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ON THE MINIMUM ORDER OF EXTREMAL GRAPHS TO HAVE A
PRESCRIBED GIRTH∗

C. BALBUENA† AND P. GARCÍA–VÁZQUEZ‡

Abstract. We show that any n-vertex extremal graph G without cycles of length at most k has
girth exactly k+1 if k ≥ 6 and n > (2(k−2)k−2+k−5)/(k−3). This result provides an improvement
of the asymptotical known result by Lazebnik and Wang [J. Graph Theory, 26 (1997), pp. 147–153]

who proved thatthe girth is exactly k+1 if k ≥ 12 and n ≥ 2a
2+a+1ka, where a = k−3−�(k−2)/4�.

Moreover, we prove that the girth of G is at most k + 2 if n > (2(t− 2)k−2 + t− 5)/(t− 3), where
t = �(k+1)/2� ≥ 4. In general, for k ≥ 5 we show that the girth of G is at most 2k−4 if n ≥ 2k−2.
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1. Introduction. Throughout this paper, only undirected simple graphs with-
out loops or multiple edges are considered. Unless otherwise stated, we follow [2] for
terminology and definitions.

Let V (G) and E(G) denote the set of vertices and the set of edges of a graph G,
respectively. The order of G is denoted by |V (G)| = n and the size by |E(G)| = e(G).
The minimum length of a cycle contained in G is the girth g(G) of G. A cycle of
minimum length is said to be a girdle and if G does not contain a cycle, we set
g(G) = ∞. By Cr we will denote a cycle of length r, r ≥ 3.

Let F be a family of graphs. The extremal number ex(n,F) is the maximum
number of edges in a graph of order n that does not contain any graph of F as a
subgraph. The graphs of order n and size ex(n,F) not containing any F ∈ F as a
subgraph are the extremal graphs and are denoted by EX(n,F). We refer to graphs
from EX(n,F) as extremal F-free graphs of order n, or just extremal.

By ex(n; {C3, C4, . . . , Ck}) we denote the maximum number of edges in a graph
of order n and girth at least k+1, and by EX(n; {C3, C4, . . . , Ck}) we denote the set
of all graphs of order n, girth at least k + 1, and with ex(n; {C3, C4, . . . , Ck}) edges.
Erdös and Sachs [3] showed that an r-regular graph of girth at least k + 1 with the
least possible number of vertices has girth equal to k + 1. (A proof of this result can
be found in Lovász [7, pp. 66, 384, 385, and the references therein].) These graphs
are called (r; k + 1)-cages.

In this paper we consider a similar question asked by Garnick and Nieuwejaar in
[5] on extremal graphs with a relatively large girth. Is there a constant c such that for
all k ≥ 5 and all n ≥ ck, the girth of any extremal graph with girth ≥ k + 1 is k + 1?
They give an affirmative answer for k = 4. Lazebnik and Wang [6] showed that the
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252 C. BALBUENA AND P. GARCÍA–VÁZQUEZ

answer is negative for c = 2 and affirmative if k = 5 or if n is large in comparison
with k. More precisely they proved the following result.

Theorem A. Let k≥ 12, a= k − 3 − �(k − 2)/4�, n≥ 2a
2+a+1ka, and

G ∈ EX(n; {C3, C4, . . . , Ck}). Then the girth g(G) = k + 1.
In order to prove Theorem A, Lazebnik and Wang used the following result, which

they also stated in [6].
Theorem B. Let k ≥ 3, G ∈ EX(n; {C3, C4, . . . , Ck}), and the maximum degree

be Δ(G) ≥ k. Then g(G) = k + 1.
Our main contribution to this problem is to provide an improvement of Theorem

A. More precisely we prove that the girth of G ∈ EX(n; {C3, C4, . . . , Ck}) is k + 1
if either k = 3 and n ≥ 5; or k = 4 and n ≥ 9; or k = 5 and n ≥ 8; or k = 6 and
n ≥ 171; or k ≥ 7 and

n ≥ 2(k − 2)k−2 + k − 5

k − 3
+ 1.

This contribution contains the known results for k = 3, 4, 5; see [4, 5, 6]. Further-
more, it gives an answer to the problem for k = 6 posed by Lazebnik and Wang [6],
who asked to prove the girth of an extremal {C3, C4, C5, C6}-free graph is 7.

Moreover, we show that the girth of G ∈ EX(n; {C3, C4, . . . , Ck}) is at most
2k − 4 provided that k ≥ 5 and n ≥ 2k − 2. This clearly implies that for k = 6 the
girth of an extremal graph is at most 8 for 10 ≤ n ≤ 170.

Let t = �(k+1)/2	. We also prove that the girth of G ∈ EX(n; {C3, C4, . . . , Ck})
is at most k + 2 if k ≥ 7 and

n ≥ 2(t− 2)k−2 + t− 5

t− 3
+ 1.

From this result it follows for k = 7 that if n ≥ 64, then g(G) ≤ 9.

2. Main results. The set of neighbors of u ∈ V (G) is denoted by NG(u). The
number of neighbors of u is the degree dG(u) of u in G, or briefly d(u) when it is clear
which graph is meant. The distance dG(x, y) in G of two vertices x, y is the length
of a shortest x− y path in G. The greatest distance between any two vertices in G is
the diameter D(G) of G. Diameter and girth are related by g(G) ≤ 2D(G) + 1. Let
e = xy be an edge of G. As usual we will denote by G/{e} = G/e the graph obtained
from G by contracting the edge e into a new vertex ve, which becomes adjacent to
all the former neighbors of x and y. Taking into account that we dealt with simple
graphs of girth at least 4 the resultant graph by any edge contraction remains simple.

Throughout the paper k ≥ 3 is an integer. We begin by proving a technical and
useful lemma.

Lemma 2.1. Let G ∈ EX (n; {C3, . . . , Ck}) have two distinct edges e1 and e2

such that every cycle of G containing both of them has a length of at least k+3. Then
the girth is g(G) = k + 1 if the diameter is D(G/{e1, e2}) ≥ k − 2.

Proof. Let G ∈ EX (n; {C3, . . . , Ck}) satisfy the hypothesis of the lemma and
suppose that the girth is g(G) ≥ k+ 2. The graph G′ = G/{e1, e2} has g(G′) ≥ k+ 1
because by hypothesis any cycle passing through both edges e1 and e2 has a length
of at least k + 3. Let u′, v′ be two vertices of G′ such that dG′(u′, v′) = D(G′);
then by hypothesis dG′(u′, v′) = D(G′) ≥ k − 2. Let us consider the graph G∗

obtained from G′ by adding two new vertices x1, x2 and the three edges u′x1, x1x2,
and x2v

′. We have g(G∗) = min{g(G′), D(G′) + 3} ≥ k + 1, |V (G∗)| = |V (G′)|
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EXTREMAL GRAPHS WITH PRESCRIBED GIRTH 253

+ 2 = n, and e(G∗) = e(G) + 1, which contradict the maximality of G. Therefore
g(G) = k + 1.

As a first consequence of the above lemma, we obtain in the next theorem an
upper bound for the girth of any extremal graph which contains the known result
g = k + 1 for k = 5; see [6].

Theorem 2.2. Let G ∈ EX (n; {C3, . . . , Ck}) be for k ≥ 5 and n ≥ 2k−2. Then
G has a girth of g(G) ≤ 2k − 4.

Proof. Let G ∈ EX (n; {C3, . . . , Ck}) satisfy the hypothesis of the theorem, and
assume the girth of G is g ≥ 2k − 2. Let C : u0u1 · · ·ug−1u0 be a girdle in G, and
notice that g ≥ k+ 3 because k ≥ 5. The graph G′ = G/{u0u1, u1u2} clearly has girth
g(G′) ≥ 2k− 4; hence the diameter is D(G′) ≥ �g(G′)/2� ≥ �(2k− 4)/2� = k− 2. By
Lemma 2.1 we have g = g(G) = k+1, yielding 2k−2 ≤ k+1, which is a contradiction
because k ≥ 5. Therefore the girth of G is g ≤ 2k− 3. Assume the girth of G is exactly
g = 2k − 3. As n ≥ 2k − 2 the graph G must contain a vertex y not belonging to C.
Without loss of generality, suppose that u0y is an edge of G. Notice that uk−2 and
uk−1, both belonging to C, satisfy that dC(u0, uk−2) = dC(u0, uk−1) = k− 2. Then
both u0 −uk−2 and u0 −uk−1 paths contained in C must be the unique shortest
u0 − uk−2 and u0 −uk−1 paths in G, because k − 2 = (g − 1)/2. This implies that
dG(y, uk−2) ≥ k − 2 and dG(y, uk−1) ≥ k− 2 so that every cycle, if any, containing
both edges u0y and uk−2uk−1 must have a length of at least g + 1 = 2k − 2, which is
at least k + 3 because k ≥ 5. Now let G′′ = G/{u0y, uk−2uk−1}. Clearly, D(G′′) ≥
dG′′(u1, uk) = dG(u1, uk) = k − 2. By Lemma 2.1 we obtain g(G) = g = k + 1, i.e.,
2k − 3 ≤ k + 1, which is impossible for k ≥ 5. Hence the girth of G is at most 2k − 4
and the theorem is valid.

Next, we obtain the following result which is an improvement of Theorem A and
also contains the known results for k = 3, 4, 5; see [4, 5, 6].

Theorem 2.3. Let G ∈ EX (n; {C3, . . . , Ck}). Then g(G) = k+ 1 if either k = 3
and n ≥ 5; or k = 4 and n ≥ 9; or k = 5 and n ≥ 8; or k = 6 and n ≥ 171; or k ≥ 7
and

n ≥ 2(k − 2)k−2 + k − 5

k − 3
+ 1.

Proof. From Theorem 2.2 it follows that any graph G ∈ EX (n; {C3, C4, C5})
for n ≥ 8 has girth of 6. Therefore we can assume k = 3, 4 or k ≥ 6. Let G ∈
EX (n; {C3, . . . , Ck}) and suppose that its girth is g(G) ≥ k + 2. Then, by Theorem
B we have Δ ≤ k − 1, where Δ denotes the maximum degree of G. Let D be the
diameter of G and let us take two vertices x, y at distance dG(x, y) = D. Then
D ≤ k− 1 because otherwise by adding the edge xy to G we would obtain a graph G′

of order n having girth g(G′) ≥ k + 1 and more edges than G, which contradicts the
maximality of G. Let us consider the two cases D = k − 1 and D ≤ k − 2 separately.

Case 1. D = k − 1. Define the set Nk−1
G (x) = {y ∈ V (G) : dG(x, y) = k − 1}.

Clearly, |Nk−1
G (x)| ≥ 1, because y ∈ Nk−1

G (x). Let us see that |Nk−1
G (x)| = 1.

Let W = {w ∈ V (G) : dG(x,w) + dG(w, y) = k − 1} and suppose that there
exists a vertex u ∈ V (G) \ W . Then dG(x, u) + dG(u, y) ≥ k or, in other words, all
the possible paths passing through u that connect x with y have a length of at least
k. Take any vertex v ∈ NG(u) and consider the graph G′ resulting by contracting
the edge uv in G. The girth of this new graph is g(G′) ≥ k + 1 and the diameter
D(G′) = D = k − 1. So let x′, y′ ∈ V (G′) be such that dG′(x′, y′) = k − 1, and
denote by G∗ the graph obtained from G′ by adding a new vertex x∗ and the edges
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254 C. BALBUENA AND P. GARCÍA–VÁZQUEZ

x′x∗ and x∗y′. Clearly, |V (G∗)| = |V (G′)| + 1 = n, and girth g(G∗) = k + 1, but
e(G∗) = e(G′) + 2 = e(G) + 1, which contradicts the maximality of G. Hence,
V (G) = W , which readily implies that y is the only vertex at distance D = k−1 from
x and the number of vertices at distance D − 1 = k − 2 from x is at most Δ, since
these vertices must be neighbors of y.

Therefore, if k = 3, then n ≤ 1 + Δ + 1 ≤ 1 + k = 4, contradicting the hypothesis
for this case. If k = 4, then n ≤ 1 + Δ + Δ + 1 ≤ 2k = 8, contradicting again the
hypothesis for this case. So assume that k ≥ 6. As for 1 ≤ i ≤ D − 2 = k − 3, the
maximum number of vertices at distance i from x is Δ(Δ − 1)i−1, we obtain

n ≤ 1 + Δ

k−4∑

i=0

(Δ − 1)i + Δ + 1 ≤ 1 + (k − 1)

k−4∑

i=0

(k − 2)i + k

=
(k − 1)(k − 2)k−3 − 2

k − 3
+ k

<
(k − 1)(k − 2)k−3 − 2

k − 3
+ (k − 2)k−3 =

2(k − 2)k−2 − 2

k − 3
.

This contradicts the hypothesis of the theorem, so g(G) = k+1 in the case D = k−1.
Case 2. D ≤ k − 2. Notice that k = 3, 4 are impossible for this case because

D ≥ �g/2� ≥ �(k + 2)/2�. So we have k ≥ 6.
Let x∗ be a vertex of G with degree dG(x∗) = δ, where δ is the minimum degree

of G, and let us denote by ε(x∗) = max{dG(x∗, y) : y ∈ V (G)} the eccentricity of
x∗. As the diameter is the maximum of the eccentricities we have ε(x∗) ≤ D ≤ k− 2.
Suppose first that ε(x∗) ≤ k − 3. As for 1 ≤ i ≤ k − 3, the maximum number of
vertices at distance i from x∗ is δ(Δ − 1)i−1, it is immediate that

n ≤ 1 + δ

k−4∑

i=0

(Δ − 1)i ≤ 1 + (k − 1)

k−4∑

i=0

(k − 2)i ≤ (k − 1)(k − 2)k−3 − 2

k − 3
,

which is a contradiction. Therefore ε(x∗) = k − 2, which means D = k − 2. Let
us consider the set Nk−2

G (x∗) = {y ∈ V (G) : dG(x∗, y) = k − 2}. Let us prove the
following claim.

Claim. Given any vertex y ∈ Nk−2
G (x∗), every neighbor of vertex y is at a distance

of k − 3 from x∗.
Otherwise suppose that there exists a vertex y1 ∈ Nk−2

G (x∗) ∩ NG(y). Let us
denote by x∗ = x0x1x2 · · ·xk−2 = y any shortest x∗ − y path. Clearly, every cycle
containing both edges x∗x1 and yy1, if any, has a length of at least k + 3 because
k ≥ 6. Then we consider the new graph G′ obtained from G by contracting the edges
x∗x1 and yy1. If the diameter of G′ is D(G′) = k − 2, then by Lemma 2.1 we would
have g(G) = k + 1, which is a contradiction with our assumption g(G) ≥ k + 2.
Therefore D(G′) = k − 3, which implies that for all z ∈ N(x∗), dG(z, y′) = k − 3 for
all y′ ∈ Nk−2

G (x∗). Consequently, the edge yy1 and any vertex z ∈ NG(x∗) lies on a
cycle in G of length at most 2k − 5, which is impossible for k = 6 because g ≥ k + 2.
Hence every neighbor of vertex y is at a distance of k − 3 from x∗ when k = 6 and
the claim is true for this case.

Furthermore, for k ≥ 7 we have dG′(vx∗x1 , vyy1) = k − 3, where vx∗x1 and vyy1

denote the newly arising vertices by the contraction of the edges x∗x1 and yy1. Be-
sides, dG′(vx∗x1) = dG(x∗) + dG(x1) − 2 ≤ δ + Δ − 2 ≤ 2(Δ − 1) and dG′(vyy1) =
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EXTREMAL GRAPHS WITH PRESCRIBED GIRTH 255

dG(y) + dG(y1) ≤ 2(Δ − 1). Therefore,

V (G′) = {vx∗x1
} ∪

k−3⋃

i=1

N i
G′(vx∗x1

),

where N i
G′(vx∗x1) denotes the set of vertices of G′ at a distance of i from vertex vx∗x1 .

Thus
∣∣N i

G′(vx∗x1
)
∣∣ ≤ 2(Δ− 1)(Δ− 1)i−1 = 2(Δ− 1)i, for i = 1, . . . , k− 3, and we get

n = 2 + |V (G′)| ≤ 3 + 2

k−3∑

i=1

(Δ − 1)i

≤ 3 + 2

k−3∑

i=1

(k − 2)i

= 3 +
2(k − 2)k−2 − 2(k − 2)

k − 3
=

2(k − 2)k−2 + k − 5

k − 3
,

contradicting the hypothesis of the theorem. Thus, every vertex y ∈ Nk−2
G (x∗) has

all its neighbors at distance k − 3 from x∗ and the claim holds.
Hence, |N i

G(x∗)| ≤ δ(Δ−1)i−1, for i = 1, . . . , k−3, and |Nk−2
G (x∗)| ≤ (Δ−1)k−3.

Then, for k ≥ 6 we have

n ≤ 1 + δ
k−4∑

i=0

(Δ − 1)i + (Δ − 1)k−3

≤ 1 + δ

k−4∑

i=0

(k − 2)i + (k − 2)k−3

≤ (k − 1)(k − 2)k−3 − 2

k − 3
+ (k − 2)k−3 =

2(k − 2)k−2 − 2

k − 3
.

This contradicts the hypothesis of the theorem, so we conclude that g(G) =
k + 1.

Next, the goal is to provide a lower bound on n in order to guarantee that the girth
is at most k+2 for k ≥ 7. To do that first we state that an extremal {C3, . . . , Ck}-free
graph with maximum degree Δ ≥ �(k+1)/2	 has necessarily a girth of at most k+2.

Theorem 2.4. Let k ≥ 7 be an integer. Let G be a graph belonging to the family
EX (n; {C3, . . . , Ck}) with a minimum degree of at least 2 and maximum degree Δ.
Then g(G) ≤ k + 2 if Δ ≥ �(k + 1)/2	.

Proof. Let G ∈ EX (n; {C3, . . . , Ck}) satisfy the hypothesis of the theorem, and
assume g(G) ≥ k + 3. Let x be a vertex of maximum degree Δ and let y1, y2, . . . , yΔ

be all the neighbors of x. Since dG(yi) ≥ 2, for each i = 1, . . . ,Δ, there exists
xi ∈ V (G) − x adjacent to yi. Notice also that xi �= xj for all i �= j, since g(G) > 4.
Taking into account that g(G) ≥ k+ 3, we deduce that dG−x(xi, xj) ≥ g(G)− 4 ≥
k− 1, dG−x(yi, yj) ≥ g(G) − 2 ≥ k+ 1, and dG−x(xi, yj) ≥ g(G) − 3 ≥ k for all
i, j = 1, . . . ,Δ with i �= j. Let G∗ be the graph obtained from G by first deleting the
Δ−1 edges xy2, . . . , xyΔ and second adding the new Δ edges y1x2, . . . , yΔ−1xΔ, yΔx1.
Then G∗ has order n and size e(G∗) = e(G) + 1. Since G is extremal, G∗ must contain
a cycle of length at most k. Let us denote by C∗ a shortest cycle in G∗ (notice that
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256 C. BALBUENA AND P. GARCÍA–VÁZQUEZ

x �∈ V (C∗), since x has degree 1 in G∗). We denote by C the cycle x1y1x2y2 · · ·xΔyΔx1

which has length 2Δ ≥ k + 1. Observe that C is an induced cycle of G∗, since xi

is nonadjacent to yj in G, for any i �= j and the only newly introduced edges are
yixi+1 for i = 1, . . . ,Δ − 1 and yΔx1. Moreover, C∗ �= C, since g(C) ≥ k + 1 and
g(C∗) ≤ k. So, we may express C∗ = P1 ∪ P2, where P1 is the longest path whose
edges belong to the set E(C∗)\E(C) ⊆ E(G−x), and P2 is the rest of C∗. Notice that
the endvertices of P1 must belong to {x1, . . . , xΔ} ∪ {y1, . . . , yΔ} by the construction
of P1. Observe also that P2 contains at least one edge of E(C), because otherwise
the cycle C∗ would be contained in G against the assumption g(G) ≥ k+ 3. If the
endvertices of P1 are xi and xj for certain i, j ∈ {1, 2 . . . ,Δ}, then the edge yi−1xi or
xiyi and the edge yj−1xj or xjyj must be contained in P2 and then e(P2) ≥ 2. This
implies that |V (C∗)| = e(C∗) = e(P1) + e(P2) ≥ dG−x(xi, xj) + 2 ≥ k− 1 + 2 = k+ 1;
a contradiction. If the endvertices of P1 are xi and yi, for some i ∈ {1, . . . ,Δ},
then e(P1) ≥ dG−x−{xiyi}(xi, yi) ≥ g(G) − 1 ≥ k + 2 and hence |V (C∗)| = e(C∗) =
e(P1) + e(P2) ≥ k + 3, again a contradiction. Otherwise,

e(P1) ≥ min{dG−x(yi, yj), dG−x(xi, yj) : i, j = 1, . . . ,Δ and i �= j} ≥ k,

which implies |V (C∗)| = e(C∗) = e(P1) + e(P2) ≥ k + 1 > k, arriving at a contradic-
tion. Hence, g(G) ≤ k + 2.

From Theorem 2.4 we derive the following sufficient condition in terms of the
order for an extremal {C3, . . . , Ck}-free graph to have girth at most k + 2.

Theorem 2.5. Let G ∈ EX (n; {C3, . . . , Ck}) be of a minimum degree of at least
2. Then the girth is g(G) ≤ k + 2 if k ≥ 7 and

n ≥ 2(t− 2)k−2 + t− 5

t− 3
+ 1,

where t = �(k + 1)/2	.
Proof. If Δ ≥ �(k + 1)/2	, then g(G) ≤ k + 2 for k ≥ 7 because of Theorem 2.4

and the theorem holds. Hence assume Δ ≤ �(k + 1)/2	 − 1 and g(G) ≥ k + 3. Let
t = �(k + 1)/2	. As in the proof of Theorem 2.3 we consider two cases D = k − 1
and D ≤ k − 2 separately and repeat this proof but taking into account that now
Δ ≤ t−1 instead of Δ ≤ k−1. In this way we arrive at a contradiction, which implies
g(G) ≤ k + 2, and the theorem holds.

As an immediate consequence of Theorems 2.3 and 2.5, the following information
about the girth of any extremal {C3, . . . , C7}-free graph is provided.

Corollary 2.6. Let G be a graph belonging to the family EX (n; {C3, . . . , C7}).
Then the girth g(G) = 8 if n ≥ 783, and the girth is g(G) ≤ 9 if n ≥ 64.

3. Conclusions. Theorem 2.3 can be compared with Theorem A. Both results
give a sufficient condition on the order of an extremal graph to contain a cycle of
minimum length k + 1. Recall that a = k − 3 − �(k − 2)/4�; then for k ≥ 12 we

have 2a > (k − 2)2. Hence 2a
2+a+1 > 2(k − 2)2a+2 ≥ 2(k − 2)(3k−6)/2, and thus

n ≥ 2a
2+a+1ka > 2(k − 2)(3k−6)/2ka (which is much larger than the requirement

obtained in Theorem 2.3), n > (2(k − 2)k−2 + k − 5)/(k − 3).
Moreover, Theorems 2.2 and 2.3 provide information on the girth of any extremal

{C3, C4, C5, C6}-free graph G. The girth is g(G) = 7 if n ≥ 171, and the girth is
g(G) ≤ 8 if n ≥ 10. It is known for r = 3, 4, 5 that each (r; 8)-cage is the incidence
graph of a projective geometry called generalized quadrangle; see the survey by Wong
[8]. The order of each of these graphs is 30, 80, 170, respectively. As a referee suggests,
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it appears that a result of Alon, Hoory, and Linial [1] can be used to show these cages
do belong to EX(n; {C3, C4, C5, C6, C7}). The question is if these cages are also
{C3, C4, C5, C6}-free extremal. We would like to suggest the following open problems.

Problem 1. Prove or disprove that each (r; 8)-cage for r = 3, 4, 5 is a graph
belonging to EX (n; {C3, C4, C5, C6}), for n = 30, 80, 170.

Problem 2. Is it possible to improve the lower bound on n in Theorem 2.3 for
k ≥ 7?

Acknowledgments. We would like to express our thanks to the referees for their
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