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Reliability is a critical issue in navigation of unmanned aerial vehicles (UAVs) since there is no
human pilot that can react to any abnormal situation. Due to size and cost limitations, redun-
dant sensor schemes and aeronautical-grade navigation sensors used in large aircrafts cannot be
installed in small UAVs. Therefore, other approaches like analytical redundancy should be used
to detect faults in navigation sensors and increase reliability. This paper presents a sensor fault
detection and diagnosis system for small autonomous helicopters based on analytical redundancy.
Fault detection is accomplished by evaluating any significant change in the behaviour of the
vehicle with respect to the fault-free behaviour, which is estimated by using an observer. The
observer is obtained from input-output experimental data with the Observer/Kalman Filter
Identification (OKID) method. The OKID method is able to identify the system and an observer
with properties similar to a Kalman filter, directly from input-output experimental data. Results
are similar to the Kalman filter, but, with the proposed method, there is no need to estimate neither
system matrices nor sensor and process noise covariance matrices. The system has been tested with
real helicopter flight data, and the results compared with other methods.

1. Introduction

Unmanned aerial vehicles (UAVs) are increasingly used in many applications in which
ground vehicles cannot access to the desired locations due to the characteristics of the terrain
and the presence of obstacles. In many cases, the use of aerial vehicles is the best way to ap-
proach the objective to get information or to deploy instrumentation.

Fixed wing UAVs, rotorcrafts, and airships with different characteristics have been pro-
posed and experimented (see, e.g., [1]). Helicopters have high manoeuvrability and hover-
ing ability. Then, they are well suited to agile target tracking tasks, as well as to inspection
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and monitoring tasks that require to maintain a position and to obtain detailed views. Fur-
thermore, the vertical takeoff and landing of helicopters is very desirable in many applica-
tions. Remotely piloted helicopters are inherently unstable and dynamically fast. Even with
improved stability augmentation devices, a skilled, experienced pilot is required to con-
trol them during flight. Autonomous helicopter control is a challenging task involving a
multivariable nonlinear open-loop unstable system with actuator saturations.

Moreover, helicopters do not have the graceful degradation properties of fixed wing
aircrafts or airships in case of failures. Thus, a failure in any part of the autonomous helicopter
(sensors, actuators, control system, etc.) can be dangerous. It is, therefore, essential for auton-
omous helicopters to monitor their behaviour so that faults may be addressed before they
result in catastrophic failures. This monitoring needs to be efficient since there is limited com-
putational power available on UAVs.

Fault detection and isolation (FDI) techniques have been widely used in process indus-
try to detect faults in sensors and actuators. If a fault is detected, the structure of the controller
can be changed to get the best possible response of the system, or the system can be stopped.
FDI techniques have been applied to autonomous vehicles as cars, aircrafts [2, 3], fixed-wing
[4], tilt-rotor UAVs [5], morphing UAVs [6], underwater vehicles [7], and also to teams of co-
operative UAV [8].

In the model-based FDI approach, all the information on the system can be used to
monitor the behaviour of the plant, including the knowledge about the dynamics. The pres-
ence of faults is detected by means of the so-called residuals, that is, quantities that are over-
sensitive to the malfunctions. Residual generation can be performed in different ways: pari-
ty equations [9], observer-based generation [10], and the methods based on parameter esti-
mation [11]. Neural networks and fuzzy systems have also been applied in model-based FDI
[12].

Observer-based and parameter estimation methods are the most frequently applied
methods for fault detection [13]. Most published work in recent years on FDI systems for
autonomous vehicles also uses observer-based methods. The basic idea behind the observer
or filter-based approach is to estimate the outputs of the system from the measurements by
using either Luenberger observers in a deterministic setting or Kalman filters in a stochastic
setting.

Several methods have been used for FDI in autonomous vehicles. Neural networks
have been used to detect sensor and actuator faults applied to a B-747 mathematical model
[3]. A bank of Kalman filters and neural networks have also been used for sensor fault
detection on a NASA high-altitude UAV simulation model [4], and on B-737 actual flight data
[2]. A bank of Kalman filters has been also used for fault detection in aircrafts, with applica-
tion to a linear simulation model of an eagle-eye tilt-rotor UAV [5]. Linear observers have
been used for actuator fault detection in autonomous helicopters [14].

However, few results on fault detection for autonomous helicopters can be found in the
literature. References [14, 15] present a FDI system based on neural networks in the context
of a reconfigurable flight control architecture for UAVs. ARX models identified from flight
data have been also used for helicopter actuator and sensor FDI [16].

Observer/Kalman filter identification (OKID) [17] is a time-domain method that has
been developed to identify a state-space model and a corresponding observer simultaneously
from experimental input-output data. The identified observer converges to an optimal ob-
server (the Kalman filter) in the presence of noise. The main advantage of OKID is that it
requires no prior knowledge of the system, neither the system matrices nor statistical infor-
mation such as sensor or process noise covariance. OKID is able to estimate the state-space
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model and the Kalman filter gain directly from time-domain input-output data, and this
makes it an interesting method for practical applications. OKID was originally developed for
the identification of large flexible space structures [17], and it has also been used for aircraft
system identification [18, 19] and other applications [20]. A related concept is the Interaction
Matrix [21], which has been used for fault isolation in actuator [22] and sensor [23] fault
detection in structures.

In this paper, model-based diagnosis of sensor faults in an autonomous helicopter is
investigated. The model is obtained with the OKID method. Experiments with an autono-
mous helicopter have been conducted. Preliminary results were presented in [24]. The rest of
the paper is organized as follows: small autonomous helicopters are described in Section 2. In
Section 3, the OKID method is introduced. Section 4 presents the fault detection and isolation
approach. The results on the application of these techniques to an autonomous helicopter are
presented in Section 5. Finally, Section 6 is devoted to the conclusions.

2. Small Autonomous Helicopters

Several small autonomous helicopter prototypes have been developed in recent years at dif-
ferent research centres throughout the world [25]. In most cases, the prototype is built upon
a commercial airframe, to which sensors, computers, and communication equipment are
added. In many cases, the airframe is a conventional model helicopter (see, e.g., the MARVIN
[26], AVATAR [27], or the HERO [28] autonomous helicopters in Figure 1). In some cases, the
Yamaha RMAX spraying helicopter is used as airframe (see for example the GTMax [14, 15]).

Helicopter autonomous flight needs precise position and attitude information for
control and stabilization. Small autonomous helicopters carry a pack of sensors that in a
typical case includes an inertial measurement unit (IMU) with 3 gyros, 3 accelerometers,
and 3-axis magnetometer for attitude determination, a centimeter-precision kinematic DGPS,
a sensor for measuring the main rotor rpm, an ultrasonic, or barometric altitude sensor for
takeoff and landing.

A fault in one of the sensors may induce position and attitude estimation errors if un-
detected. Reconfiguration in these cases usually consists in isolating the faulty sensor and us-
ing the other sensors to get the best estimation of position and attitude.

The experimental data presented in this paper have been recorded using the MARVIN
helicopter [26], which is based on a conventional model airframe (see Figure 1). Sensors
for position and attitude determination include an IMU (with three magnetometers, three
accelerometers, and three piezo-electric gyroscopes), an ultrasonic rangefinder looking down
and a Novatel RT-2 carrier phase differential GPS receiver.

3. The Observer/Kalman Filter Identification Method

The Kalman filtering problem has been studied for several decades. To compute the Kalman
filter gain, the system model and the individual process and measurement noise covari-
ance matrices should be known. A mathematical model of the system can be derived analyt-
ically or experimentally from input-output measurement data by a system identification
method. An estimate of the measurement noise covariance may be obtained by examining
the response of the sensor devices. The process noise covariances, however, are almost impos-
sible to obtain by direct measurement and some guesswork is required. It is, thus, difficult
to determine accurately the individual process and measurement noise characteristics.
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Figure 1: MARVIN helicopter (Technical University of Berlin) and HERO helicopter (University of Seville).

The process noise includes system uncertainties and input noise. But, collectively, their infor-
mation is present in the system input-output data. The observer Kalman filter identification
(OKID) [17] method is able to obtain an observer that converges to the Kalman gain, directly
form input-output data.

The OKID algorithm [29-31] was developed at NASA Langley to model large flexible
space structures. A description of the practical implementation of OKID [32] is presented in
this section. A more in-deep description of the method can be found on the references. The
OKID algorithm minimizes the error in the observer, which will converge to the true Kalman
filter for the data set used, given that the true world process is corrupted by zero-mean white
noise.

The OKID method of system identification uses only input and output data to con-
struct a discrete-time state-space realization of the system. Since OKID’s development at
NASA Langley for the identification of lightly-damped space-structures, many advances on
the basic theory have been published [33]. The OKID identification method has several ad-
vantages. The main advantage is that it requires only input and output data to formulate the
model: no a priori knowledge of the system is needed. Second, the OKID method produces a
pseudo-Kalman state estimator, which is very useful for control applications. Last, the modal
balanced realization of the system model means that truncation errors will be small. Thus,
even in the case of model order error the results of that error will be minimal.

The first step in applying the OKID methodology to the experimental data [32] begins
with the standard state-space difference equation for an LTI system

X1 = Axy + Buy,
(3.1)
Yk = ka + Duk,

where k is the index time variable, x is the state vector, y is the output vector, and u is the
input vector.

If the system is assumed to be initially at zero, and the inputs are set to unit values for
one sample at time zero, then the convolution of (3.1) results in the unit pulse response of the
system

yw=D; y1=CB, y,=CAB; y;=CA’B;...; yix=CA"!'B,
(3.2)
Y=[D CB CAB - CA*B|
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which are defined as the Systemn Markov parameters (Y'), and they are invariant under a simi-
larity transformation. In general, the response of the system can be shown to be

k
Xk = Z A Buy_;,
-1
’ (3.3)
k .
Yk = Z CAl_lBuk_i + Duy.
i=1

Assuming that the input u is a unit pulse at time zero, then the response reverts to
the system Markov parameters. These system Markov parameters can be assembled into a
specific form which is known as the generalized Hankel matrix

Yo o Yk o0 Yiepa
Yt Yis2 o0 Yiap
Hoi=| o | (3.4)
Yiia1 Yira -+ Yk+a+ﬂ—2

This matrix can be decomposed into the product of the observability matrix, a state
transition matrix, and the controllability matrix; thus, the Hankel matrix (in a noise-free case)
will always have rank n, where 7 is the system order. Unfortunately, in real data, noise will
corrupt the rank deficiency of the Hankel matrix (the Hankel matrix will always be full rank).
Thus, the Hankel matrix is truncated using singular value decomposition (SVD) at an order
that sufficiently describes the system. In practice, the singular values of the Hankel matrix are
plotted and the singular values will decrease gradually until a sudden drop that indicates the
model order. This sudden decrease is the hallmark of the transition between real and noise
modes of the system.

This truncated Hankel matrix is then used to reconstruct the triplet [A, B,C] in a
balanced realization. This is referred to as the eigensystem realization algorithm (ERA); a
modified version of this algorithm that includes data correlation is used to identify the heli-
copter model. A more complete treatment of the subject can be found in [29].

Thus, given the system Markov parameters, it is possible to determine the order of the
system and generate a balanced model that is adequate for control. In real systems, however,
the system pulse response cannot be obtained by simply perturbing the system with a pulse
input. A pulse with enough power to excite all modes above the noise floor would likely
saturate the actuator or respond in a nonlinear fashion. The pulse response of the system
can, however, be reconstructed from a continuous stream of rich system input and output be-
haviour. Under normal circumstances, there are not enough equations available to solve for
all of the system Markov parameters. If the system is asymptotically stable, such that A* = 0
for some k, then the number of unknowns can be reduced.

Rather than identifying the system Markov parameters which may exhibit very slow
decay, an asymptotically stable observer can be used to form a stable discrete state-space
model of the system. The poles of the system can be assigned arbitrarily, and hence specifying
the decay rate of the Markov parameters of the system with the observer, and simultaneously
the number of parameters needed before they have decayed to a negligible level.
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Considering the original system in (3.1), and adding a discrete-time observer with un-
known initial condition

Xks1 = AXg + Bug — Glyx — 7x],

(3.5)
]?k = ka + Duy.
Substituting ik in the observer equation, the system can be rewritten as
.‘)ACk+1 = A.’)ACk + Buy — G[yk — ka — Duk]
= (A +GC)xk + (B + GD)uy - Gy,
(3.6)

= AJACk + ka,

Yk = ka +5{7k,

where

A=A+GC; B=[B+ GD - G|;, D=[D 0],

” (3.7)
Uk = [ ] .
Yk

This new system has as input vk the original input 1y augmented with the output yx,
and the same output as the original system. The matrix G is called the observer gain matrix,
which has to be determined.

A convolution is performed on the new observer equations, and the output at any time
can be written as

— —p—1— —p—
Yk = Duy + CBUk_1 +---+ CAP ka—]ﬂ + CAprk_p, (38)
where p is a time-step integer. In matrix form, this equation can be rewritten as

7=YV+CA X+¢, (3.9)
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where ¥ is the collection of output data, Y is the vector of observer Markov parameters, V is the
stack of input and output data, X is the observed state, and ¢ is the miss-modelling noise

v=1v Ypa - Yy ],

Y=|p B CAB ... cA'H|,

[ Up Upy1 - U1

Vp1 Uy o VLo (3.10)
V=|%2 Upa -+ V-3

L D0 U1 Ulp-1]

The new observer state transition matrix, A, has some unique properties that can be
exploited for system identification. In a noise-free case, the observer can be made deadbeat

placing the eigenvalues at the origin, making CA’X zero for time steps greater than the
system order, n. In the presence of noise, A corresponds to a Kalman filter. In either case, it is

asymptotically stable, and there will be a value of p such that the quantity A s negligible. In
the OKID algorithm, p is chosen such that the middle term of (3.9) is negligible. The equation
for the observer Markov parameters is solved using the standard least squares solution

Y=gV [vv'] . (3.11)

This minimizes the error term, £”¢e, which is the difference between the output ob-

tained using this model (with AP neglected) and the measured values.
The system Markov parameters Y can be computed from the observer Markov param-
eters Y in the following way. The observer Markov parameters are defined as:

Y=, Vi Y2 ... Y, (3.12)

where

Yo=D,
(3.13)
Y. =Ca'B.
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Then, the observer Markov parameters can be partitioned into two blocks in the fol-
lowing way:
Yi=CA 'B
= [c(a+GO)'(B+GD) - c(A+GO)F'q] (3.14)

- - ¥7)

The system Markov parameters were defined in (3.2), and they can be computed from
the above-defined partitions

Yo=D,
Y; = CB = C(B+GD) - (CG)D
-7 -7\'p,

Y, = CAB (3.15)

=Y - -7 D

By induction, the general relationship between the system Markov parameters and the
observer Markov parameters is

Yo=Y =D,

k
Y = Y,(j) - Z?;Z)Yk_,-, fork=1,...,p,

i=1 (3.16)

P _
Ye=-Y ¥ Y, fork=p+1,...,00.
i=1

Then, the desired system realization [A, B,C, D] can be obtained from the system
Markov parameters. To identify the observer gain G, first the sequence of parameters Zj
will be defined

Zir =CAX'G, fork=1,2,3,.... (3.17)

These parameters Zy can be recovered in terms of the observer Markov parameters
partition blocks in (3.14). The first parameter in the sequence is simply

Zo=CG=Y". (3.18)
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—@2
The next sequence parameter Z; = CAG can be obtained considering Y; )

Y\ = CAB = CAG + CGCG

(3.19)
@
=7Zr+ Y1 Z1.
which yields
2= Yz (3.20)
By induction, the general relationship is
Z,=CG=Y",
k-1
VA% Evit)
Zr=Y, - ; Y, Zii, fork=2,...,p, (3.21)
o)
Y = —ZYi Zi.i, fork=p+1,...,00.
i=1
Then, the observer gain G can be computed from
-1
G = (PTP) Pz, (3.22)
where
[ C ] " Z1 7 [ CG T
CA Z, CAG
p=|CA’|,  z-| % |=|CAG| (3.23)
| CA¥] | Zal  LcA*G]

Equation (3.22) implies that the observer gain G is automatically in the same coordi-
nates as those for a set of A, B, and C resulted from any realization. Furthermore, (3.16) and
(3.21) can be combined as a single-matrix equation for computation, and the combined sys-
tem and observer Markov parameters used to identify A, B, C, D, and G at the same time by
a time domain method as the ERA /DC algorithm detailed in [17].

The main advantage of this approach is that the observer gain, G, which can be shown
to converge to the steady-state Kalman filter gain [17], is obtained directly from input/output
data, without any prior knowledge of the system, and, at the same time, the system matrices
are also obtained, which can be of significant advantage for practical applications.
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Figure 2: Bank of OKID estimators for output residual generation.

4. Sensor Fault Detection and Isolation
4.1. Sensor Fault Detection Structure

The helicopter sensor FDI subsystem performs the tasks of failure detection and identification
by continuously monitoring the outputs of the sensors. Under nominal conditions, these fol-
low predictable patterns, within a tolerance determined by the amount of uncertainties intro-
duced by random system disturbances and measurement noise in the sensors. Usually, sen-
sor FDI tasks are accomplished by observing when the output of a failed sensor deviates from
its predicted pattern.

For the detection of faults in the helicopter sensors, a bank of output estimators has
been implemented as showed in Figure 2. The number of these estimators is equal to the
number of system outputs. Thus, each device is driven by a single output and all the inputs
of the system. In this case, a fault on the ith output sensor affects only the residual function
of the output observer or filter driven by the ith output.

A residual is generated for each sensor, comparing the estimator output with the sen-
sor output. Each residual is not affected by the other sensors, and, therefore, fault identif-
ication is straightforward; each residual is only sensitive to a single helicopter sensor. If the
residual 7, goes above the threshold level, a fault has been detected in sensor k. The FDI
system with the above structure has been implemented using Kalman filters obtained with
the OKID method. The results are presented in the following section.

4.2. Linear Observers for Helicopter Modelling

Helicopters are nonlinear coupled multiple-input, multiple-output (MIMO) systems. How-
ever, when dealing with nonaggressive flight scenarios, such as hovering, updown and
forward-backward flights, a linear model can be sufficient for many applications. Further-
more, the models are used in FDI for prediction in the short term of helicopter position and
orientation and sensor outputs.

In any case, the flight data used for identification do not cover the whole flight
envelope for safety reasons in the experiments. Then, the designed FDI system has to check
that the flight conditions are within the values of some variables used for identification. If
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Figure 3: Helicopter velocities in a typical experiment.

the FDI system detects a fault when one of these variables is outside the specified range, the
FDI system will issue a warning, but it has to confirm the fault declaration after the warning
when the flight variables are inside the specified range.

The variables used to specify the flight envelope covered by the identification data, and
the limit values are the helicopter velocity in the XY plane in world coordinates (VelXY <
10m/s), the vertical helicopter velocity in world coordinates (VelZ < 2m/s), the helicopter
pitch angle (Pitch < 20°), and the helicopter roll angle (Roll > 10°). Figure 3 shows helicopter
velocities in a typical experiment used for identification.

From a practical perspective, a FDI system based on linear observers is easier to
implement on board small autonomous helicopters, which usually have limited computing
resources. Linear observers have been used in this paper for fault detection, although the FDI
system has been tested with real helicopter experimental data.

In aircraft and helicopter modelling and control, the main error sources are sensor
noise and atmospheric perturbations. Sensor noise is accounted for explicitly in the OKID
formulation. Atmospheric perturbations are caused mainly by air turbulence and wind gusts,
and they are considered as process noise in the OKID method. The advantage of the OKID
formulation is that the covariance matrices of these sensor and process noises are obtained
directly in the OKID identification without intervention. The only requirement is that the
input/output data is sufficiently representative of the system dynamics, as is a general rule
in system identification.

4.3. Sensor Failure Types

Sensors used in autonomous helicopters can fail in several ways. Some failure types are
general for various sensors, while others are specific of a single sensor. The failure types that
have been considered are the following.

(1) Stuck with constant bias sensor failure. In this failure type, at a given time the sensor
gets stuck with a constant bias, and the output remains constant. This type includes
zero-output error, that can be due to electrical or communication problems.
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Figure 4: (a) 3211 Input signal definition. (b) 3211 Real input signal in a sample experiment.

(2) Drift or additive-type sensor failure. This is a very common failure in analog sensors.
Due to internal temperature changes or calibration problems, the sensor output has
an added constant term (drift).

(3) Multiplicative-type sensor failure. This failure type is caused by a scaling error in the
sensor output (a multiplicative factor is applied to the sensor nominal value).

4.4. Input-Output Data for Model Identification

High-quality flight data are essential to a successful identification. The main concerns are the
accuracy of the estimated vehicle states and the information content of the flight data (i.e.,
whether the measurements contain evidence of the relevant vehicle dynamics).

The system identification has been performed using input-output data taken by flying
the helicopter in a way to obtain evidences of the relevant vehicle dynamics. The only realistic
way to obtain these data is to perform special purpose experiments with the helicopter. In
these experiments, that were done open loop by a human pilot, an input sequence was used
in one of the inputs of the helicopter, while maintaining almost constant the other inputs
(these inputs were modified slightly by the pilot to maintain stability if needed).

Input sequences that are normally used in aircraft and helicopter identification include
the doublet signal and the 3211 input signal. The 3211 input sequence (shown in Figure 4(a))
has been used in the identification experiments because it has higher-frequency content while
still being easily reproduced by the pilot. Figure 4(b) shows the corresponding real input
signal generated by the human pilot in a sample experiment.

4.5. Residual Generation

Independent residuals are constructed for each different sensor failure. Residuals are de-
signed so that they respond to an individual failure and not to the others. In general, residuals
Ry are functions of the squared difference between real (c;) and estimated (¢;) sensor outputs

Ri = > mi(ci - &), (4.1)
i=1
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where m; are weighting coefficients that are determined for each failure based on experience
and experimentation. The first time the residual goes above the threshold level, the fault is
supposed to be present.

The fault detection procedure is designed to decide if the observed changes in the
residual signal Ry can be justified in terms of the disturbance (measurement noise) and/or
modelling uncertainty as opposed to failures. It is critical to minimize the detection delay
associated with a “true” fault; furthermore, the false alarm rate should be minimized while, at
the same time, no “true” faults should remain undetected. A well-known filter for the detec-
tion of moderate persistent shift in the mean value of the residual is the CUSUM filter [34].
This filter is used to detect both positive and negative changes in the mean value of the resid-
ual rx caused by the occurrence of a fault. Although the CUSUM filter balances the detection
delay with the false alarm rate, in this work it has been considered that fast fault detection
is the most critical aspect of the FDI system, and, therefore, a threshold-based logic has been
implemented.

5. Fault Detection Results

In this section, the results of MARVIN sensor FDI system using Kalman filters obtained with
the OKID method are presented. All the experiments presented in this section have been done
using real MARVIN flight data.

Flight data were recorded from several experiments carried out at the Lousa (Portugal)
airfield during the general experiments of the COMETS project. These experiments were per-
formed in spring with temperatures around 20°C and low-wind conditions.

The MARVIN helicopter has 12 individual sensors: 3 gyroscopes, 3 accelerometers, 3
components of the magnetic sensor, and the 3 GPS coordinates. Since there are too many
possible combinations of sensors and failure types, only a few representative cases will be
described in detail in this section. The z component of the gyroscope angular velocity sensor
will be used as representative case of sensor failure detection for the presented failure types.

5.1. Stuck with Constant Bias Sensor Failure Detection

In this case, the gyro-z sensor output gets stuck with the last output value before the fault
produced. This category also includes zero-output sensor error. In Figure 5, a fault has been
reproduced in the gyro-z sensor at t = 3s. In Figure 5(a), the residual generated by the OKID
estimator is shown. It can be seen that, shortly after the fault, the residual goes above the
threshold level (dashed horizontal line), and the fault is detected Figure 5(b).

This class of “hard” failures was detected by the OKID fault detection system in all
cases for all sensors, with no false positives.

5.2, Additive-Type Sensor Failure Detection

Figures 6 and 7 show the results of the fault detection of additive faults in gyro-z sensor
output. In Figure 6, a 3.5 degrees/sec drift has been added, and the residual detects the fault
very fast. In Figure 7, a 1.75 degrees/sec drift has been added to the sensor output at t = 3.
A fault detectability study has been done with the additive type sensor failure. Two
cases have been considered: a drift of 50% of the maximum sensor value, whose results are
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Figure 5: Stuck with constant bias gyro-z failure detection using OKID.
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Figure 6: Additive gyro-z sensor failure detection using OKID (drift = +3.5 degrees/sec).
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Table 1: Sensor fault detection with drift of 50% of maximum sensor value (OKID filters).

GPS ACCEL MAG GYRO
X Y Z X Y Z X Y Z X Y Z
Mean detection time 0.00 021 0.15 0.00 0.10 015 0.19 031 0.02 022 0.02 0.10
Undetected faults 0 0 0 0 0 0 0 0 0 0 0 0
False alarms 0 0 0 0 0 0 0 0 0 0 0 0

Table 2: Sensor fault detection with drift of 10% of maximum sensor value (OKID filters).

GPS ACCEL MAG GYRO
X Y Z X Y Z X Y Z X Y Z
Mean detection time 0.24 4.17 0.15 0.95 2.59 1.26 029 0.00 0.00 0.75 3.98 0.85
Undetected faults 0 0 0 0 0 0 0 0 0 1 2 1
False alarms 0 0 1 2 0 1 2 0 0 0 1 0

Table 3: Sensor fault detection with: a sensor output of 50% of the nominal output.

GPS ACCEL MAG GYRO
X Y Z X Y Z X Y Z X Y Z
Mean detection time 1.23 0.00 2.01 1.47 0.48 432 134 008 0.08 157 3.20 5.02
Undetected faults 0 0 0 0 0 0 0 0 0 0 0 0
False alarms 0 0 0 0 0 0 0 0 0 0 0 0

presented in Table 1, and a drift of 10% of the maximum sensor value, whose results are
presented in Table 2.

The results presented in Table 1 show that a drift 50% of maximum sensor value can be
detected reliably using OKID filters in almost all the experiments, with short detection times.
On the other hand, the results of Table 2 show that a 10% drift is much harder to detect using
OKID filters, because it is more difficult to discriminate faults from sensor noise. Although
threshold levels have been adjusted accordingly, there were some undetected faults and false
alarms. As can be expected, detection times are larger than with a 50% drift.

5.3. Multiplicative-Type Sensor Failure Detection

Figure 8 shows the results of the fault detection of a multiplicative fault in the gyro-z sensor
output. When the fault occurs, the sensor output is only 50% of the nominal output.

A fault detectability study has also been done with the multiplicative type sensor fail-
ure. As was done in the above subsection, two cases have been considered: a sensor output
of 50% of the nominal output, whose results are presented in Table 3, and a sensor output of
10% of the nominal output, whose results are presented in Table 4.

The results presented in Table 3 show that a 50% multiplicative fault can be detected
reliably in all the experiments. The detection time is larger than in the additive type sensor
failure. The results of Table 4 show that a 10% multiplicative fault can also be detected with
high reliability.
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Figure 7: Additive gyro-z sensor failure detection using OKID (drift = +1.75 degrees/sec).

Table 4: Sensor fault detection with sensor output of 10% of the nominal output.

GPS ACCEL MAG GYRO
X Y V4 X Y Z X Y Z X Y Z
Mean detection time 1.10 0.85 5.32 0.88 0.47 449 154 008 0.08 288 375 482
Undetected faults 0 0 0 0 0 0 0 0 0 0 0 0
False alarms 0 0 0 0 0 0 0 0 0 0 0 0

5.4. Discussion of Results

In additive and multiplicative sensor faults, the detection performance depends on the size of
the failure. For example, for multiplicative faults where sensor output is 50% of the nominal
output, the faults were detected in all cases with no false positives. But if the sensor output is
90% of the nominal output, there were some undetected faults, making fault detection unre-
liable. Depending on the specific sensor, the minimum error that was detectable reliably was
between 80 and 85% of the nominal sensor output.

As a general remark, sensor fault detection results obtained with OKID are similar to
those obtained with a traditional Kalman filter, but, with the proposed method, the OKID
observer was obtained directly from input-output data without having to estimate sys-
tem model matrices the measurement and process noise covariance matrices, as is needed
with the traditional Kalman filter. In fact, although system matrices are usually estimated by
system identification or physical insight, the measurement noise covariance matrix is ob-
tained frequently from sensor manufacturer datasheets without considering individual
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Figure 8: Multiplicative gyro-z sensor failure detection using OKID (50% of nominal Output).

Table 5: Comparison of results: sensor fault detection with drift of 25% of maximum sensor value for
OKID, ARX, correctly tuned Kalman filter, and a Kalman filter with 20% error parameter estimation.

. . GPS ACCEL MAG GYRO
Mean detection time
Y V4 X Y Z X Y Z X Y Z
OKID 013 231 022 042 1.33 045 029 081 032 042 1.08 0.19
ARX 0.15 225 028 0.50 1.36 040 0.18 0.89 040 039 1.18 0.19
Kalman 0.13 240 030 0.51 1.29 039 029 085 038 045 1.09 027
Kalman, 20% error 025 3.89 052 1.32 — 295 147 097 052 072 — 1.31

sensor characteristics or calibration. Furthermore, the process noise covariance matrix is usu-
ally calculated arbitrarily. For comparison, Table 5 shows the mean fault detection time in case
of a drift fault of 25% of maximum sensor value, for several algorithms: (1) the OKID meth-
od presented in this paper, (2) an ARX-based fault detection system (see [16]), (3) a correctly
tuned Kalman filter, and (4) a Kalman filter in which the parameters have been estimated
with a 20% error. In all four cases, the threshold levels have been adjusted to not get false
positives. When no number appears in Table 5, it means that in some cases there were unde-
tected faults.

It can be seen from Table 5 that the OKID results are similar to the ARX and Kalman
filter results. OKID is slightly better than ARX and more robust, since it includes the observer.
On the other hand, OKID results are similar to the classical Kalman filter if it is correctly
tuned, but they are better if it is not correctly tuned. Furthermore, the OKID method makes
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much easier the development of the fault detection system, since there is no need to estimate
separately the system matrices and the covariance matrices.

6. Conclusions

The use of autonomous helicopters, particularly in civilian applications, requires the im-
provement of safety conditions to avoid potential accidents. Fault detection and isolation
plays an important role in this context. This paper has presented a system for helicopter’s
sensors fault detection based on the OKID method. The main advantage of the proposed
method is that there is no need to estimate neither the system matrices nor the measurement
and process noise covariance matrices, as all the information is extracted from experimental
input-output data. Experiments with an autonomous helicopter have been conducted to col-
lect input-output data in many different flight conditions. Several failure types have been
considered. “Hard” failures (zero or constant sensor output) are easily detected by the OKID
fault detection system. “Soft” failures (sensor output with additive or multiplicative error)
are detected depending on the error size. If errors are too small, they cannot be distinguished
from noise. OKID fault detection results are compared to the obtained using ARX linear
observers and classical Kalman filters, presenting advantages over both of them.
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