, and activation of the conjugation system of the virulence plasmid.  

7. The existence of multiple phenotypic differences between the StdOFF and the StdON 

subpopulations may be viewed as a case of bacterial differentiation during Salmonella 

infection, perhaps as a bet hedging strategy or a division of labour. 
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Table SM. 1 Microarray results 

 

GENES UP-REGULATED BY stdEF OVEREXPRESSION  

STM SL Gene 

fold change  

Description StdEF vs 

ΔstdEF (1) 

 StdEF vs 

ΔstdEF (2) 

VIRULENCE 

1043 SL0982 
 

6,4 6,1 attachment/invasion protein 

CONJUGATION 

 
SLP1_0027 TraP 2,8 2,6 conjugative transfer protein 

 
SLP1_0028 TraB 2,1 1,1 conjugative transfer: assembly 

 
SLP1_0030 TraE 3,7 3,1 conjugative transfer: assembly 

 
SLP1_0031 TraL 3,8 3,1 conjugative transfer: assembly 

 
SLP1_0032 TraA 4,3 4,9 conjugative transfer: fimbrial subunit 

 
SLP1_0033 TraY 4,0 4,0 conjugative transfer: oriT nicking 

METABOLISM 

191 SL0192 fhuA 3,8 3,4 ferrichrome outer membrane transporter 

1343 SL1277 nlpC 3,3 3,5 lipoprotein 

1344 SL1278 ydiV 2,5 1,3 hypothetical protein 

3024 SL3002 yohM 2,1 1,6 nickel/cobalt efflux protein RcnA 

3025 SL3003 stdE 10,3 10,0 
 

30251N SL3004 stdF 10,6 10,5 
 

3128 SL3102 ordL 3,9 3,7 putative oxidoreductase 

OTHERS 

509 SL0502 
 

2,4 1,8 putative outer membrane protein 

3112 SL3096 
 

2,6 1,9 murein transglycosylase C 

3123 SL3097 
 

3,2 2,4 putative arylsulfatase regulator 

3125 SL3099 
 

2,8 1,5 putative cytoplasmic protein 

3126 SL3100 
 

2,7 2,4 putative amino acid transporter 

3127 SL3101 
 

3,0 3,1 putative cytoplasmic protein 

3129 SL3103 
 

4,2 3,3  putative NAD-dependent aldehyde dehydrogenase 

3169 SL3143 
 

3,1 2,6 putative periplasmic dicarboxylate-binding protein 

3170 SL3144 
 

2,6 2,9 putative inner membrane protein 

3171 SL3145 ygiK 2,2 2,5 putative transporter 

3688 SL3653 
 

2,3 2,3 putative cytoplasmic protein 

3805 SL3773 yidH 2,1 1,0 putative inner membrane protein 

3897 SL3858 yifA 3,2 2,9 transcriptional regulator HdfR 

4548 SL4479 bglJ 2,5 1,4 DNA-binding transcriptional activator BglJ 

4549 SL4480 
 

3,0 2,2 putative cytoplasmic protein 

 
SLP2_0078 

 
2,2 1,5 

 

 
SLP2_0079 

 
2,9 1,7 

 



 

 

 
 

GENES DOWN-REGULATED BY stdEF OVEREXPRESSION  

STM SL gene 

fold change  

Description StdEF/ 

ΔstdEF (1) 

StdEF/Δstd

EF (2) 

VIRULENCE 

1088 SL1027 pipB -2,35261 -2,79374 secreted effector protein 

1090 SL1029 pipC -7,23594 -6,81151 pathogenicity island-encoded protein C 

1091 SL1030 sopB -8,07052 -8,51238 secreted effector protein 

1593 SL1524 srfA -4,63622 -4,43075 putative virulence protein 

1594 SL1525 srfB -3,99769 -4,23264 putative virulence protein 

1595 SL1526 srfC -4,13812 -3,67496 putative virulence protein 

1855 SL1784 sopE2 -3,19064 -3,38909 type III-secreted effector protein 

2066 SL2043 sopA -4,45486 -4,58496 secreted effector protein 

2865 SL2845 avrA -2,9673 -2,92411 secreted effector protein 

2866 SL2846 sprB -4,30304 -3,2128 transcriptional regulator 

2867 SL2847 hilC -4,90612 -4,12935  invasion regulatory protein 

2868 SL2848 orgC -3,76945 -3,71423 putative cytoplasmic protein 

2869 SL2849 orgB -2,49114 -2,97335 needle complex export protein 

2870 SL2850 orgA -6,7807 -6,65603 needle complex assembly protein 

2871 SL2851 prgK -7,63394 -7,46371 needle complex inner membrane lipoprotein 

2872 SL2852 prgJ -8,37266 -8,47918 needle complex minor subunit 

2873 SL2853 prgI -8,53071 -7,79621 needle complex major subunit 

2874 SL2854 prgH -4,87411 -5,62474 needle complex inner membrane protein 

2875 SL2855 hilD -4,34678 -4,29323 invasion protein regulatory protein 

2876 SL2856 hilA -7,13183 -7,21907 invasion protein regulator 

2877 SL2857 iagB -6,66318 -5,83615 invasion protein precursor 

2882 SL2861 sipA -6,38297 -7,45432 secreted effector protein 

2883 SL2862 sipD -8,10815 -7,96644 translocation machinery component 

2884 SL2863 sipC -6,75384 -6,93525  translocation machinery component 

2885 SL2864 sipB -6,98067 -6,70203 translocation machinery component 

2886 SL2865 sicA -6,11606 -6,65031 secretion chaperone 

2887 SL2866 spaS -2,24243 -2,27852 surface presentation of antigens protein SpaS 

2888 SL2867 spaR -3,70299 -3,50458 needle complex export protein 

2889 SL2868 spaQ -4,65043 -3,48878 needle complex export protein 

2890 SL2869 spaP -4,84355 -3,47487 surface presentation of antigens protein SpaP 

2891 SL2870 spaQ -7,1891 -6,74103 surface presentation of antigens protein SpaO 

2892 SL2871 invJ -7,73751 -6,92514 needle length control protein 

2893 SL2872 invI -6,50147 -6,5762 needle complex assembly protein 

2894 SL2873 invC -6,54299 -6,27668 ATP synthase SpaL 

2895 SL2874 invB -7,80109 -7,30746 secretion chaperone 

2896 SL2875 invA -6,29927 -6,23907 needle complex export protein 
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2897 SL2876 invE -5,15772 -4,42613 invasion protein 

2898 SL2877 invG -7,36066 -7,40968 outer membrane secretin precursor 

2899 SL2878 invF -9,005 -8,25772 invasion regulatory protein 

2900 SL2879 invH -5,75796 -5,85947 needle complex outer membrane lipoprotein precursor 

2945 SL2924 sopD -6,04938 -5,80587 secreted effector protein 

4257 SL4193 siiA -4,86275 -3,97478 
 

4258 SL4194 siiB -5,64156 -5,12549 
 

4259 SL4195 siiC -4,48573 -4,22586 
 

4260 SL4196 siiD -6,2381 -5,52023 
 

4261 SL4197 siiE -5,55131 -6,32293 
 

4262 SL4198 siiF -3,85186 -3,66006 
 

FLAGELLUM 

1171 SL1108 flgG -5,71429 -5,21887 flagellar basal body rod protein FlgG 

1172 SL1109 flgM -3,9965 -4,33879 anti-sigma28 factor FlgM 

1173 SL1110 flgA -3,46902 -3,68834 flagellar basal body P-ring biosynthesis protein FlgA 

1174 SL1111 flgB -7,63659 -7,1108 flagellar basal body rod protein FlgB 

1175 SL1112 flgC -9,17839 -8,18843 flagellar basal body rod protein FlgC 

1176 SL1113 flgD -8,29584 -8,09363 flagellar basal body rod modification protein 

1177 SL1114 flgE -8,10062 -7,37697 flagellar hook protein FlgE 

1178 SL1115 flgF -7,55285 -6,77852 flagellar basal body rod protein FlgF 

1179 SL1116 flgG -7,06958 -6,1296 flagellar basal body rod protein FlgG 

1180 SL1117 flgH -5,68632 -5,07144 flagellar basal body L-ring protein 

1181 SL1118 flgI -5,76343 -5,37619  flagellar basal body P-ring protein 

1182 SL1119 flgJ -6,11105 -5,34008 peptidoglycan hydrolase 

1183 SL1120 flgK -7,62081 -7,72774 flagellar hook-associated protein FlgK 

1184 SL1121 flgL -6,80263 -6,42102 flagellar hook-associated protein FlgL 

1912 SL1847 flhE -5,17649 -4,25584  flagellar protein 

1913 SL1848 flha -4,43008 -3,93142 flagellar biosynthesis protein FlhA 

1914 SL1849 flhB -2,60218 -2,42441 flagellar biosynthesis protein FlhB 

1912 SL1847 flhE -5,17649 -4,25584  flagellar protein 

1913 SL1848 flha -4,43008 -3,93142 flagellar biosynthesis protein FlhA 

1914 SL1849 flhB -2,60218 -2,42441 flagellar biosynthesis protein FlhB 

1915 SL1850 flhZ -6,96302 -5,87415 
 

1916 SL1851 flhY -7,81919 -6,54635 
 

1922 SL1857 motB -7,33594 -7,39911 flagellar motor protein MotB 

1923 SL1858 motA -7,02063 -7,2536 flagellar motor protein MotA 

1924 SL1859 flhC -4,19042 -4,08165 transcriptional activator FlhC 

1925 SL1860 flhD -3,70422 -4,19309 transcriptional activator FlhD 

1955 SL1884 fliZ -5,94152 -6,62262 protein FliZ 

1956 SL1885 fliA -7,98073 -8,08624 flagellar biosynthesis sigma factor 

1958 SL1887 fliB -6,30407 -6,61295  lysine-N-methylase 



 

 

      

1959 SL1888 fliC -6,07778 -6,55312 flagellin 

1960 SL1889 fliD -8,24866 -9,03107 flagellar capping protein 

1961 SL1890 fliS -6,72678 -7,00214 flagellar protein FliS 

1962 SL1891 fliT -6,45004 -6,44869  flagellar biosynthesis protein FliT 

1968 SL1897 fliE -4,40061 -3,87333  flagellar hook-basal body protein FliE 

1969 SL1898 fliF -4,52256 -4,49656  flagellar MS-ring protein 

1970 SL1899 fliG -5,80939 -5,364 flagellar motor switch protein G 

1971 SL1900 fliH -5,15984 -4,3348 flagellar assembly protein H 

1972 SL1901 fliI -4,60108 -3,78864 flagellum-specific ATP synthase 

1973 SL1902 fliJ -7,35072 -7,3361 flagellar biosynthesis chaperone 

1974 SL1903 fliK -4,67108 -4,68336 flagellar hook-length control protein 

1975 SL1904 fliL -3,70536 -2,52217 flagellar basal body-associated protein FliL 

1976 SL1905 fliM -5,91778 -5,91502 flagellar motor switch protein FliM 

1977 SL1906 fliN -6,10392 -5,42285 flagellar motor switch protein FliN 

1978 SL1907 fliO -4,86694 -4,27314 flagellar biosynthesis protein FliO 

1979 SL1908 fliP -2,35408 -1,64851 flagellar biosynthesis protein FliP 

2771 SL2756 fljB -6,99806 -7,45804 flagellin 

CHEMOTAXIS 

1917 SL1852 cheB -6,79446 -6,055 chemotaxis-specific methylesterase 

1918 SL1853 cheR -6,644 -6,09016 chemotaxis methyltransferase CheR 

1919 SL1854 cheM -8,83596 -8,75253 methyl accepting chemotaxis protein II 

1920 SL1855 cheW -7,31736 -6,24275  purine-binding chemotaxis protein 

1921 SL1856 cheA -7,97546 -7,29865 chemotaxis protein CheA 

3217 SL3190 aer -6,54713 -6,34625 aerotaxis sensor receptor 

1626 SL1556 trg -7,06638 -7,19467 methyl-accepting chemotaxis protein III 

METABOLISM 

781 SL0758 modA -2,42126 -2,48426 molybdate transporter periplasmic protein 

782 SL0759 modB -2,4873 -2,4489 molybdate ABC transporter permease protein 

783 SL0760 modC -2,68069 -2,87297 molybdate transporter ATP-binding protein 

800 SL0776 slrp -2,19948 -2,52212 leucine-rich repeat-containing protein 

2548 SL2510 asrA -2,44988 -2,84987 anaerobic sulfide reductase 

2549 SL2511 asrB -2,95773 -1,98773 anaerobic sulfite reductase subunit B 

2550 SL2512 asrC -2,30442 -1,36859 anaerobic sulfide reductase 

2558 SL2520 cadB  -3,2369 -2,8327  lysine/cadaverine antiporter 

2559 SL2521 cadA -2,92782 -2,81164 lysine decarboxylase 1 

 
SL2674 sopE -9,40074 -9,35711 

 
2773 SL2758 iroB -3,84752 -3,49264  putative glycosyl transferase 

2774 SL2759 iroC -3,47552 -2,68924 putative ABC transporter protein 

2775 SL2760 iroD -2,19228 -1,41579 enterochelin esterase=-like protein 

2776 SL2761 iroE -2,35303 -1,39884 putative hydrolase 

2878 SL2858 sptP -2,89798 -3,0085 protein tyrosine phosphatase/GTPase activating protein 
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3189 SL3163 ygiD -2,39064 -2,08937 
hypothetical protein-seems to be involved in biofilm 

formation 

3240 SL3212 tdcG -2,02863 -1,36615  L-serine deaminase 

3241 SL3213 tdcE -2,67232 -1,6187 pyruvate formate-lyase 4/2-ketobutyrate formate-lyase 

3577 SL3542 tcp -8,57565 -8,41645 
 methyl-accepting transmembrane citrate/phenol 

chemoreceptor 

3578 SL3543 yhhP -3,28923 -3,91009 cell developmental protein SirA 

3611 SL3576 yhjH -6,16238 -6,69775 EAL domain-containing protein 

OTHERS 

1301 SL1236 
 

-2,67513 -2,89511 
 

1328 SL1263 
 

-6,18503 -5,68145 
 

1330 SL1265 
 

-2,2161 -1,42279 
 

 
SL1501 

 
-2,01195 -1,10347 

 
1596 SL1527 ydcX -2,25657 -1,78552 putative inner membrane protein 

1629 SL1559 steB -3,45928 -2,85784 
 

1798 SL1726 ycgR -6,24285 -6,25779 putative inner membrane protein 

1934 SL1867 
 

-2,27948 -2,08313 
 

1915 SL1879 sliA -2,62839 -2,6717 
 

1967 SL1896 
 

-2,22395 -1,96412 
 

2314 SL2283 
 

-7,64248 -7,17453 
 

2879 SL2859 sipP -3,56567 -3,63951 
 

2881 SL2860 iacP -6,58496 -6,92133 
 

3112 SL3112 
 

-6,15379 -6,18479 
 

3151 SL3125 yghW -2,84758 -2,29981 putative cytoplasmic protein 

3152 SL3126 
 

-5,78976 -5,54493 
 

3154 SL3128 
 

-3,41389 -2,63399 
 

3155 SL3129 
 

-2,94511 -3,59618 
 

3156 SL3130 
 

-3,87149 -4,01726 
 

3216 SL3189 
 

-8,24609 -8,31326 
 

3604 SL3569 
 

-3,16878 -2,62134 
 

4263 SL4199 yjcB -2,02875 -1,72748 putative inner membrane protein 

4310 SL4247 
 

-2,93994 -2,68906 
 

4312 SL4248 
 

-3,24214 -3,42733 
 

4313 SL4249 
 

-4,27317 -4,01976 
 

4314 SL4250 
 

-4,38762 -3,91761 rtsB 

 
SL4251 

 
-5,67293 -5,46996 

 

 
SL4464 

 
-6,92337 -7,12987 
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Table SM. 2 ChIP-seq results 

S. enterica Peak start Peak end Map position Gene description Strand 

StdE binding peaks 

SL1344 133850 133999 133829 133915 WP_001575587.1_leu_operon_leader_peptide - 

SL1344 139700 140049 139950 140408 WP_000488294.1_transcriptional_regulator_MraZ + 

SL1344 174750 175049 173384 174754 WP_000378215.1_aromatic_amino_acid_transporter - 

SL1344 216850 217049 217026 217730 WP_000899412.1_sugar_fermentation_stimulation_protein_A - 

SL1344 223500 223799 223735 225924 WP_000113220.1_ferrichrome_outer_membrane_transporter + 

SL1344 242800 243049 242841 244358 WP_000146443.1_deoxyguanosinetriphosphate_triphosphohydrolase + 

SL1344 247700 247849 247314 247700 WP_000272193.1_hypothetical_protein - 

SL1344 250050 250249 250139 252811 WP_001094519.1_uridylyltransferase - 

SL1344 259000 259099 257842 259038 WP_000811905.1_1-deoxy-D-xylulose_5-phosphate_reductoisomerase + 

SL1344 265850 265949 265401 266426 WP_001139265.1_UDP-3-O-(3-hydroxymyristoyl)glucosamine_N-acyltransferase_lpxD + 

SL1344 288800 289099 288235 288801 WP_001051726.1_D-glycero-beta-D-manno-heptose-1,7-bisphosphate_7-phosphatase + 

SL1344 304200 304299 304258 304334 tRNA-Asp_tRNA-Asp + 

SL1344 368100 368299 368274 368349 tRNA-Thr_tRNA-Thr + 

SL1344 386200 386549 385794 386294 WP_001539242.1_hypothetical_protein + 

SL1344 403400 403699 402817 404775 WP_000910371.1_type_III_restriction-modification_system_StyLTI_enzyme_mod + 

SL1344 413700 413849 412167 414257 WP_001526309.1_ferrioxamine_B_receptor + 

SL1344 414850 415049 414298 414930 WP_000433131.1_transporter - 

SL1344 434800 435099 435083 436294 WP_000446768.1_permease + 

SL1344 454400 454499 454138 455508 WP_001555879.1_proline-specific_permease_ProY_proY + 

SL1344 461150 461549 461457 461789 WP_000007628.1_preprotein_translocase_subunit_YajC_yajC + 

SL1344 498400 498499 498086 499561 WP_000098481.1_AmpG_family_muropeptide_MFS_transporter_ampG - 

SL1344 507800 508149 507591 507863 WP_001043544.1_DNA-binding_protein_HU-beta + 

SL1344 527350 527649 527619 527837 WP_001280991.1_hemolysin_expression-modulating_protein_Hha - 



 

 

SL1344 531750 532149 531907 533100 WP_001039202.1_MexE_family_multidrug_efflux_RND_transporter_periplasmic_adaptor_subunit - 

SL1344 555350 555649 555572 556366 WP_000421859.1_hypothetical_protein - 

SL1344 643500 643649 643490 644704 WP_000656600.1_enterobactin/ferric_enterobactin_esterase + 

SL1344 660450 660699 660167 660580 WP_000637965.1_proofreading_thioesterase_EntH + 

SL1344 677300 677499 676860 677288 WP_000278499.1_universal_stress_protein_G - 

SL1344 677300 677499 677511 678749 WP_000646113.1_dehydrogenase + 

SL1344 692200 692549 692403 692612 WP_000034826.1_cold-shock_protein + 

SL1344 701350 701699 701433 703334 WP_000828700.1_penicillin-binding_protein_2 - 

SL1344 725850 726049 726021 726746 WP_000631369.1_glutamate/aspartate_ABC_transporter_ATP-binding_protein_artP - 

SL1344 738000 738349 738051 738127 tRNA-Met_tRNA-Met - 

SL1344 749000 749149 748945 750351 WP_001258803.1_chitoporin_chiP + 

SL1344 749800 749999 748945 750351 WP_001258803.1_chitoporin_chiP + 

SL1344 765400 765699 765386 765499 WP_000862019.1_hypothetical_protein + 

SL1344 768550 769049 766424 769108 WP_000997487.1_two-component_system_sensor_histidine_kinase_KdpD - 

SL1344 797050 797199 796608 796994 WP_010988982.1_membrane_protein + 

SL1344 808350 808449 808940 810508 WP_000884369.1_cytochrome_BD_oxidase_subunit_I + 

SL1344 822850 823049 823028 824080 WP_001109234.1_phospho-2-dehydro-3-deoxyheptonate_aldolase + 

SL1344 827300 827549 826600 827526 WP_001538325.1_LysR_family_transcriptional_regulator - 

SL1344 847500 847749 847453 848271 WP_000127031.1_pyridoxal_phosphate_phosphatase - 

SL1344 865300 865499 863688 865709 WP_000042502.1_UvrABC_system_protein_B + 

SL1344 869650 870049 869893 870882 WP_000168180.1_cyclic_pyranopterin_monophosphate_synthase_moaA + 

SL1344 878400 878599 878496 878906 WP_000871970.1_membrane_protein + 

SL1344 904200 904299 904297 905889 WP_000961478.1_heme_ABC_transporter_ATP-binding_protein + 

SL1344 913600 913999 913046 913945 WP_000576947.1_pyruvate_formate_lyase_activating_enzyme - 

SL1344 964050 964299 964160 965593 WP_000069000.1_hypothetical_protein - 

SL1344 965450 965599 964160 965593 WP_000069000.1_hypothetical_protein - 

SL1344 974900 975099 974052 975002 WP_001519667.1_virulence_protein_VirK - 
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SL1344 978650 978849 978884 979204 WP_000520789.1_ATP-dependent_Clp_protease_adapter_protein_ClpS_clpS + 

SL1344 1017750 1018049 1018042 1019130 WP_000079584.1_phosphoserine_aminotransferase + 

SL1344 1022000 1022349 1021561 1022244 WP_000125006.1_cytidylate_kinase_cmk + 

SL1344 1043350 1043449 1041587 1043428 WP_000925872.1_murein_transpeptidase + 

SL1344 1043850 1044099 1043688 1044236 WP_000357052.1_outer_membrane_protein + 

SL1344 1050000 1050299 1050105 1050338 WP_000301921.1_hypothetical_protein - 

SL1344 1068800 1069049 1068940 1069257 WP_010989004.1_hypothetical_protein + 

SL1344 1086800 1087199 1086605 1087138 WP_000877926.1_Superoxide_dismutase_[Cu-Zn]_1 - 

SL1344 1089650 1090049 1089344 1092694 WP_000033415.1_host_specificity_protein_J + 

SL1344 1110650 1110749 1110249 1111502 WP_000333148.1_paraquat-inducible_protein_A + 

SL1344 1113800 1113899 1113963 1114130 WP_001537784.1_ribosome_modulation_factor + 

SL1344 1115900 1116199 1114817 1116577 WP_000156453.1_lon_protease - 

SL1344 1131500 1131799 1131644 1131731 tRNA-Ser_tRNA-Ser + 

SL1344 1158750 1159049 1158770 1159393 WP_000876693.1_DSBA_oxidoreductase + 

SL1344 1167950 1168199 1163919 1167881 WP_000537528.1_bifunctional_protein_PutA_putA - 

SL1344 1183450 1183699 1183644 1184126 WP_001546652.1_membrane_protein + 

SL1344 1192350 1192599 1192541 1194094 WP_000681121.1_glucan_biosynthesis_protein_D_mdoG + 

SL1344 1262600 1262749 1261987 1262898 WP_000291338.1_N-acetyl-D-glucosamine_kinase + 

SL1344 1289850 1290099 1290067 1290143 tRNA-Arg_tRNA-Arg + 

SL1344 1306350 1306599 1306474 1306623 WP_000908464.1_hypothetical_protein - 

SL1344 1309700 1310099 1309991 1310239 WP_000512149.1_membrane_protein + 

SL1344 1326600 1326849 1326883 1327296 WP_001519539.1_peptide_methionine_sulfoxide_reductase_MsrB + 

SL1344 1383250 1383449 1382251 1383297 WP_001082196.1_phospho-2-dehydro-3-deoxyheptonate_aldolase_Trp-sensitive - 

SL1344 1399850 1400149 1399804 1401015 WP_000797677.1_transporter - 

SL1344 1482900 1483049 1482592 1483197 WP_000765727.1_glutathionine_S-transferase - 

SL1344 1491950 1492249 1491858 1492298 WP_000214061.1_membrane_protein - 

SL1344 1510850 1511099 1511078 1512022 WP_000769294.1_hypothetical_protein - 



 

 

SL1344 1544700 1544849 1544840 1545526 WP_000215563.1_hypothetical_protein - 

SL1344 1550600 1550949 1550924 1551019 WP_000901531.1_membrane_protein - 

SL1344 1556950 1557099 1557061 1557933 WP_000366538.1_LysR_family_transcriptional_regulator - 

SL1344 1589900 1590099 1588983 1589990 WP_000201080.1_transcriptional_regulator + 

SL1344 1611850 1612099 1612026 1613114 WP_000769035.1_porin + 

SL1344 1615100 1615599 1615267 1615845 WP_000121043.1_TetR_family_transcriptional_regulator + 

SL1344 1637850 1638049 1637948 1640929 WP_000960833.1_virulence_factor_SrfB + 

SL1344 1643250 1643599 1643115 1643288 WP_000171943.1_hypothetical_protein - 

SL1344 1658450 1658649 1658651 1659769 WP_000144617.1_aminopeptidase + 

SL1344 1706800 1706949 1707001 1707984 WP_000387373.1_zinc_transporter_ZntB_zntB - 

SL1344 1725400 1725549 1724854 1725567 WP_000171963.1_oxidoreductase + 

SL1344 1736100 1736199 1735781 1737178 WP_000825847.1_ATPase - 

SL1344 1743250 1743549 1743130 1744020 WP_001146150.1_peptide_ABC_transporter_permease + 

SL1344 1749900 1750149 1749977 1751110 WP_000434197.1_hypothetical_protein + 

SL1344 1759850 1759999 1759544 1759852 WP_000876301.1_membrane_protein - 

SL1344 1764650 1764949 1764839 1764967 WP_001138871.1_hypothetical_protein - 

SL1344 1802000 1802349 1799981 1802659 WP_000301678.1_acetaldehyde_dehydrogenase + 

SL1344 1803850 1804049 1804136 1804549 WP_001287383.1_DNA-binding_protein_H-NS + 

SL1344 1834000 1834299 1833497 1834348 WP_000988246.1_4-diphosphocytidyl-2-C-methyl-D-erythritol_kinase + 

SL1344 1837200 1837349 1835686 1837371 WP_001037181.1_transporter + 

SL1344 1837600 1837799 1837416 1837694 WP_000823878.1_membrane_protein - 

SL1344 1863400 1863649 1862742 1863461 WP_000234826.1_fatty_acid_metabolism_regulator_protein - 

SL1344 1893350 1893799 1893337 1893480 WP_001537930.1_hypothetical_protein - 

SL1344 1894500 1894749 1894487 1894630 WP_000714547.1_PhoP_family_transcriptional_regulator - 

SL1344 1901600 1901899 1901554 1902051 WP_001518229.1_GAF_domain_protein - 

SL1344 1930600 1930799 1929373 1931424 WP_000936999.1_protease - 

SL1344 1935150 1935399 1935189 1937000 WP_001069113.1_phosphogluconate_dehydratase - 
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SL1344 1979550 1980099 1979284 1979625 WP_001518146.1_flagellar_transcriptional_regulator_FlhD - 

SL1344 1980200 1980549 1980421 1980849 WP_000122606.1_universal_stress_protein_C + 

SL1344 1983000 1983399 1982263 1983066 WP_000830110.1_trehalose-phosphate_phosphatase - 

SL1344 2034450 2034599 2034188 2034454 WP_001521850.1_membrane_protein - 

SL1344 2039600 2039849 2039277 2039438 WP_000500831.1_hypothetical_protein - 

SL1344 2059350 2059549 2058604 2060337 WP_000088182.1_terminase - 

SL1344 2064750 2064899 2064878 2065501 WP_000188927.1_hypothetical_protein - 

SL1344 2133550 2133799 2133740 2134912 WP_000925042.1_D-alanyl-D-alanine_carboxypeptidase - 

SL1344 2134850 2135149 2135036 2135800 WP_001092547.1_thiosulfate_reductase_cytochrome_B - 

SL1344 2139050 2139249 2139285 2141633 WP_000703998.1_E3_ubiquitin--protein_ligase + 

SL1344 2147100 2147249 2147330 2148229 WP_000886607.1_ATP_phosphoribosyltransferase_hisG + 

SL1344 2153950 2154199 2153855 2154466 WP_000954848.1_histidine_biosynthesis_bifunctional_protein_HisIE + 

SL1344 2155300 2155399 2154547 2155530 WP_000215261.1_chain_length_determinant_protein - 

SL1344 2177050 2177299 2176672 2177565 WP_000981469.1_UTP--glucose-1-phosphate_uridylyltransferase - 

SL1344 2198800 2198949 2198772 2199221 WP_000482224.1_protein-tyrosine_phosphatase - 

SL1344 2211500 2211749 2210207 2211559 WP_000469629.1_chaperone + 

SL1344 2234750 2234899 2233987 2235258 WP_000858692.1_nucleoside_permease + 

SL1344 2255700 2255849 2255678 2256625 WP_000569166.1_ABC_transporter_ATP-binding_protein - 

SL1344 2264450 2264699 2264354 2264941 WP_001017057.1_transporter - 

SL1344 2266300 2266599 2266545 2267981 WP_001081453.1_lipoprotein - 

SL1344 2276650 2276949 2276882 2277766 WP_000553526.1_cytidine_deaminase + 

SL1344 2286900 2287149 2287003 2288145 WP_001526153.1_membrane_protein - 

SL1344 2289600 2289699 2289158 2290015 WP_000425488.1_S-formylglutathione_hydrolase + 

SL1344 2305050 2305299 2303940 2305070 WP_000487287.1_multiphosphoryl_transfer_protein - 

SL1344 2311150 2311399 2311374 2311946 WP_000241015.1_membrane_protein_spr + 

SL1344 2317850 2318149 2317871 2319460 WP_000203622.1_microcin_C_ABC_transporter_ATP-binding_protein_YejF + 

SL1344 2332500 2332899 2332550 2333077 WP_001215679.1_tail_protein - 



 

 

SL1344 2357000 2357449 2356870 2357361 WP_000228070.1_ferredoxin - 

SL1344 2373950 2374199 2371427 2374063 WP_001281271.1_DNA_gyrase_subunit_A - 

SL1344 2384150 2384299 2384252 2385130 WP_000176719.1_LysR_family_transcriptional_regulator + 

SL1344 2387600 2388149 2387952 2389580 WP_000857292.1_sn-glycerol-3-phosphate_dehydrogenase_subunit_A_glpA + 

SL1344 2406000 2406249 2405788 2406687 WP_000169761.1_4-deoxy-4-formamido-L-arabinose-phosphoundecaprenol_deformylase_ArnD + 

SL1344 2437500 2437749 2437609 2437761 WP_001522276.1_hypothetical_protein - 

SL1344 2445400 2445499 2444860 2445315 WP_000106617.1_membrane_protein - 

SL1344 2450350 2450599 2449296 2450816 WP_000117932.1_hypothetical_protein + 

SL1344 2475150 2475449 2475070 2476338 WP_000792275.1_bifunctional_folylpolyglutamate_synthase/_dihydrofolate_synthase - 

SL1344 2499800 2499949 2499456 2499740 WP_000030904.1_hypothetical_protein - 

SL1344 2508800 2509249 2508217 2509491 WP_031602386.1_ABC_transporter_substrate-binding_protein - 

SL1344 2509400 2509649 2509454 2509672 WP_000279836.1_hypothetical_protein - 

SL1344 2522750 2523149 2523019 2524221 WP_000376347.1_nucleoside_permease + 

SL1344 2526750 2526999 2526772 2526847 tRNA-Ala_tRNA-Ala - 

SL1344 2539750 2539899 2538804 2539790 WP_000983110.1_cell_division_protein_ZipA - 

SL1344 2541850 2542099 2542037 2542162 WP_000718558.1_hypothetical_protein - 

SL1344 2582450 2582599 2581216 2583216 WP_000087323.1_transketolase + 

SL1344 2595600 2595999 2595410 2596537 WP_001277825.1_succinyl-diaminopimelate_desuccinylase + 

SL1344 2602550 2602799 2602783 2603355 WP_000189061.1_glycine_cleavage_system_transcriptional_regulator_gcvR + 

SL1344 2610200 2610399 2609749 2610375 WP_000706208.1_uracil_phosphoribosyltransferase_upp - 

SL1344 2618650 2618949 2618927 2619118 WP_000075924.1_hypothetical_protein + 

SL1344 2623600 2623899 2623795 2625144 WP_000953165.1_exodeoxyribonuclease_7_large_subunit_xseA + 

SL1344 2647300 2647549 2646325 2648517 WP_000252220.1_intimin - 

SL1344 2661250 2661649 2660629 2663007 WP_001521637.1_DMSO_reductase_subunit_A - 

SL1344 2681950 2682149 2681302 2682033 WP_000940032.1_tRNA_(cytidine/uridine-2'-O-)-methyltransferase_TrmJ - 

SL1344 2705350 2705599 2703891 2705276 WP_001542313.1_two-component_system_sensor_histidine_kinase - 

SL1344 2706400 2706499 2705971 2709858 WP_000970045.1_phosphoribosylformylglycinamidine_synthase - 
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SL1344 2718850 2719049 2718443 2719369 WP_001022463.1_LysR_family_transcriptional_regulator + 

SL1344 2759600 2759849 2759753 2760316 WP_000211410.1_antirepressor - 

SL1344 2760450 2760599 2760589 2761266 WP_001097241.1_antitermination_protein - 

SL1344 2762700 2762799 2762220 2762822 WP_000929790.1_hypothetical_protein - 

SL1344 2768350 2768599 2768366 2768833 WP_000169863.1_regulator + 

SL1344 2790150 2790349 2790293 2792953 WP_000082639.1_protein_lysine_acetyltransferase_Pat + 

SL1344 2792900 2793049 2790293 2792953 WP_000082639.1_protein_lysine_acetyltransferase_Pat + 

SL1344 2802200 2802649 2802529 2805102 WP_001235094.1_chaperone_protein_ClpB - 

SL1344 2807750 2808149 2808081 2808419 WP_000178449.1_translation_inhibitor_protein_RaiA + 

SL1344 2821400 2821649 2820345 2822183 partial;pseudo_partial;pseudo + 

SL1344 2838150 2838249 2837672 2838154 WP_001518569.1_SsrA-binding_protein_smpB + 

SL1344 2855100 2855499 2853874 2855064 WP_000700669.1_secretion_protein_HlyD + 

SL1344 2887950 2888199 2887497 2888522 WP_000155500.1_recombinase + 

SL1344 2935050 2935349 2935199 2935738 WP_000388997.1_repressor_of_phase_1_flagellin_gene - 

SL1344 2956900 2957049 2956337 2957011 WP_001237934.1_two-component_system_response_regulator - 

SL1344 2973900 2974099 2973730 2974161 WP_000209813.1_alkylhydroperoxidase + 

SL1344 3041050 3041249 3040412 3041341 WP_000432699.1_transcriptional_regulator_hilD + 

SL1344 3050450 3050599 3050433 3051662 WP_000909019.1_cell_invasion_protein_SipC - 

SL1344 3084250 3084549 3084385 3085149 WP_000613185.1_DeoR_family_transcriptional_regulator + 

SL1344 3089450 3090199 3089110 3090243 WP_001272632.1_murein_hydrolase_activator_NlpD_nlpD - 

SL1344 3137150 3137399 3137007 3137789 WP_000890027.1_tRNA_pseudouridine_synthase_C - 

SL1344 3138100 3138599 3138274 3138486 WP_000988723.1_hypothetical_protein - 

SL1344 3139050 3139149 3138730 3139275 WP_000343990.1_protein_Syd - 

SL1344 3156400 3156949 3155734 3156651 WP_000044409.1_transcriptional_regulator - 

SL1344 3162300 3162549 3161221 3162318 WP_000678626.1_murein_transglycosylase_mltA - 

SL1344 3166600 3166799 3165738 3167573 WP_000155129.1_exonuclease_V_subunit_alpha_recD - 

SL1344 3181050 3181199 3180280 3181155 WP_000204645.1_prolipoprotein_diacylglyceryl_transferase - 



 

 

SL1344 3184300 3184549 3184511 3184657 WP_001752593.1_hypothetical_protein - 

SL1344 3205500 3205949 3205639 3206475 WP_000503692.1_cobalt_transporter              yohM + 

SL1344 3215550 3215899 3215876 3216274 WP_000911336.1_tRNA(fMet)-specific_endonuclease_VapC - 

SL1344 3242700 3243149 3243022 3243618 WP_001520956.1_5-formyltetrahydrofolate_cyclo-ligase + 

SL1344 3243550 3243799 3243022 3243618 WP_001520956.1_5-formyltetrahydrofolate_cyclo-ligase + 

SL1344 3247250 3247349 3247215 3247466 WP_001112716.1_hypothetical_protein + 

SL1344 3253650 3253949 3252597 3253643 WP_000218338.1_D-erythrose-4-phosphate_dehydrogenase_gapA - 

SL1344 3259700 3260099 3259380 3260138 WP_000701830.1_metalloprotease + 

SL1344 3267550 3267699 3267369 3267485 WP_001738517.1_racemase + 

SL1344 3291950 3292099 3290856 3291941 WP_000976289.1_murein_transglycosylase_mltC + 

SL1344 3330950 3331099 3329490 3331193 WP_000083044.1_hydrogenase_2_large_subunit - 

SL1344 3341350 3341549 3341439 3341576 WP_001518378.1_membrane_protein - 

SL1344 3350700 3350999 3349642 3351813 WP_001274458.1_radical_SAM_protein - 

SL1344 3383000 3383299 3383264 3384697 WP_000867682.1_bifunctional_protein_HldE - 

SL1344 3385050 3385499 3384745 3387588 WP_000188309.1_glutamate--ammonia-ligase_adenylyltransferase - 

SL1344 3394450 3394849 3394760 3394975 WP_001144069.1_30S_ribosomal_protein_S21_rpsU + 

SL1344 3399500 3399849 3399709 3399784 tRNA-Met_tRNA-Met + 

SL1344 3409000 3409249 3409059 3410195 WP_000019989.1_ribosomal_RNA_large_subunit_methyltransferase_G - 

SL1344 3424950 3425049 3424056 3425387 WP_000443187.1_membrane_protein - 

SL1344 3434600 3434749 3433178 3434116 WP_001094910.1_transcriptional_regulator - 

SL1344 3435800 3435999 3435915 3437060 WP_000706459.1_glycerate_kinase - 

SL1344 3443000 3443149 3442143 3442976 WP_001118363.1_DeoR_family_transcriptional_regulator - 

SL1344 3447250 3447649 3447534 3448805 WP_000658628.1_tagatose-1,6-bisphosphate_aldolase + 

SL1344 3452000 3452249 3452174 3452947 WP_001083896.1_galactitol_utilization_operon_repressor + 

SL1344 3468800 3469049 3468958 3469842 WP_000802069.1_lipoprotein_NlpI - 

SL1344 3469200 3469749 3468958 3469842 WP_000802069.1_lipoprotein_NlpI - 

SL1344 3479100 3479549 3479208 3479284 tRNA-Met_tRNA-Met - 
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SL1344 3511700 3511949 3511909 3514245 WP_000809815.1_aerobic_respiration_control_sensor_protein_ArcB - 

SL1344 3515550 3515699 3515802 3516017 WP_001546060.1_hypothetical_protein - 

SL1344 3522550 3522749 3522035 3523138 WP_000184315.1_hypothetical_protein + 

SL1344 3530400 3530699 3530564 3531355 WP_000382926.1_transcriptional_regulator_NanR - 

SL1344 3532700 3532849 3532871 3533665 WP_000505557.1_hypothetical_protein - 

SL1344 3550150 3550299 3550283 3550546 WP_000695693.1_outer_membrane_protein + 

SL1344 3578500 3578649 3578064 3578948 WP_000642611.1_methyltransferase + 

SL1344 3593550 3593749 3593756 3593947 WP_016696011.1_hypothetical_protein - 

SL1344 3597750 3598299 3597162 3598286 WP_000124529.1_hypothetical_protein - 

SL1344 3618000 3618349 3617701 3618012 WP_001181005.1_30S_ribosomal_protein_S10_rpsJ - 

SL1344 3636800 3637099 3636416 3636820 WP_001148919.1_hypothetical_protein - 

SL1344 3643350 3643549 3643554 3644735 WP_000185211.1_protein_TsgA + 

SL1344 3664250 3664549 3663746 3664267 WP_000818621.1_shikimate_kinase_aroK - 

SL1344 3671300 3671549 3670820 3671383 WP_000045725.1_adenosine_nucleotide_hydrolase_nudE - 

SL1344 3677700 3678099 3678085 3679704 WP_001265689.1_phosphoenolpyruvate_carboxykinase_[ATP] + 

SL1344 3685200 3685499 3685412 3685639 WP_001160955.1_ferrous_iron_transporter_A_feoA + 

SL1344 3698350 3698449 3698422 3701127 WP_000907029.1_transcriptional_regulator + 

SL1344 3714950 3715149 3713815 3714924 WP_000258838.1_glycerol_dehydrogenase_gldA - 

SL1344 3736700 3736949 3736939 3737427 WP_001290288.1_acetyltransferase + 

SL1344 3749800 3749949 3749623 3749844 WP_001520924.1_prevent-host-death_family_protein - 

SL1344 3758050 3758399 3758349 3759404 WP_001081707.1_cell_division_protein_FtsX_ftsX - 

SL1344 3796650 3796899 3796899 3798548 WP_000934257.1_trehalase_treF + 

SL1344 3804050 3804349 3802998 3804026 WP_000191231.1_membrane_protein + 

SL1344 3829450 3829799 3829506 3829613 WP_001669334.1_hypothetical_protein - 

SL1344 3837250 3837499 3835747 3837354 WP_000028047.1_peptide_ABC_transporter_substrate-binding_protein - 

SL1344 3841750 3841949 3841901 3843592 WP_001269259.1_phosphoethanolamine_transferase_EptB - 

SL1344 3857550 3857749 3857754 3857966 WP_000014594.1_cold-shock_protein + 



 

 

SL1344 3871550 3871749 3871475 3871846 WP_000254414.1_hypothetical_protein + 

SL1344 3896100 3896599 3896582 3898498 WP_000093287.1_PTS_mannitol_transporter_subunit_IIABC + 

SL1344 3902950 3903399 3902543 3906928 WP_001079584.1_membrane_protein + 

SL1344 3912600 3912799 3912770 3913966 WP_001218249.1_L-talarate/galactarate_dehydratase + 

SL1344 3921900 3922099 3921719 3922681 WP_001135518.1_hypothetical_protein + 

SL1344 3945900 3946299 3946033 3946491 WP_000976078.1_deoxyuridine_5'-triphosphate_nucleotidohydrolase + 

SL1344 3951700 3951949 3951856 3952473 WP_000924334.1_membrane_protein + 

SL1344 3957300 3957549 3957500 3958189 WP_001068438.1_tRNA_methyltransferase + 

SL1344 3999850 4000099 3998699 3999891 pseudo;old_locus_tag=SL1344_3741_pseudo;old_locus_tag=SL1344_3741_nepI - 

SL1344 4006550 4006699 4005752 4006495 WP_000854956.1_GntR_family_transcriptional_regulator - 

SL1344 4019000 4019399 4019024 4019122 WP_001541152.1_ilvB_operon_leader_peptide - 

SL1344 4045350 4045949 4044666 4045850 WP_001230254.1_trimethylamine_N-oxide_reductase_cytochrome_C_subunit - 

SL1344 4058750 4058949 4057949 4059139 WP_000705615.1_MR-MLE_family_protein + 

SL1344 4066700 4066999 4066999 4067139 WP_000831330.1_50S_ribosomal_protein_L34_rpmH + 

SL1344 4072450 4072549 4071657 4072364 WP_001738600.1_recombinase + 

SL1344 4101950 4102249 4101487 4101867 WP_000116685.1_F0F1_ATP_synthase_subunit_I - 

SL1344 4126700 4126949 4126913 4126988 tRNA-Trp_tRNA-Trp + 

SL1344 4127900 4128049 4128045 4128383 WP_000840996.1_hypothetical_protein  hdfR + 

SL1344 4130150 4130449 4130280 4130378 WP_001311244.1_IlvGMEDA_operon_leader_peptide + 

SL1344 4146700 4147149 4147129 4148388 WP_001054532.1_transcription_termination_factor_Rho_rho + 

SL1344 4167700 4167899 4167912 4170458 WP_000281718.1_adenylate_cyclase_cyaA + 

SL1344 4196200 4196449 4196409 4197170 WP_000045169.1_uridine_phosphorylase + 

SL1344 4227150 4227549 4226273 4227181 WP_000196890.1_acyltransferase - 

SL1344 4230250 4230499 4227569 4230355 WP_000249972.1_DNA_polymerase_I + 

SL1344 4231650 4231799 4231562 4231786 WP_001541209.1_hypothetical_protein + 

SL1344 4238550 4238899 4238822 4240645 WP_000572067.1_GTP-binding_protein + 

SL1344 4244000 4244249 4243537 4244412 WP_000282794.1_membrane_protein - 
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SL1344 4252950 4253299 4253044 4254285 WP_000870946.1_sulfoquinovose_isomerase - 

SL1344 4280300 4280449 4280503 4281339 WP_000217112.1_transcriptional_activator_RhaS + 

SL1344 4283500 4283849 4283840 4283965 WP_000183584.1_hypothetical_protein + 

SL1344 4284700 4284999 4284831 4286138 WP_000566800.1_membrane_protein - 

SL1344 4321150 4321249 4320588 4321919 WP_001293360.1_ATP-dependent_protease_ATPase_subunit_HslU_hslU - 

SL1344 4348350 4348749 4348739 4349818 WP_000661597.1_PTS_fructose_transporter_subunit_IIC + 

SL1344 4381250 4381449 4381377 4381452 tRNA-Thr_tRNA-Thr + 

SL1344 4384150 4384499 4384436 4384864 WP_001085926.1_50S_ribosomal_protein_L11 + 

SL1344 4385450 4385699 4384868 4385572 WP_001096676.1_50S_ribosomal_protein_L1 + 

SL1344 4407800 4408099 4407263 4407853 WP_000940092.1_hypothetical_protein + 

SL1344 4415600 4415949 4416006 4417559 16S_ribosomal_RNA_16S_ribosomal_RNA + 

SL1344 4471800 4472149 4470620 4471810 WP_000695417.1_maltose-binding_periplasmic_protein_malE - 

SL1344 4479250 4479499 4477472 4479892 WP_000017359.1_glycerol-3-phosphate_acyltransferase - 

SL1344 4497400 4497549 4497295 4497411 WP_001600633.1_hypothetical_protein + 

SL1344 4523150 4523349 4522829 4523110 WP_000719058.1_membrane_protein - 

SL1344 4524150 4524299 4523673 4525274 WP_000083640.1_hypothetical_protein + 

SL1344 4537050 4537149 4537151 4537297 WP_001576543.1_entericidin_B_precursor + 

SL1344 4544800 4545049 4544308 4545618 WP_000793278.1_proton_glutamate_symport_protein + 

SL1344 4569700 4569899 4569886 4570152 WP_010989095.1_hypothetical_protein - 

SL1344 4572450 4572599 4571185 4572816 WP_000682911.1_sensor_histidine_kinase - 

SL1344 4587200 4587299 4587160 4587235 tRNA-Phe_tRNA-Phe - 

SL1344 4593000 4593299 4592995 4593117 WP_000614819.1_hypothetical_protein - 

SL1344 4594850 4595199 4593838 4595079 WP_001670701.1_transporter - 

SL1344 4639450 4639599 4638946 4640109 WP_000943932.1_glutathionylspermidine_synthase + 

SL1344 4642300 4642699 4642267 4642596 WP_000586836.1_transporter - 

SL1344 4650900 4651049 4650793 4651023 WP_001621821.1_hypothetical_protein + 

SL1344 4651600 4651699 4651496 4651810 WP_001519453.1_primosomal_replication_protein_n + 



 

 

SL1344 4655150 4655299 4654512 4655132 WP_000235161.1_peptidyl-prolyl_cis-trans_isomerase + 

SL1344 4704200 4704499 4703860 4704246 WP_001232231.1_soluble_cytochrome_b562 + 

SL1344 4719850 4720149 4718940 4719887 WP_001181297.1_transcriptional_regulator_treR - 

SL1344 4749550 4749649 4748546 4749577 WP_000453340.1_L-idonate_5-dehydrogenase - 

SL1344 4776350 4776599 4776160 4776417 WP_001054380.1_hypothetical_protein - 

SL1344 4810450 4810599 4810665 4812326 WP_000919519.1_methyl-accepting_chemotaxis_protein + 

SL1344 4836200 4836449 4836462 4837079 WP_000178963.1_hypothetical_protein + 

SL1344 4838900 4839199 4838563 4839336 WP_000119016.1_deoxyribonuclease + 

SL1344 4841750 4841999 4840204 4841751 WP_001111692.1_hypothetical_protein - 

pSLT 29800 30149 29946 30512 WP_000399768.1_conjugal_transfer_protein_TraE - 

pSLT 46500 46649 46488 47762 WP_000457541.1_DNA_polymerase_V_subunit_UmuC + 

pSLT 47150 47599 46488 47762 WP_000457541.1_DNA_polymerase_V_subunit_UmuC + 

pSLT 78150 78349 78078 78459 pseudo_pseudo - 

pSLT 91950 92149 91997 92164 WP_001691570.1_DNA_replication_protein - 

pCol1B9 200 549 455 1486 WP_000907875.1_replication_initiation_protein_PK-repZ + 

pCol1B9 1350 1599 455 1486 WP_000907875.1_replication_initiation_protein_PK-repZ + 

pCol1B9 8000 8199 6669 8015 WP_001132021.1_hypothetical_protein + 

pCol1B9 30000 30249 30112 30366 WP_000774889.1_hypothetical_protein - 

pCol1B9 33800 33949 33969 34301 WP_001281051.1_hypothetical_protein + 

pCol1B9 65800 65949 66007 66591 WP_000977522.1_conjugal_transfer_protein_TraG - 

pCol1B9 86250 86649 85922 86158 WP_000483804.1_conjugal_transfer_protein_TraA - 

pRSF1010 5350 5649 3338 5467 WP_001395566.1_mobilization_protein_A - 

pRSF1010 7200 7449 7015 7851 WP_000480968.1_aminoglycoside_phosphotransferase_APH(6)-I - 
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S. enterica Peak start Peak end Map position Gene description Strand 

StdF binding peaks 

SL1344 23050 23349 23335 24039 WP_000738617.1_hypothetical_protein + 

SL1344 33800 33999 33364 34368 WP_001247395.1_LysR_family_transcriptional_regulator + 

SL1344 256950 257199 257144 257701 WP_000622423.1_ribosome-recycling_factor_frr + 

SL1344 288850 289049 288235 288801 WP_001051726.1_D-glycero-beta-D-manno-heptose-1,7-bisphosphate_7-phosphatase + 

SL1344 386250 386399 385794 386294 WP_001539242.1_hypothetical_protein + 

SL1344 388200 388349 388268 389011 WP_000081378.1_transcriptional_regulator + 

SL1344 492150 492299 491265 492758 WP_000595924.1_hypothetical_protein + 

SL1344 531400 531499 528735 531884 WP_001132508.1_multidrug_efflux_RND_transporter_permease_subunit - 

SL1344 555450 555549 555572 556366 WP_000421859.1_hypothetical_protein - 

SL1344 692350 692549 692403 692612 WP_000034826.1_cold-shock_protein + 

SL1344 701400 701599 701433 703334 WP_000828700.1_penicillin-binding_protein_2 - 

SL1344 749450 749549 748945 750351 WP_001258803.1_chitoporin_chiP + 

SL1344 768650 769099 766424 769108 WP_000997487.1_two-component_system_sensor_histidine_kinase_KdpD - 

SL1344 792600 792699 791133 793082 WP_000367426.1_glycosyl_transferase + 

SL1344 822850 822999 823028 824080 WP_001109234.1_phospho-2-dehydro-3-deoxyheptonate_aldolase + 

SL1344 840250 840399 839835 840851 WP_001265465.1_UDP-glucose_4-epimerase - 

SL1344 847500 847699 847453 848271 WP_000127031.1_pyridoxal_phosphate_phosphatase - 

SL1344 855000 855149 854223 855908 WP_001115209.1_urocanate_hydratase + 

SL1344 873350 873549 873495 874202 WP_000529073.1_membrane_protein + 

SL1344 874500 874599 874235 874834 WP_000512322.1_membrane_protein + 

SL1344 898600 898799 898795 899310 WP_000716763.1_outer_membrane_protease_ompX + 

SL1344 913600 913999 913046 913945 WP_000576947.1_pyruvate_formate_lyase_activating_enzyme - 

SL1344 931500 931699 931284 932174 WP_000545327.1_LysR_family_transcriptional_regulator - 

SL1344 965500 965649 965604 966605 WP_000566344.1_threonine_aldolase - 

SL1344 974950 975049 974052 975002 WP_001519667.1_virulence_protein_VirK - 



 

 

SL1344 1033900 1034099 1033973 1034776 WP_001154025.1_S-adenosyl-L-methionine-dependent_methyltransferase + 

SL1344 1068750 1069049 1068940 1069257 WP_010989004.1_hypothetical_protein + 

SL1344 1086550 1086799 1086605 1087138 WP_000877926.1_Superoxide_dismutase_[Cu-Zn]_1 - 

SL1344 1089850 1089999 1089344 1092694 WP_000033415.1_host_specificity_protein_J + 

SL1344 1096850 1097199 1096293 1097261 WP_001533476.1_secreted_effector_protein_SseI + 

SL1344 1099650 1099949 1099845 1100036 WP_000497441.1_DNA-damage-inducible_protein_I - 

SL1344 1112600 1112749 1111507 1113147 WP_000433414.1_paraquat-inducible_protein_B + 

SL1344 1115900 1116099 1114817 1116577 WP_000156453.1_lon_protease - 

SL1344 1135700 1135949 1134553 1136238 WP_001166946.1_inositol_phosphate_phosphatase_SopB_sopB - 

SL1344 1172850 1172999 1172764 1174260 WP_000628082.1_acetylneuraminate_ABC_transporter - 

SL1344 1189450 1189799 1189629 1191116 WP_000976323.1_hypothetical_protein + 

SL1344 1270000 1270099 1269559 1270788 WP_000359410.1_peptidase_T + 

SL1344 1289850 1289999 1289672 1289843 pseudo_pseudo - 

SL1344 1290250 1290399 1290067 1290143 tRNA-Arg_tRNA-Arg + 

SL1344 1309800 1309999 1309991 1310239 WP_000512149.1_membrane_protein + 

SL1344 1368100 1368299 1366940 1368163 WP_000905564.1_O-antigen_polymerase - 

SL1344 1446800 1446949 1446884 1447132 WP_001574409.1_type_III_secretion_system_protein_SsaI + 

SL1344 1484900 1485149 1483302 1484807 WP_000100911.1_dipeptide_and_tripeptide_permease_A_tppB - 

SL1344 1550650 1551149 1550924 1551019 WP_000901531.1_membrane_protein - 

SL1344 1577150 1577299 1576636 1578126 WP_001519903.1_PhoPQ-regulated_protein - 

SL1344 1601700 1602049 1602034 1602249 WP_000495700.1_protein_bdm + 

SL1344 1649700 1649799 1649034 1649984 WP_001122927.1_secreted_effector_protein_SifB_sifB + 

SL1344 1665600 1665799 1664695 1665897 WP_000848076.1_L-lactate_oxidase - 

SL1344 1706800 1706999 1707001 1707984 WP_000387373.1_zinc_transporter_ZntB_zntB - 

SL1344 1734300 1734599 1733034 1734575 WP_001235493.1_transcriptional_regulator - 

SL1344 1764850 1765049 1764839 1764967 WP_001138871.1_hypothetical_protein - 

SL1344 1893400 1893699 1893337 1893480 WP_001537930.1_hypothetical_protein - 
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SL1344 1894500 1895149 1894788 1895027 WP_001236777.1_hypothetical_protein + 

SL1344 1902100 1902249 1902180 1903463 WP_001207294.1_membrane_protein + 

SL1344 1935050 1935299 1935189 1937000 WP_001069113.1_phosphogluconate_dehydratase - 

SL1344 1979600 1979999 1979284 1979625 WP_001518146.1_flagellar_transcriptional_regulator_FlhD - 

SL1344 1980500 1980699 1980421 1980849 WP_000122606.1_universal_stress_protein_C + 

SL1344 1983150 1983349 1983289 1983471 WP_000202368.1_sugar_ABC_transporter_permease - 

SL1344 1995500 1995599 1993986 1995818 WP_001289464.1_UvrABC_system_protein_C_uvrC - 

SL1344 2064750 2064949 2064878 2065501 WP_000188927.1_hypothetical_protein - 

SL1344 2072150 2072299 2072244 2072939 WP_001020636.1_transcriptional_regulator + 

SL1344 2079450 2079549 2078785 2079774 WP_000532847.1_integrase + 

SL1344 2140300 2140399 2139285 2141633 WP_000703998.1_E3_ubiquitin--protein_ligase + 

SL1344 2165100 2165549 2165334 2166335 WP_000908622.1_abequosyltransferase_RfbV - 

SL1344 2167550 2167749 2167714 2168613 WP_000143399.1_CDP-abequose_synthase - 

SL1344 2291900 2292149 2291982 2292869 WP_000022915.1_phosphoserine_phosphatase + 

SL1344 2292650 2292999 2292902 2294224 WP_000023807.1_hypothetical_protein + 

SL1344 2332500 2332899 2332550 2333077 WP_001215679.1_tail_protein - 

SL1344 2335700 2336049 2335540 2336871 WP_000894640.1_NTPase + 

SL1344 2336700 2336949 2336900 2337265 WP_001204799.1_antitermination_protein_Q - 

SL1344 2357100 2357399 2356870 2357361 WP_000228070.1_ferredoxin - 

SL1344 2388000 2388099 2387952 2389580 WP_000857292.1_sn-glycerol-3-phosphate_dehydrogenase_subunit_A_glpA + 

SL1344 2450350 2450449 2449296 2450816 WP_000117932.1_hypothetical_protein + 

SL1344 2508950 2509149 2508217 2509491 WP_031602386.1_ABC_transporter_substrate-binding_protein - 

SL1344 2509400 2509649 2509454 2509672 WP_000279836.1_hypothetical_protein - 

SL1344 2595700 2596049 2595410 2596537 WP_001277825.1_succinyl-diaminopimelate_desuccinylase + 

SL1344 2618700 2618899 2618611 2618748 WP_001540598.1_hypothetical_protein - 

SL1344 2623700 2623799 2623795 2625144 WP_000953165.1_exodeoxyribonuclease_7_large_subunit_xseA + 

SL1344 2681950 2682199 2682152 2682955 WP_000553467.1_inositol-1-monophosphatase + 



 

 

SL1344 2684350 2684649 2684160 2685203 WP_000985204.1_sulfite_reductase_subunit_alpha + 

SL1344 2695850 2696249 2694348 2695892 WP_001187150.1_transcriptional_regulator + 

SL1344 2705450 2705599 2703891 2705276 WP_001542313.1_two-component_system_sensor_histidine_kinase - 

SL1344 2726750 2727099 2726717 2728186 WP_001526392.1_type_III_secretion_system_protein + 

SL1344 2727950 2728299 2726717 2728186 WP_001526392.1_type_III_secretion_system_protein + 

SL1344 2759600 2759799 2759753 2760316 WP_000211410.1_antirepressor - 

SL1344 2802300 2802399 2802529 2805102 WP_001235094.1_chaperone_protein_ClpB - 

SL1344 2807850 2807999 2807072 2807809 WP_000197660.1_outer_membrane_protein_assembly_factor_BamD + 

SL1344 2821400 2821549 2820345 2822183 partial;pseudo_partial;pseudo + 

SL1344 2855200 2855499 2855616 2855834 WP_000980498.1_hypothetical_protein - 

SL1344 2879150 2879299 2879070 2879447 WP_000698372.1_hypothetical_protein - 

SL1344 2888750 2889049 2888519 2889730 WP_000834152.1_hypothetical_protein + 

SL1344 2924550 2924699 2924046 2925920 WP_001521074.1_membrane_protein + 

SL1344 2929950 2930199 2929642 2929908 WP_001224043.1_transposase - 

SL1344 2935450 2935649 2935199 2935738 WP_000388997.1_repressor_of_phase_1_flagellin_gene - 

SL1344 2951200 2951399 2950949 2951878 WP_000178733.1_VirG_localization_protein_VirK + 

SL1344 3041900 3042049 3042432 3044093 WP_001120085.1_transcriptional_regulator_HilA + 

SL1344 3051500 3051699 3051690 3053471 WP_000245788.1_cell_invasion_protein_SipB - 

SL1344 3089650 3089999 3089110 3090243 WP_001272632.1_murein_hydrolase_activator_NlpD_nlpD - 

SL1344 3117550 3117699 3118020 3118691 WP_001199961.1_7-carboxy-7-deazaguanine_synthase - 

SL1344 3138150 3138599 3138274 3138486 WP_000988723.1_hypothetical_protein - 

SL1344 3156800 3156899 3156998 3157225 WP_000750393.1_lipoprotein - 

SL1344 3205450 3205999 3205639 3206475 WP_000503692.1_cobalt_transporter  yohM + 

SL1344 3208000 3213699 3209943 3212432 WP_000705483.1_fimbrial_usher_protein - 

SL1344 3214050 3214299 3213855 3214487 WP_000835265.1_hypothetical_protein - 

SL1344 3242800 3243099 3243022 3243618 WP_001520956.1_5-formyltetrahydrofolate_cyclo-ligase + 

SL1344 3259750 3260099 3259380 3260138 WP_000701830.1_metalloprotease + 
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SL1344 3338700 3338899 3338755 3339159 WP_000665657.1_hypothetical_protein + 

SL1344 3383050 3383149 3383264 3384697 WP_000867682.1_bifunctional_protein_HldE - 

SL1344 3469300 3469599 3468958 3469842 WP_000802069.1_lipoprotein_NlpI - 

SL1344 3479200 3479399 3479208 3479284 tRNA-Met_tRNA-Met - 

SL1344 3511750 3511899 3511909 3514245 WP_000809815.1_aerobic_respiration_control_sensor_protein_ArcB - 

SL1344 3522500 3522749 3522035 3523138 WP_000184315.1_hypothetical_protein + 

SL1344 3532700 3532849 3532871 3533665 WP_000505557.1_hypothetical_protein - 

SL1344 3552600 3552799 3551420 3553387 WP_000510913.1_p-hydroxybenzoic_acid_efflux_pump_subunit_AaeB - 

SL1344 3578450 3578749 3578064 3578948 WP_000642611.1_methyltransferase + 

SL1344 3597800 3598349 3597162 3598286 WP_000124529.1_hypothetical_protein - 

SL1344 3677800 3678099 3678085 3679704 WP_001265689.1_phosphoenolpyruvate_carboxykinase_[ATP] + 

SL1344 3685250 3685449 3685412 3685639 WP_001160955.1_ferrous_iron_transporter_A_feoA + 

SL1344 3743600 3743849 3743652 3744068 WP_000826041.1_outer_membrane_protein + 

SL1344 3758150 3758349 3758349 3759404 WP_001081707.1_cell_division_protein_FtsX_ftsX - 

SL1344 3768750 3768999 3768246 3768911 WP_000187489.1_membrane_protein + 

SL1344 3829550 3829749 3829506 3829613 WP_001669334.1_hypothetical_protein - 

SL1344 3837250 3837399 3835747 3837354 WP_000028047.1_peptide_ABC_transporter_substrate-binding_protein - 

SL1344 3853150 3853399 3851635 3853968 WP_000148453.1_biotin_sulfoxide_reductase - 

SL1344 3873850 3873999 3871846 3873873 WP_000761305.1_alpha-amylase_malS + 

SL1344 3962350 3962649 3962566 3963957 WP_000115428.1_xanthine_permease + 

SL1344 3974900 3975149 3975383 3976000 WP_000984806.1_hypothetical_protein + 

SL1344 4045300 4045849 4044666 4045850 WP_001230254.1_trimethylamine_N-oxide_reductase_cytochrome_C_subunit - 

SL1344 4126800 4126899 4126828 4126904 tRNA-Asp_tRNA-Asp + 

SL1344 4146800 4147099 4147129 4148388 WP_001054532.1_transcription_termination_factor_Rho_rho + 

SL1344 4167550 4167899 4167912 4170458 WP_000281718.1_adenylate_cyclase_cyaA + 

SL1344 4227200 4227649 4227569 4230355 WP_000249972.1_DNA_polymerase_I + 

SL1344 4252950 4253199 4253044 4254285 WP_000870946.1_sulfoquinovose_isomerase - 



 

 

SL1344 4283600 4283849 4283840 4283965 WP_000183584.1_hypothetical_protein + 

SL1344 4284650 4285049 4284831 4286138 WP_000566800.1_membrane_protein - 

SL1344 4336050 4336299 4335722 4336720 WP_000406820.1_membrane_protein - 

SL1344 4407550 4407949 4407263 4407853 WP_000940092.1_hypothetical_protein + 

SL1344 4415650 4415949 4416006 4417559 16S_ribosomal_RNA_16S_ribosomal_RNA + 

SL1344 4501850 4502049 4501156 4502475 WP_001541306.1_ABC_transporter + 

SL1344 4504850 4505049 4503766 4520445 WP_000527217.1_membrane_protein + 

SL1344 4523400 4523549 4523673 4525274 WP_000083640.1_hypothetical_protein + 

SL1344 4582500 4582799 4582602 4582823 WP_001576552.1_hypothetical_protein - 

SL1344 4595050 4595299 4593838 4595079 WP_001670701.1_transporter - 

SL1344 4607600 4607749 4606676 4607653 WP_000004794.1_elongation_factor_P--(R)-beta-lysine_ligase + 

SL1344 4642350 4642549 4642267 4642596 WP_000586836.1_transporter - 

SL1344 4797100 4797299 4796855 4797556 WP_001237610.1_membrane_protein - 

SL1344 4838700 4838799 4838563 4839336 WP_000119016.1_deoxyribonuclease + 

pSLT 12650 12849 11189 14011 WP_001007087.1_conjugal_transfer_protein_TraG - 

pSLT 29800 30099 29946 30512 WP_000399768.1_conjugal_transfer_protein_TraE - 

pSLT 33100 33249 33259 33729 WP_014344446.1_lytic_transglycosylase + 

pSLT 34400 34599 34589 34858 WP_001677523.1_protein_32_protein_of_plasmid - 

pSLT 41300 41449 41218 41652 WP_001200150.1_hypothetical_protein - 

pSLT 46000 47699 46488 47762 WP_000457541.1_DNA_polymerase_V_subunit_UmuC + 

pSLT 48000 48449 47844 48818 WP_000064272.1_chromosome_partitioning_protein_ParB - 

pSLT 48900 49149 48818 50023 WP_000427676.1_chromosome_partitioning_protein_ParA - 

pSLT 78750 78899 79178 79480 WP_000979451.1_hypothetical_protein + 

pSLT 91950 92149 91997 92164 WP_001691570.1_DNA_replication_protein - 

pCol1B9 1600 1799 455 1486 WP_000907875.1_replication_initiation_protein_PK-repZ + 

pCol1B9 15300 15499 15468 16442 WP_001217836.1_hypothetical_protein + 

pCol1B9 32000 34899 32467 33315 WP_001077019.1_hypothetical_protein + 
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pCol1B9 35150 35449 34396 37011 WP_000128933.1_hypothetical_protein + 

pCol1B9 44400 44599 43906 44568 WP_000653334.1_ethanolamine_utilization_protein_EutE - 

pCol1B9 65800 65949 66007 66591 WP_000977522.1_conjugal_transfer_protein_TraG - 

pCol1B9 72300 72599 71003 72295 WP_001417545.1_Shufflon_protein_A' - 

pCol1B9 75050 75299 75248 76801 WP_000362202.1_ATP-binding_protein - 

pRSF1010 5300 5749 5666 5950 WP_000238497.1_mobilization_protein_C + 



 

 


