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ON THE MINIMUM ORDER OF EXTREMAL GRAPHS TO HAVE A
PRESCRIBED GIRTH*
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Abstract. We show that any n-vertex extremal graph G without cycles of length at most k has
girth exactly k+1if k > 6 and n > (2(k—2)*~2+k—5)/(k—3). This result provides an improvement
of the asymptotical known result by Lazebnik and Wang [J. Graph Theory, 26 (1997), pp. 147-153]

who proved thatthe girth is exactly k+1if kK > 12 and n > 2‘12+“+1ka, where a = k—3—|(k—2)/4].
Moreover, we prove that the girth of G is at most k + 2 if n > (2(t — 2)F=2 4t — 5)/(t — 3), where
t = [(k+1)/2] > 4. In general, for k > 5 we show that the girth of G is at most 2k —4 if n > 2k — 2.
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1. Introduction. Throughout this paper, only undirected simple graphs with-
out loops or multiple edges are considered. Unless otherwise stated, we follow [2] for
terminology and definitions.

Let V(G) and E(G) denote the set of vertices and the set of edges of a graph G,
respectively. The order of G is denoted by |V(G)| = n and the size by |E(G)| = e(G).
The minimum length of a cycle contained in G is the girth g(G) of G. A cycle of
minimum length is said to be a girdle and if G does not contain a cycle, we set
9(G) = oo. By C, we will denote a cycle of length r, r > 3.

Let F be a family of graphs. The extremal number ex(n,F) is the maximum
number of edges in a graph of order n that does not contain any graph of F as a
subgraph. The graphs of order n and size ex(n,F) not containing any F' € F as a
subgraph are the extremal graphs and are denoted by EX (n,F). We refer to graphs
from EX(n,F) as extremal F-free graphs of order n, or just extremal.

By ex(n;{C3,Cl4,...,Cr}) we denote the maximum number of edges in a graph
of order n and girth at least k+ 1, and by EX (n;{C3,Cy,...,C;}) we denote the set
of all graphs of order n, girth at least k + 1, and with ex(n; {C5,Cy,...,Cx}) edges.
Erdos and Sachs [3] showed that an r-regular graph of girth at least k 4+ 1 with the
least possible number of vertices has girth equal to k + 1. (A proof of this result can
be found in Lovdsz [7, pp. 66, 384, 385, and the references therein].) These graphs
are called (r;k + 1)-cages.

In this paper we consider a similar question asked by Garnick and Nieuwejaar in
[5] on extremal graphs with a relatively large girth. Is there a constant ¢ such that for
all k > 5 and all n > ck, the girth of any extremal graph with girth > k+1is k+ 17
They give an affirmative answer for k = 4. Lazebnik and Wang [6] showed that the
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answer is negative for ¢ = 2 and affirmative if £k = 5 or if n is large in comparison
with k. More precisely they proved the following result.

THEOREM A. Let k>12, a=k — 3 — [(k — 2)/4], n>20"Tatlga  gnd
G € EX(n;{C5,Cy,...,Cr}). Then the girth g(G) =k + 1.

In order to prove Theorem A, Lazebnik and Wang used the following result, which
they also stated in [6].

THEOREM B. Let k > 3, G € EX(n;{Cs,Cy,...,Ck}), and the mazimum degree
be A(G) > k. Then g(G) =k +1.

Our main contribution to this problem is to provide an improvement of Theorem
A. More precisely we prove that the girth of G € EX(n;{C53,Cy,...,Cr}) is k+ 1
if either k =3 andn >5;ork=4andn>9;ork=5andn > 8, or k =6 and
n>171;or k> 7 and

_ 9)k—2 _
o 2k=2)t 24k -5

1.
=z F_3 +

This contribution contains the known results for k = 3,4, 5; see [4, 5, 6]. Further-
more, it gives an answer to the problem for k = 6 posed by Lazebnik and Wang [6],
who asked to prove the girth of an extremal {C5, Cy, Cs, Cg}-free graph is 7.

Moreover, we show that the girth of G € EX(n;{Cs3,C4,...,Ck}) is at most
2k — 4 provided that £k > 5 and n > 2k — 2. This clearly implies that for k = 6 the
girth of an extremal graph is at most 8 for 10 < n < 170.

Let t = [(k+1)/2]. We also prove that the girth of G € EX (n;{C3,Cy,...,Ck})
isat most k+2if £ > 7 and

2t—2)k24¢t—5
n > ( )t 3+ + 1.

From this result it follows for k = 7 that if n > 64, then ¢g(G) < 9.

2. Main results. The set of neighbors of u € V(G) is denoted by Ng(u). The
number of neighbors of u is the degree dg(u) of u in G, or briefly d(u) when it is clear
which graph is meant. The distance dg(x,y) in G of two vertices x, y is the length
of a shortest x — y path in G. The greatest distance between any two vertices in G is
the diameter D(G) of G. Diameter and girth are related by ¢(G) < 2D(G) + 1. Let
e = zy be an edge of G. As usual we will denote by G/{e} = G/e the graph obtained
from G by contracting the edge e into a new vertex v., which becomes adjacent to
all the former neighbors of x and y. Taking into account that we dealt with simple
graphs of girth at least 4 the resultant graph by any edge contraction remains simple.

Throughout the paper k£ > 3 is an integer. We begin by proving a technical and
useful lemma.

LEMMA 2.1. Let G € EX (n;{Cs,...,Ck}) have two distinct edges e; and es
such that every cycle of G containing both of them has a length of at least k+3. Then
the girth is g(G) = k + 1 if the diameter is D(G/{e1,e2}) > k — 2.

Proof. Let G € EX (n;{Cs,...,Cy}) satisfy the hypothesis of the lemma and
suppose that the girth is g(G) > k+ 2. The graph G’ = G/{e1,e2} has g(G') > k+1
because by hypothesis any cycle passing through both edges e; and es has a length
of at least k + 3. Let «/,v’ be two vertices of G’ such that dg:(u/,v) = D(G');
then by hypothesis dg/(u',v") = D(G') > k — 2. Let us consider the graph G*
obtained from G’ by adding two new vertices z1,x2 and the three edges w'z1,x122,
and z9v'. We have g(G*) = min{g(G’),D(G’) + 3} > k+ 1, |[V(G*)| = |V(G)|
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+2 =n, and e(G*) = ¢(G) + 1, which contradict the maximality of G. Therefore
9(G)=k+1. O

As a first consequence of the above lemma, we obtain in the next theorem an
upper bound for the girth of any extremal graph which contains the known result
g=k+1 for k = 5; see [6].

THEOREM 2.2. Let G € EX (n;{Cs,...,C}) be for k > 5 andn > 2k —2. Then
G has a girth of g(G) < 2k — 4.

Proof. Let G € EX (n;{Cs,...,Cy}) satisfy the hypothesis of the theorem, and
assume the girth of G is ¢ > 2k — 2. Let C : uguy ---ug—1up be a girdle in G, and
notice that g > k + 3 because k > 5. The graph G’ = G/{ugu1, ujus} clearly has girth
g9(G') > 2k — 4; hence the diameter is D(G’) > |g(G")/2] > |(2k —4)/2] =k —2. By
Lemma 2.1 we have g = g(G) = k+1, yielding 2k —2 < k+1, which is a contradiction
because k > 5. Therefore the girth of G is g < 2k — 3. Assume the girth of G is exactly
g =2k — 3. As n > 2k — 2 the graph G must contain a vertex y not belonging to C.
Without loss of generality, suppose that ugy is an edge of G. Notice that ui_o and
ug—1, both belonging to C, satisfy that deo(ug, ug—2) = do(ug,ug—1) = k—2. Then
both ug —ur_o and ug —ur_; paths contained in C' must be the unique shortest
ug — ug—o and ug —up—1 paths in G, because k — 2 = (g — 1)/2. This implies that
de(y,up—2) > k — 2 and dg(y,ur—1) > k—2 so that every cycle, if any, containing
both edges ugy and ug_sur_1 must have a length of at least g + 1 = 2k — 2, which is
at least k + 3 because k > 5. Now let G” = G/{ugy, ug—2ux—1}. Clearly, D(G") >
dgr (uy,ug) = dg(ui,ur) = k — 2. By Lemma 2.1 we obtain g(G) = g = k + 1, i.e.,
2k — 3 < k + 1, which is impossible for k£ > 5. Hence the girth of G is at most 2k — 4
and the theorem is valid. 1]

Next, we obtain the following result which is an improvement of Theorem A and
also contains the known results for k = 3,4, 5; see [4, 5, 6].

THEOREM 2.3. Let G € EX (n;{Cs,...,Ck}). Then g(G) = k+1 if either k = 3
andn >5; ork=4andn>9;ork=5andn>8; ork=6 andn > 171; or k> 7
and

20k —2)F 24+ k-5

> 1.
n > =3 +

Proof. From Theorem 2.2 it follows that any graph G € EX (n;{Cs,C4,Cs5})
for n > 8 has girth of 6. Therefore we can assume k = 3,4 or k > 6. Let G €
EX (n;{Cs,...,C}) and suppose that its girth is g(G) > k + 2. Then, by Theorem
B we have A < k — 1, where A denotes the maximum degree of G. Let D be the
diameter of G and let us take two vertices z,y at distance dg(z,y) = D. Then
D < k —1 because otherwise by adding the edge xy to G we would obtain a graph G’
of order n having girth g(G’) > k + 1 and more edges than G, which contradicts the
maximality of G. Let us consider the two cases D = k — 1 and D < k — 2 separately.

Case 1. D = k — 1. Define the set N&(z) = {y € V(G) : dg(z,y) = k — 1}.
Clearly, |Ng_1(33)\ > 1, because y € Ng_l(x). Let us see that |Né_1(33)\ =1

Let W = {w € V(GQ) : dg(z,w)+dg(w,y) = k — 1} and suppose that there
exists a vertex u € V(G) \ W. Then dg(z,u) +dg(u,y) > k or, in other words, all
the possible paths passing through u that connect x with y have a length of at least
k. Take any vertex v € Ng(u) and consider the graph G’ resulting by contracting
the edge uv in G. The girth of this new graph is g(G') > k + 1 and the diameter
D(G') =D =k—1. Solet o',y € V(G') be such that de(2',y') = k — 1, and
denote by G* the graph obtained from G’ by adding a new vertex z* and the edges
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2'z* and x*y’. Clearly, |V(G*)| = |[V(G’')|+ 1 = n, and girth ¢(G*) = k + 1, but
e(G*) = e(G') + 2 = e(G) + 1, which contradicts the maximality of G. Hence,
V(G) = W, which readily implies that y is the only vertex at distance D = k—1 from
r and the number of vertices at distance D — 1 = k — 2 from z is at most A, since
these vertices must be neighbors of y.

Therefore, if K = 3, thenn <1+ A+1 <1+ k =4, contradicting the hypothesis
for this case. If k = 4, then n <1+ A+ A+ 1 < 2k = 8, contradicting again the
hypothesis for this case. So assume that £ > 6. Asfor 1 <i< D —2 =k — 3, the
maximum number of vertices at distance i from z is A(A — 1)1, we obtain

k—4 k
n<1+AY (A-1D)'+A+1<1+ (k-1 (k—2)' +k
=0

|
S

@
Il
o

(k—1)(k—2)F3 -2

- k-3 o
(k — 1)(k —2)"3 — 2 s 2k —2)F2 2
— R

This contradicts the hypothesis of the theorem, so g(G) = k+1 in the case D = k—1.

Case 2. D < k — 2. Notice that k = 3,4 are impossible for this case because
D > |g/2] > [(k+2)/2]. So we have k > 6.

Let * be a vertex of G with degree dg(x*) = 8, where ¢ is the minimum degree
of G, and let us denote by e(z*) = max{dg(z*,y) : y € V(G)} the eccentricity of
x*. As the diameter is the maximum of the eccentricities we have e(z*) < D < k — 2.
Suppose first that e(z*) < k — 3. As for 1 < ¢ < k — 3, the maximum number of
vertices at distance i from z* is §(A — 1)~1, it is immediate that

k—4

n§1+6§3A—1Y§1+(ka§:@,2yS(

1=0 =0

Ea
W~

k—1)(k—2)3 —2
k—3 ’

which is a contradiction. Therefore e(x*) = k — 2, which means D = k — 2. Let
us consider the set Ng 2(z*) = {y € V(G) : dg(z*,y) = k — 2}. Let us prove the
following claim.

Claim. Given any vertex y € Né_z(x*), every neighbor of vertex y is at a distance
of k — 3 from z*.

Otherwise suppose that there exists a vertex y; € N5 2(z*) N Ng(y). Let us
denote by z* = xgriz9 - xK_2 = y any shortest x* — y path. Clearly, every cycle
containing both edges z*x; and yy;, if any, has a length of at least k& + 3 because
k > 6. Then we consider the new graph G’ obtained from G by contracting the edges
x*r1 and yy;. If the diameter of G’ is D(G’) = k — 2, then by Lemma 2.1 we would
have g(G) = k + 1, which is a contradiction with our assumption g(G) > k + 2.
Therefore D(G’) = k — 3, which implies that for all z € N(z*), dg(z,y’) = k — 3 for
all iy € Néﬁ(ac*). Consequently, the edge yy; and any vertex z € Ng(z*) lies on a
cycle in G of length at most 2k — 5, which is impossible for k£ = 6 because g > k + 2.
Hence every neighbor of vertex y is at a distance of k — 3 from z* when k£ = 6 and
the claim is true for this case.

Furthermore, for k > 7 we have dg/(vgp+g,, Uyy,) = k — 3, where vy+5, and vy,
denote the newly arising vertices by the contraction of the edges x*x1 and yy;. Be-
sides, dg/ (Vg+a,) = dg(2*) +da(z1) —2 < 6+ A -2 < 2(A —1) and dgr(vyy,) =
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da(y) + da(y1) < 2(A —1). Therefore,

k-3

V(G") = {vagra, } U U Né:/ (Varay ),

i=1
where N}, (vy+4, ) denotes the set of vertices of G at a distance of ¢ from vertex vy« .

Thus [N (Vgray )| S 2(A = 1)(A=1)"t =2(A—1)", fori =1,...,k— 3, and we get

k—3
n=2+[V(G)<3+2) (A-1)

i=1
k—3 '
<34+2> (k—2)
=1

_3+2(k—2)k—2—2(k—2) C2k—-2)F2+k-5
B k—3 B k-3 ’

contradicting the hypothesis of the theorem. Thus, every vertex y € Ng_2(x*) has
all its neighbors at distance k — 3 from z* and the claim holds.

Hence, |N&(2%)] < §(A—1)"" fori=1,...,k—3, and N5 ?(2*)] < (A—1)F3.
Then, for k£ > 6 we have

k—4
<146 (k—2) + (k—2)F3
=0

(k—1)(k—2)F3 -2

< s _ 2(k—2)"2 -2
- k—3

k-3

+(k—2)

This contradicts the hypothesis of the theorem, so we conclude that ¢(G) =
k+1. |

Next, the goal is to provide a lower bound on n in order to guarantee that the girth
is at most k42 for k > 7. To do that first we state that an extremal {Cs, ..., Cj}-free
graph with maximum degree A > [(k+ 1)/2] has necessarily a girth of at most &k + 2.

THEOREM 2.4. Let k > 7 be an integer. Let G be a graph belonging to the family
EX (n;{Cs,...,Ck}) with a minimum degree of at least 2 and maximum degree A.
Then g(G) <k+2if A > [(k+1)/2].

Proof. Let G € EX (n;{Cs,...,Cy}) satisfy the hypothesis of the theorem, and
assume ¢g(G) > k + 3. Let = be a vertex of maximum degree A and let y1,ya2,...,yA
be all the neighbors of z. Since dg(y;) > 2, for each ¢ = 1,..., A, there exists
z; € V(G) — « adjacent to y;. Notice also that z; # z; for all i # j, since g(G) > 4.
Taking into account that g(G) > k+3, we deduce that dg_z(z;,z;) > g(G)—4 >
k-1, de—z(yi,y;) > 9(G) — 2 > k+1, and dg—g(z;,y;) > g(G) —3 > k for all
i,j=1,...,A with i # j. Let G* be the graph obtained from G by first deleting the
A —1 edges zys, ..., zya and second adding the new A edges y122, ..., YA_1TA, YAZ].
Then G* has order n and size e(G*) = e¢(G) + 1. Since G is extremal, G* must contain
a cycle of length at most k. Let us denote by C* a shortest cycle in G* (notice that
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x & V(C*), since z has degree 1 in G*). We denote by C the cycle x1y1x2y2 - - - TAYAZ1
which has length 2A > k 4+ 1. Observe that C is an induced cycle of G*, since z;
is nonadjacent to y; in G, for any ¢ # j and the only newly introduced edges are
YyiZip1 for i = 1,...,A — 1 and yaz;. Moreover, C* # C, since g(C) > k+ 1 and
g(C*) < k. So, we may express C* = P; U P, where P; is the longest path whose
edges belong to the set E(C*)\ E(C) C E(G—x), and P, is the rest of C*. Notice that
the endvertices of P; must belong to {z1,...,za}U{y1,...,ya} by the construction
of P;. Observe also that P, contains at least one edge of E(C'), because otherwise
the cycle C* would be contained in G against the assumption g(G) > k+3. If the
endvertices of P; are x; and x; for certain 7, j € {1,2..., A}, then the edge y;_1x; or
x;y; and the edge y;_1x; or x;y; must be contained in P, and then e(P2) > 2. This
implies that |[V(C*)| = e(C*) = e(P1) + e(P2) > dg—p(xi, ) +2 > k—1+2=k+1;
a contradiction. If the endvertices of P; are z; and y;, for some i € {1,...,A},
then e(P1) > dg—z— (a9} (i, ¥i) > g(G) — 1 > k + 2 and hence |V(C*)| = e(C*) =
e(Py) + e(Py) > k + 3, again a contradiction. Otherwise,

e(Pl) Z min{dem(yivyj)adezL’(l'ivyj) : Z?J = ]-7 .. '7A and 1 7&3} 2 ka

which implies |V(C*)| = e(C*) = e(Py) + e(P2) > k+ 1 > k, arriving at a contradic-
tion. Hence, g(G) < k + 2. O
From Theorem 2.4 we derive the following sufficient condition in terms of the
order for an extremal {Cj,...,Cy}-free graph to have girth at most &k + 2.
THEOREM 2.5. Let G € EX (n;{Cs,...,Ck}) be of a minimum degree of at least
2. Then the girth is ¢(G) < k+2 if k > 7 and

2t—=2)k24¢t—5
n > ( )t 3+ +1,

where t = [(k+1)/2].

Proof. If A > [(k+ 1)/2], then ¢g(G) < k + 2 for k > 7 because of Theorem 2.4
and the theorem holds. Hence assume A < [(k +1)/2] — 1 and ¢(G) > k + 3. Let
t = [(k+1)/2]. As in the proof of Theorem 2.3 we consider two cases D = k — 1
and D < k — 2 separately and repeat this proof but taking into account that now
A <t—1instead of A < k—1. In this way we arrive at a contradiction, which implies
g9(G) < k + 2, and the theorem holds. d

As an immediate consequence of Theorems 2.3 and 2.5, the following information
about the girth of any extremal {Cj, ..., C;}-free graph is provided.

COROLLARY 2.6. Let G be a graph belonging to the family EX (n;{Cs,...,Cr}).
Then the girth g(G) = 8 if n > 783, and the girth is g(G) <9 if n > 64.

3. Conclusions. Theorem 2.3 can be compared with Theorem A. Both results
give a sufficient condition on the order of an extremal graph to contain a cycle of
minimum length k£ + 1. Recall that « = k —3 — |(k — 2)/4]; then for & > 12 we
have 2¢ > (k — 2)2. Hence 2% tatl > 2(k — 2)20+2 > 9(k — 2)(8%=6)/2 and thus
n > 20°Fatlpa 5 9(f — 2)(3k=6)/2ka (which is much larger than the requirement
obtained in Theorem 2.3), n > (2(k —2)*=2 + k —5)/(k — 3).

Moreover, Theorems 2.2 and 2.3 provide information on the girth of any extremal
{Cs,Cy, Cs5, Cg}-free graph G. The girth is ¢(G) = 7 if n > 171, and the girth is
9(G) < 8ifn > 10. It is known for r = 3,4,5 that each (r;8)-cage is the incidence
graph of a projective geometry called generalized quadrangle; see the survey by Wong
[8]. The order of each of these graphs is 30,80, 170, respectively. As a referee suggests,
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it appears that a result of Alon, Hoory, and Linial [1] can be used to show these cages
do belong to EX(n;{Cs,Cy4,C5,Cs,Cr}). The question is if these cages are also
{C3,Cy, Cs5, Cs}-free extremal. We would like to suggest the following open problems.
PROBLEM 1. Prove or disprove that each (r;8)-cage for r = 3,4,5 is a graph
belonging to EX (n; {Cs,Cy, Cs,Cs}), for n = 30,80,170.
PROBLEM 2. Is it possible to improve the lower bound on n in Theorem 2.3 for
k>77¢

Acknowledgments. We would like to express our thanks to the referees for their
helpful comments and suggestions.
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