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Nucleon scattering on actinides using a dispersive optical model with extended couplings
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The Tamura coupling model [Rev. Mod. Phys. 37, 679 (1965)] has been extended to consider the coupling of
additional low-lying rotational bands to the ground-state band. Rotational bands are built on vibrational bandheads
(even-even targets) or single-particle bandheads (odd-A targets) including both axial and nonaxial deformations.
These additional excitations are introduced as a perturbation to the underlying axially symmetric rigid-rotor
structure of the ground-state rotational band. Coupling matrix elements of the generalized optical model are
derived for extended multiband transitions in even-even and odd-A nuclei. Isospin symmetric formulation of
the optical model is employed. A coupled-channels optical-model potential (OMP) containing a dispersive
contribution is used to fit simultaneously all available optical experimental databases including neutron strength
functions for nucleon scattering on 232Th, 233,235,238U, and 239Pu nuclei. Quasielastic (p,n) scattering data on
232Th and 238U to the isobaric analog states of the target nucleus are also used to constrain the isovector
part of the optical potential. Lane consistent OMP is derived for all actinides if corresponding multiband
coupling schemes are defined. For even-even (odd-A) actinides almost all low-lying collective levels below
1 MeV (0.5 MeV) of excitation energy are coupled. OMP parameters show a smooth energy dependence and
energy-independent geometry. A phenomenological optical-model potential that couples multiple bands in odd-A
actinides is published for a first time. Calculations using the derived OMP potential reproduce measured total
cross-section differences between several actinide pairs within experimental uncertainty for incident neutron
energies from 50 keV up to 150 MeV. The importance of extended coupling is studied. Multiband coupling is
stronger in even-even targets owing to the collective nature of the coupling; the impact of extended coupling
on predicted compound-nucleus formation cross section reaches 5% below 3 MeV of incident neutron energy.
Excitation of multiple bands in odd-A targets is weaker owing to the single-particle nature of the coupling.
Coupling of ground-state rotational band levels in odd-A nuclei is sufficient for a good description of the
compound-nucleus formation cross sections as long as the coupling is saturated (a minimum of seven coupled
levels are typically needed).
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I. INTRODUCTION

The cross sections for the interaction of neutrons with
actinide nuclei are crucially important for the design of
various fission reactor systems. Tight target uncertainties on
the capture and inelastic scattering data for major actinides
were derived from advanced reactor sensitivity studies by
Nuclear Energy Agency WPEC Subgroup-26 [1]. However,
the present status of evaluated nuclear data files for inelastic
scattering on major actinides is not satisfactory, as discussed
at the IAEA Technical Meeting on “Inelastic Scattering and
Capture Cross-section Data of Major Actinides in the Fast
Neutron Region” [2] held in 2011. Significant differences in
evaluated inelastic cross sections were observed in evaluated
nuclear data files from 200 keV up to a few MeV of incident
neutron energy for major actinides [2]. Such differences lead
to large uncertainties in the inelastic scattering cross section
(n,n′), as well as in calculated multiple neutron emission cross
sections (n,2n) and (n,3n). The improvement of evaluated
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scattering cross sections and neutron emission spectra and
reduction of their uncertainties for neutron-induced reactions
on actinides is an important issue that should initiate new
theoretical studies.

Many theoretical models are being developed to describe
nucleon scattering on actinide nuclei. The optical model is
one of the fundamental theoretical tools which provides the
basis of nucleon-scattering data evaluations [3]. An accurate
calculation of the nucleon scattering from a well-deformed
actinide nucleus using the optical model must include the
coupling to the low-lying collective states. A very successful
computational method to account for the importance of the
multistep processes is the coupled-channels (CC) method
[4] using Tamura’s formalism [5], which permits an exact
solution of the CC equations. Many deformed optical poten-
tials suggested for actinides are based on Lagrange work at
Commissariat à l’énergie atomique et aux énergies alternatives
(CEA), France [6], but coupled-channels equations were a
formidable challenge for the computing capabilities of 1970s
and 1980s. Many approximations were suggested and used;
it was customary to couple only a few levels (usually three)
of the ground-state rotational band in those calculations. In
2004 two of the authors studied the convergence of neutron
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cross sections on 238U as a function of the number of coupled
target states in the ground-state rotational band. It was shown
that the common practice of calculating neutron cross sections
with three coupled levels in K = 0+ ground-state bands is
inadequate [7]. This result was confirmed and generalized in
a new comprehensive study by Dietrich et al. [8], but none
of these papers included additional vibrational bands in the
coupling scheme of even-even nuclei or additional rotational
bands in odd-A nuclei.

Needed higher accuracy of data for fast reactors requires
improving the description of scattering data at incident neutron
energies from a few keV up to 5–6 MeV to cover the
region with the maximum yield of fission neutrons. While
the energies of excited states of the ground-state band of
even-even actinides below 500 keV are well described by a
rigid-rotor model, above 500 keV several vibrational bands
are observed that need to be considered. The situation for
odd actinides is even more complex, as no pairing gap
exists; therefore, low-lying excited states are dominated by
rotational bands built on single-particle (1QP) bandheads (e.g.,
particle-hole configurations with K = 1/2+, 7/2−, and 5/2+,
and corresponding rotational bands, dominate the low-lying
excitation spectra for 235U and 239Pu nuclei). Therefore,
low-lying rotational bands, built on vibrational bandheads
for even-even targets, and on single-particle bandheads for
odd-A targets, need to be taken into account to describe
neutron inelastic scattering on actinides. This fact has long
been recognized for even-even nuclei; a vibrational-rotational
description within the coupled-channels approach has been
used to describe scattering data on even-even actinides by
University of Lowell group [9–11] and later used by Kawano
et al. [12], Minsk group [13,14], and Bruyères-le-Châtel group
(e.g., Refs. [15,16]). Authors presented preliminary findings of
this work for axial-symmetric even-even nuclei in Ref. [17].
However, authors are not aware of similar published work
undertaken for odd actinides,1 for which typically only the
ground-state rotational band had been considered in optical-
model studies.2 Additionally, those works used nondispersive
potentials to describe scattering data, except the dispersive
potential used to describe neutron scattering on 238U target
[15] and other actinides [16].

The main purpose of this comprehensive contribution is
to improve the description of neutron scattering on actinides
at incident neutron energies below 6 MeV by extending
a previously derived dispersive optical-model potential for
nucleon-induced reactions on actinides based on a rigid-rotor
description [19–21]. The previously published rigid-rotor
potential of Refs. [19–21] will be referred in the rest of this
work as the “RIPL 2408” potential by using the keyword from
the RIPL optical-model database [22].

Special focus will be on predicted compound-nucleus
formation cross section σCN(E), which is a critical input

1P. Romain has used extended coupling schemes for calculations of
the n + 235U reaction, but no results have been published.

2Preliminary findings for odd nuclei were presented at ND2013
[18]; however, current results supersede older publications as further
understanding both in derivation and results was achieved.

quantity for statistical reaction modeling. It has been shown
that σCN(E) strongly depends on employed coupled-channels
couplings [8]. The proposed extension should account for
multiple-band couplings, while keeping the achieved quality
of description of the whole set of scattering data (e.g., total
cross-section data above 5 MeV were described by the RIPL
2408 potential within the quoted experimental uncertainty of
about 1.5%). The coupling of vibrational bands is expected to
improve the description of neutron scattering on even-even
actinides in the energy region from 500 keV up to about
6 MeV, which is critical for fast neutron fission reactors. The
coupling of rotational bands built on single-particle bandheads
for odd-A nuclei is expected to reduce observed discrepancies
from 100 KeV up to 1 MeV incident neutron energy in
inelastic scattering on major fissile actinides 233U, 235U, and
239Pu [2]. The authors are unaware of previously published
optical-model studies for odd-A actinide targets involving
coupling of multiple bands.

The paper is structured as follows. Sections II and III
provide descriptions of the nuclear shape parametrization,
nuclear Hamiltonian, and nuclear wave functions needed in the
solution of the Schrödinger equation describing the nucleon-
scattering problem. Section IV contains the new coupling
matrix elements derived within Tamura’s formalism allowing
for multiple-band coupling; this is one of the key results of
this paper. For interested readers a detailed derivation is given
in Appendixes A and B. Section V describes the formulation
of dispersive Lane-consistent potential for the simultaneous
description of neutron- and proton-induced reactions on
actinides. In Sec. VI, we discuss derived optical potential
parameters to describe nucleon scattering on actinides using a
proper multiband level scheme; we also compare the derived
potential with selected experimental data, including highly
accurate averaged total cross-section differences measured
for incident neutron energies from 50 keV up to 150 MeV.
Comprehensive coupling schemes and multiband coupling pa-
rameters derived from a least-squares fit for 232Th, 233,235,238U,
and 239Pu targets are tabulated in Appendix C. Finally, Sec. VII
contains our conclusions.

II. NUCLEAR SHAPE PARAMETRIZATION
FOR EXTENDED COUPLING SCHEME

Actinides are well-deformed nuclei, where low-lying col-
lective levels are strongly excited in nucleon inelastic scatter-
ing. The employed nuclear shape parametrization combines
a rigid-rotor description of the ground-state rotational band,
with small quadrupolar and octupolar vibrations around the
deformed equilibrium shape. Vibrations are described in the
spirit of the soft-rotator model [23,24], which considers nuclei
to be deformable with both axial and nonaxial vibrations;
deformations with λ � 4 are considered axial, assuming that
such deformations are usually small. Rotational bands are
built on top of vibrational (single-particle) bandheads for
even-even (odd) nuclei, respectively. The deformed nuclear
optical potential arises from deformed instant nuclear shapes
of actinide nucleus. The instant nuclear shape in a body-fixed
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system can be described as

Ri(θ
′,ϕ′) = R0i

(
1 +

∑
λ=4,6,8

βλ0Yλ0(θ ′) + β2

{
cos γ Y20(θ ′) + 1√

2
sin γ [Y22(θ ′,ϕ′) + Y2−2(θ ′,ϕ′)]

}

+ β3

{
cos ηY30(θ ′) + 1√

2
sin η[Y32(θ ′,ϕ′) + Y3−2(θ ′,ϕ′)]

})
, (1)

where Yλμ(θ ′,ϕ′) means spherical harmonics, θ ′ and ϕ′ are
the angular coordinates in the body-fixed (intrinsic) system,
βλ0 are the static axial deformations, β2 and β3 are the
quadrupolar and octupolar deformations, and γ and η are
the quadrupolar (γ ) and octupolar (η) nonaxial deformation
parameters, respectively. We introduced the notation Yλ0(θ ′) ≡
Yλ0(θ ′,ϕ′). We followed Bohr [25] and assumed that the body-
fixed frame is chosen to be the principal nuclear symmetry
axes, such that β21 = β2−1 = 0 and β22 = β2−2; therefore,
quadrupolar deformations are described by two parameters
β2 and γ . We also followed Lipas and Davidson [26] and
assumed that octupolar vibrations with even projection (λ =
3, μ = 0,±2) best describe the octupole contribution to the
nuclear vibrations for the low-lying negative-parity states.
Therefore, the nonaxial deformations β3±1 = β3±3 = 0 and
octupolar deformations are described by two parameters β3

and η (such assumption could be easily removed if needed
by introducing one additional parameter). In what follows
we will use the fact that for nonaxial contributions (μ �= 0)
in Eq. (1) only even values of the projection μ = 0,±2 are
allowed for both quadrupolar λ = 2 and octupolar λ = 3
vibrations.

Nuclear radii R0i = riA
1/3 (i = HF,v,s,C,so) are defined

for five potential geometries described in the next section,
A being the target mass number. The soft-rotator model of
nuclear structure has been successfully applied in coupled-
channels optical-model analyses for many nuclei [13,27,28].
However, until recently we were unable to derive a dispersive
coupled-channels optical-model potential for actinides based
on soft-rotator couplings. Such work is still in progress. Dis-
persive optical-model features a reduced number of parameters
compared to traditional optical-model analyses; therefore,
parameter compensation of model defects becomes more
difficult for dispersive potentials. Mathematically, the failure
of the traditional soft-rotator model applied to actinides is
attributable to the very slow convergence of the multipolar
expansion of the soft-rotor potential around the spherical
shape for large-equilibrium deformations typically encoun-
tered in actinides. To solve this problem it was assumed
that the quadrupole variable β2 of the soft-rotator model
can be considered as a large equilibrium axial component
β20 plus a small contribution δβ2 (i.e., β2 = β20 + δβ2).
This assumption allows a much better convergence of the
potential expansion, as we use a truly small parameter δβ2,
instead of the relatively large parameter β2 originally used
by Tamura [5]. The departures from the axially symmetric
rigid-rotor shape are considered to all orders in quadrupole
nonaxiality parameter γ and octupole nonaxiality parameter
η. Under these assumptions we can rewrite Eq. (1) as

follows:

Ri(θ
′,ϕ′) = R0i

{
1 +

∑
λ=2,4,6,8

βλ0Yλ0(θ ′)

}

+R0iβ20

[
δβ2

β20
cos γ + cos γ − 1

]
Y20(θ ′)

+R0i(β20 + δβ2)
sin γ√

2
[Y22(θ ′,ϕ′) + Y2−2(θ ′,ϕ′)]

+R0iβ3 cos ηY30(θ ′)

+R0iβ3
sin η√

2
[Y32(θ ′,ϕ′) + Y3−2(θ ′,ϕ′)]. (2)

The first term of the sum in curly brackets in Eq. (2)
corresponds to the axially symmetric equilibrium shape (rigid
rotor). There are two additional quadrupole and octupole
axially symmetric terms [proportional to Y20(θ ′) and Y30(θ ′),
respectively], and nonaxial quadrupole and octupole terms. If
we further assume that the octupole deformation parameter β3

is small, we can expand the nuclear potential V (r,R(θ ′,ϕ′))
around the equilibrium rigid-rotor shape (instead of the
equilibrium spherical shape used by Tamura; see Eq. (5) of
Ref. [5]). If we insert the nuclear shape given by Eq. (2) into
the optical potential and make a first-order Taylor expansion
around the equilibrium (axial) shape, we can obtain an
expression for the deformed optical potential expansion,

V (r,R(θ ′,ϕ′)) = [V (r,R(θ ′,ϕ′))](δβ2=0,γ=0,β3=0)

+
[
R0

∂

∂R
V (r,R(θ ′,ϕ′))

]
(δβ2=0,γ=0,β3=0)

×
(

β20

[
δβ2

β20
cos γ + cos γ − 1

]
Y20(θ ′)

+ (β20+δβ2)
sin γ√

2
[Y22(θ ′,ϕ′)+Y2−2(θ ′,ϕ′)]

+β3

{
cos ηY30(θ ′) + sin η√

2
[Y32(θ ′,ϕ′)

+Y3−2(θ ′,ϕ′)]
})

+ (potential higher derivatives’ terms), (3)

where

(i) [V (r,R(θ ′,ϕ′))](δβ2=0,γ=0,β3=0) ≡ Vrot(r,Raxial(θ ′)),
(ii) [R0

∂
∂R

V (r,R(θ ′,ϕ′))](δβ2=0,γ=0,β3=0) ≡
[R0

∂
∂R

V (r,R(θ ′,ϕ′))]R=Raxial(θ ′),
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are the axially symmetric components of the deformed optical-
model potential, and the nonaxial components are included in
Eq. (3) within large parentheses. A general expression for the
multipolar expansion of the deformed optical-model potential
is derived in Appendix A; see Eq. (A6).

III. NUCLEAR HAMILTONIAN AND TARGET-NUCLEUS
WAVE FUNCTIONS

Excited states in actinides are usually classified into single-
particle and collective excitations, the latter being divided into
vibrational and rotational states. Such division works well for
even-even nuclei owing to the pairing gap; only collective
states are located inside the gap. However, for odd-A actinides
the energy of single-particle excitations could be of the same
order of the rotational energies, and so the independence of
the single-particle excitations from the collective movement is
hardly justifiable. These cases have been extensively studied
by Davydov and co-workers [29–32] and Davidson [33]
(for additional information see references therein). Davydov
showed that in even-even nuclei whose equilibrium shape is
close to the axially symmetric shape (e.g., actinides), rotation
cannot be regarded independently of γ vibrations [30]. For odd
nuclei, the interaction of the nuclear rotation with the unpaired
nucleon may change both the structure of the rotational
spectra and the energies of the single-particle excited states
[32]. Therefore, it is expected that low-lying excited states
of odd-A nuclei have a complex structure which does not
permit the separation of the single-particle, rotational, and
vibrational degrees of freedom. However, all excited states
in actinides are expected to have definite values of parity
π = (−1)l , l being the orbital angular momentum, and of the
total angular momentum I . The analysis above clearly showed
that even-even and odd-A actinides have a very different
nuclear structure.

Let us define the nuclear structure model to be used in this
work. We assume that a nucleus is composed of the even-even
core where only paired nucleons are present. Additionally,
for odd-A nuclei, we consider a single unpaired nucleon that
moves in the nuclear mean field created by the even-even
core. We further assume that the nuclear ground state may be
statically deformed. Dynamical deformations are assumed to
be small, and Erot � Evib; i.e., the adiabatic assumption holds
for the separation of the rotational and vibrational motion for
even-even and odd-A targets. Under those assumptions, the
nuclear Hamiltonian can be written as

H = Hrot + Hvib + Hp + Hint, (4)

where Hrot is the rotational energy operator, Hvib is the
vibrational energy operator, Hp is the energy operator of the
unpaired nucleon (single-particle operator), and Hint is
the interaction energy operator of the unpaired nucleon
with the nuclear even-even core field. The corresponding
Schrödinger equation can be written as H� = E�, where the
nuclear eigenfunction � describes single-particle, vibrational,
and rotational motions.

A. Even-even nuclei

Following our assumptions for actinides, we do not consider
unpaired nucleons for even-even nuclei (nor single-particle ex-
citations); therefore, the nuclear Hamiltonian H ≡ Hrot + Hvib

describes the collective motion only, neglecting the interaction
of vibrational and rotational states. Adiabatic approximation
for the collective motion means that the even-even nuclear
wave function can be factorized into a rotational and a
vibrational part � = rot(�)|n(λph)〉, where the rotational
wave function rot(�) depends on the Euler angles �,
and the vibrational wave function |n(λph)〉 depends on the
number nph of excited vibrational phonons of multipolarity λph

and, implicitly, on the corresponding vibrational deformation
variables β2, β3, γ , and η. The phonon parity is πph = (−1)λph .
In this work we consider only one-phonon vibrational states.
The phonon description of vibrational states also implies that
interband transitions when the number of phonons changes by
more than one (�nph > 1) are forbidden (this is a well-known
selection rule of the vibrational phonon model). Therefore,
strongest interband transitions occur between the bands built
on one-phonon states and the ground-state band.

Assuming that the nucleus behaves as a triaxial rotor and
denoting K as the total angular momentum projection on the
symmetry axis and I (I � K) as the total angular momentum,
then the nuclear wave function � is mixed in K and can be
written in the form [25,34]

�(IMτ�) =
I∑

K=0

AIτ
K

[
2I + 1

16π2(1 + δK0)

]1/2[
DI

MK (θ ′,ϕ′)

+ (−1)I+λphDI
M−K (θ ′,ϕ′)

]|n(λph)〉. (5)

The coefficients AIτ
K are the K-mixing coefficients that depend

on all deformation parameters and satisfy orthonormality
conditions∑

K�0

AIτ
K AIτ ′

K = δττ ′ and
∑

τ

AIτ
K AIτ

K ′ = δKK ′ , (6)

where τ denotes the additional quantum numbers. The
expression (5) can be considered a generalization of
the wave function given in Eq. (91) of Ref. [25] and
Eqs. (9–59) and (9–60) of Ref. [34] (all restricted to
quadrupolar deformations) for any phonon multipolarity. The
phonon wave function |n(λph)〉 has been ignored in those
references, because for even-even nuclei the lowest-lying
states are given by rotational and vibrational modes with
intrinsic spin 0 [34]. Note that if K = 0, then the condition
I + λph = even holds and the phase factor becomes unity. The
phonon parity operator πph = (−1)λph in Eq. (5) is missing in
Eq. (3) of Ref. [35] as only quadrupolar vibrations featuring
positive parity were considered. In this work, the phonon
parity has been considered as needed for the proper inclusion
of both quadrupolar λph = 2 and octupolar λph = 3 vibrations.

The coefficients AIτ
K , which determine K-mixing in a given

rotational state owing to the nonaxiality, are to be determined
from the solution of the rotational problem and can be obtained
as described in Ref. [36] by solving the Schrödinger equation
corresponding to the nonaxial soft nuclear Hamiltonian.
The code SHEMMAN adjusts the soft-rotator Hamiltonian
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parameters by comparing the energies of the experimental and
calculated collective levels. Therefore, the coefficients AIτ

K are
determined independently from coupled-channels equations.

For axially symmetric nuclei the projection K becomes a
good quantum number and only one AIτ

K coefficient is different
from zero. Therefore, the sum over K and the K mixing
disappears in Eq. (5), and we obtain

�(IMKλph�) =
[

2I + 1

16π2(1 + δK0)

]1/2[
DI

MK (θ ′,ϕ′)

+ (−1)I+λphDI
M−K (θ ′,ϕ′)

]|n(λph)〉. (7)

The optical-model calculations and fitting undertaken in
this work assumed that even-even nuclei were axially symmet-
ric rotors in their ground state. However, nonaxial formulation
of the wave function given by Eq. (5) was retained for the
calculation of most general coupling matrix elements.

B. Odd-A nuclei

Following our assumptions for odd actinides, we neglect
vibrational excitations of the core. The total angular mo-
mentum of the nucleus

−→
I , a constant of the motion, is

now the sum of two parts,
−→
C , the even-even core’s angular

momentum, and
−→
j , the nucleon angular momentum, where−→

I = −→
C + −→

j . It is customary to take the projections of−→
I and

−→
j along the intrinsic z′ axis to be K and �,

respectively, while the z component of
−→
I is M . Because

the potential in which the unpaired nucleon moves is, in
general, neither spherically nor axially symmetric, j 2, K , and
� are not constants of the motion. Following Refs. [34,35],
we assume the extreme extracore single-particle model for
the Hamiltonian Hp describing the unpaired nucleon. The
nucleon single-particle wave function χν is the eigenfunction
of the single-particle Hamiltonian Hp that describes a nucleon
moving in the deformed nuclear mean field (e.g., Nilsson
or Woods-Saxon potential), i.e., Hpχν = Eνχν , Eν being
the single-particle energy corresponding to the single-particle
state ν.

Following Eq. (3) of Ref. [35], the nuclear wave function
in the extreme single-particle model is given by

�(IMτ�) =
[

2I + 1

16π2

]1/2∑
K>0

′
CIτ

K

[
DI

MK (θ ′,ϕ′)χν

+ (−1)I−1/2DI
M−K (θ ′,ϕ′)πχχ−ν

]
, (8)

where πχ is the parity of the intrinsic wave function, and
CIτ

K are the K-mixing coefficients that depend on deformation
parameters and are determined from the solution of the
rotational problem (e.g., see Refs. [29,31]). In the asymmetric
case ellipsoidal symmetry imposes additional restrictions on
quantum numbers K and � (that characterizes the single-
particle wave function χν ; see Appendix B), namely that
(K − �) must be an even integer [35]. This restriction on
K values is indicated by the apostrophe on the summation
symbol

∑′
K>0 in Eq. (8).

It is remarkable that the odd-A nucleus wave function
given by Eq. (8) has exactly the same collective angular
operator structure (i.e., Wigner functions) as the even-nucleus

wave function given by Eq. (5). Such analogy allows using
the same matrix element derived for the even-even nuclear
wave function to obtain the odd-A matrix element, as will
be shown in Appendix B. There are only two differences
regarding the odd and even-even nuclear wave functions:
(1) the phase in front of the second Wigner function changes
to (−1)I−1/2πχ (odd-A wave function) from the even-even
case phase (−1)I+λph ; and (2) there is a single-particle wave
function χν (χ−ν) that multiplies the first (second) Wigner
functions in the odd-A case in Eq. (8).

For axially symmetric nuclei the sum over K disappears,
K becomes a good quantum number that labels the single-
particle state ν (i.e., χν ≡ χK ), which automatically leads to
Eq. (9-139) of Ref. [34]:

�(IMK�) =
[

2I + 1

16π2

]1/2[
DI

MK (θ ′,ϕ′)χK

+ (−1)I−1/2DI
M−K (θ ′,ϕ′)πχχ−K

]
. (9)

Note that axial symmetry is an acceptable approximation
for odd-A nuclei, as demonstrated by an extensive use of
the rigid-rotor assumption in odd-A actinide optical-model
potentials.

IV. COUPLED-CHANNELS MATRIX ELEMENTS
FOR EXTENDED COUPLING SCHEME

Starting from the derived potential multipolar expansion
of the optical-model potential [see Eq. (A6) in Appendix A],
and using nuclear wave functions given above, we can derive
the general expressions (B12) and (B16) for even-even and
odd targets, correspondingly (see Appendix B for a detailed
derivation) for coupling matrix elements 〈i|V (r,θ,ϕ)|f 〉 be-
tween nuclear states |i〉 and |f 〉. In those expressions, the
reduced matrix elements have to be defined, and the radial
functions are given by Eq. (A4), which for i = 1 are being
equal to the radial functions used in matrix elements of the
conventional rigid-rotor potential.

Reduced matrix elements entering Eqs. (B12) and (B16) are
different for couplings in even-even and odd-A nuclei as the
corresponding nuclear wave functions given by Eqs. (5)–(9)
are different. Ready-to-use expressions for calculations of the
reduced matrix elements are given by Eq. (B14) for even-even
targets and by Eq. (B19) for odd-A targets. The reduced matrix
elements also define the selection rules determining couplings,
which are discussed in Appendix B.

The general expressions mentioned above constitute an im-
portant result of this work allowing the extension of Tamura’s
coupled-channels formalism to describe the coupling of
additional excited bands both for even-even and odd-A targets.

An example of the coupling scheme employed in the current
work is shown in Fig. 1 for a neutron-induced reaction on a
238U target. The corresponding effective deformations (e.g.,
[β2]eff) that define the interband coupling strength are shown
near the transitions. The highest-energy state considered in the
ground-state rotational band of 238U was the 10+ located at
775.9 keV; the rigid-rotor assumption breaks down above that
excitation energy [level energies do not follow the rigid-rotor
prediction E(I ) ∼ I (I + 1)].
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FIG. 1. Multiband coupling scheme (not to scale) is shown for a generalized optical-model description of n + 238U reaction. Transitions
between excited bands and the ground-state band are indicated; those between excited vibrational bands are forbidden within the vibrational
phonon model. Numbers in parentheses next to the level spin are corresponding level excitation energies in keV. The trivial in-band quadrupolar
transitions with �K = 0 are omitted. The selection rules are discussed in Appendix B. Eighteen levels are coupled for neutron-induced
reactions including the ground-state rotational band (K = 0+) and four excited vibrational bands (K = 0+ β band, K = 0+ γ band, K = 0−

octupole band, and anomalous K = 2+ nonaxial band). For proton-induced reactions the coupling from the ground-state band to isobar-analog
states (IASs) should be added.

V. DISPERSIVE OPTICAL-MODEL FORMALISM

Pioneering dispersive optical-model analyses for nucleon
scattering have been carried out by Lipperheide [37,38],
Passatore [39], and Lipperheide and Schmidt [40]. Both bound
and scattering states were calculated using the same nuclear
mean field constrained by dispersive relations [41–53]. Recent
works to improve the description of the bound states using the
dispersive optical model and describe reactions on unstable
targets off the β-stability valley have been published by a
group at Washington University, St. Louis, MO (see Ref. [54]
and references therein). Additional constraint imposed by
dispersion relations helps to reduce the ambiguities in deriving

phenomenological OMP parameters from the experimental
data and effectively also reduces the number of phenomeno-
logical parameters.

However, a few studies have been devoted to derive dis-
persive optical model parametrizations for strongly deformed
nuclei, where coupled-channels formalism should include po-
tential corrections arising from dispersion effects [55–59]. Re-
cently, we derived an isospin-dependent optical-model poten-
tials for actinides based on rigid-rotor couplings [20,21]. We
will summarize below the formalism employed in this work.

Assuming that the geometry of the imaginary terms of the
OMP is energy-independent, then the deformed optical-model
potential for incident nucleons may be written as

V (r,R(θ,ϕ),E) = − VHF(E)fWS (r,RHF(θ,ϕ)) − [�Vv(E) + iWv(E)]fWS (r,Rv(θ,ϕ)) − [�Vs(E) + iWs(E)]gWS (r,Rs(θ,ϕ))

+
(

�

mπc

)2

[Vso(E)+�Vso(E) + iWso(E)]
1

r

d

dr
fWS (r,Rso)(l̂ · σ̂ ) + VCoul(r,Rc(θ,ϕ)), (10)
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where the first term is the real smooth volume potential
VHF(E). Successive complex-valued terms are the volume,
surface, and spin-orbit potentials, all containing the cor-
responding dispersive contributions �Vv(E), �Vs(E), and
�Vso(E) discussed in Sec. V A. The Coulomb potential
term VCoul is needed for incident protons. We followed our
previous studies [19–21] and connected the imaginary spin-
orbit potential Wso(E) to the real spin-orbit potential Vso(E)
by a dispersion relation as discussed by Walter [60].

The geometrical Woods-Saxon form factors are given as

fWS (r,Ri(θ,ϕ)) = {1 + exp[(r − Ri(θ,ϕ))/ai]}−1,

i = HF,v,

gWS (r,Rs(θ,ϕ)) = −4as

d

dr
f (r,Rs(θ,ϕ)),

fWS (r,R0,so) = {1 + exp[(r − R0,so)/ai]}−1, (11)

where deformed radii Ri(θ,ϕ) are described by Eq. (2).
A spherical spin-orbit potential was used with constant
radius equal to R0,so. The deformed Coulomb potential
VCoul(r,Rc(θ,ϕ)) was calculated using a multipole expansion
of charged ellipsoid with a uniform charge density within
the Coulomb radius R0,C and zero outside as suggested by
Bassel et al. [61]. The spherical term of the Coulomb potential
was calculated by taking account of the diffuseness of the
charge density distribution of the form fc = [1 + exp(r −
R0,C)/ac]−1 [62].

The incident nucleon energy E = En is equal to the incident
energy for neutrons; for incident protons we have to take
into account the modification of the nuclear potential by
Coulomb repulsion. We assume that the “effective” interacting
energy of the proton is E = Ep − CCoul

Z′
A1/3 , A, Z′ being

the target mass and atomic numbers. The term CCoul
Z′

A1/3 is
an estimate of the kinetic-energy loss of the incident proton
in the interaction region owing to Coulomb repulsion. The
use of the “effective” interacting energy of the proton is a
generalization of the previously used Coulomb corrections,
which considers such corrections in all orders. The constant
CCoul is an adjustable constant meant to account for the
“effective” radius of interaction of proton in nucleus. Avoiding
the use of Coulomb corrections is a precondition to the Lane
consistency; otherwise, the resulting potential is not symmetric
with respect to the nucleon charge.

The present optical potential includes relativistic correc-
tions as discussed by Elton [63]. First, the nucleon wave
number k was calculated in the relativistic form (�k)2 = [E2 −
(Mpc2)2]/c2, where E denotes the total energy of projectile,
Mp the projectile rest mass, and c the light velocity. Second,
projectile and target masses were replaced by corresponding
relativistic energies in reduced mass formulas. However, the
change of the potential depth related to the transformation
from the Dirac equation was not considered in this work.

A. Dispersive relations

In a dispersion relation treatment, the real potential strength
consists of a term which varies slowly with energy, the
so-called Hartree-Fock (HF) term, VHF(E), plus a dynamic
(polarization) term, �V (E), which is calculated using a

dispersion relation. Under favorable conditions of analyticity
in the complex E plane the real part �V (E) can be constructed
from the knowledge of the imaginary part W (E) on the real
axis through the dispersion relation

�V (E) = P
π

∫ ∞

−∞

W (E′)
E′ − E

dE′, (12)

where P means that the principal value of the integral should
be taken. Assuming that �V (E = E

F
) = 0, where E

F
is the

Fermi energy, Eq. (12) can also be be written in the subtracted
form

�V (E) = P
π

∫ ∞

−∞
W (E′)

(
1

E′ − E
− 1

E′ − EF

)
dE′. (13)

Here EF denotes the Fermi energy, determined as EF (Z,A) =
− 1

2 [Sn(Z,A) + Sn(Z,A + 1)] for neutrons and EF (Z,A) =
− 1

2 [Sp(Z,A) + Sp(Z + 1,A + 1)] for protons, where Si(Z,A)
denotes the separation energy of nucleon i from a nucleus
labeled by Z and A. The symmetry condition W (2EF − E) =
W (E) (for symmetric imaginary potentials) is used to extend
the imaginary part of the OMP for energies below the Fermi
energy, allowing for the calculation of the dispersive integral.

It is known that the energy dependence of the depth VHF(E)
is attributable to the replacement of a microscopic nonlocal HF
potential by a local equivalent [64]. For a Gaussian nonlocality
VHF(E) is a linear function of E for large negative E and is an
exponential for large positive E. Following Mahaux and Sartor
[51], the energy dependence of the smooth “Hartree-Fock” part
of the nuclear mean field is taken as that found by Lipperheide
[38],

VHF(E) = AHF exp[−λHF (E − EF )], (14)

where the parameters AHF and λHF are undetermined constants.
Equation (14) can be used to describe the HF potential in the
scattering regime [51] for E > 0.

It is useful to represent the variation of surface Ws(E)
and volume absorption potential Wv(E) depth with energy
in functional forms suitable for the dispersive optical-model
analysis, which are integrable analytically [65]. An energy
dependence for the imaginary volume term has been suggested
in studies of nuclear matter theory by Brown and Rho [66],

Wv(E) = Av

(E − EF )2

(E − EF )2 + (Bv)2
, (15)

where Av and Bv are undetermined constants. An energy
dependence for the imaginary-surface term has been suggested
by Delaroche et al. [49] to be

Ws(E) = As

(E − EF )2

(E − EF )2 + (Bs)2
exp(−Cs |E − EF |), (16)

where As, Bs , and Cs are undetermined constants.
The isospin dependence of the potential (the Lane term

[67,68]) was considered in real VHF(E) and imaginary surface
Ws(E) potentials as

AHF = V0

[
1 + (−1)Z

′+1 Cviso

V0

N − Z

A

]
, (17)

As = W0

[
1 + (−1)Z

′+1 Cwiso

W0

N − Z

A

]
, (18)
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where V0, Cviso, W0, and Cwiso are undetermined constants.
Many authors found that the imaginary volume potential does
not depend on the isospin.

For the energy dependence of the spherical spin-orbit
potential we used the functional form suggested by Koning
and Delaroche [69], which is convenient for the calculation of
the dispersive contribution [65], namely,

Vso(E) = Vspo exp[−λso(E − EF )], (19)

Wso(E) = Wspo
(E − EF )2

(E − EF )2 + (Bso)2
, (20)

where Vspo, λso, Wspo, and Bso are undetermined constants.

B. High-energy behavior of the volume absorption

The dispersive-optical-model analysis of neutron scatter-
ing on 27Al [70] showed the importance of the dispersive

contribution to describe σT (E) data for energies above
100 MeV using a nonsymmetric version of the volume absorp-
tive potential for large positive and large negative energies as
proposed by Mahaux and Sartor [51]. Similar behavior was
confirmed in 232Th dispersive coupled-channels analysis of
nucleon-induced reactions [19] and in combined dispersive
coupled-channels analysis of nucleon-induced reactions on
232Th and 238U [20,21]. We use the same formalism in this
work, which is briefly described below.

Following Mahaux and Sartor [51], the assumption that
the imaginary potential Wv(E) is symmetric about E′ = EF

[according to equation W (2EF − E) = W (E)] is modified
above some fixed energy Ea , which is expected to be close
to 60 MeV. However, this value is fairly arbitrary [51] and we
will use it as a fitting parameter. Let us assume the imaginary
potential to be used in the dispersive integral is denoted by
W̃v(E); then we can write [52]

W̃v(E) = Wv(E) − Wv(E)
(EF − E − Ea)2

(EF − E − Ea)2 + E2
a

, for E < EF − Ea (bound regime), (21)

and

W̃v(E) = Wv(E) + αv

[√
E+ (EF +Ea)3/2

2E
−3

2

√
(EF +Ea)

]
, for E > EF + Ea (scattering regime). (22)

These functional forms are chosen in such a way that the func-
tion and its first derivative are continuous at E′ = |EF − Ea|.
At large positive energies nucleons sense the “hard-core”
repulsive region of the nucleon-nucleon interaction and W̃v(E)
diverges like αv

√
E. Using a model of a dilute Fermi gas hard

sphere, the coefficient αv can be estimated to be equal to 1.65
MeV1/2 [43], but the actual value is a model parameter. On
the contrary, at large negative energies the volume absorption
decreases and goes asymptotically to zero. The asymmetric
form of the volume imaginary potential of Eqs. (21) and (22)
results in a dispersion relation that must be calculated directly
from Eqs. (12) and (13) and separates into three additive terms
[71,72]. Therefore, we write the dispersive volume correction

in the form

�Ṽv(E) = �Vv(E) + �V<(E) + αv�V>(E), (23)

where �Vv(E) is the dispersive correction owing to the
symmetric imaginary potential of Eq. (15), which is calculated
following Ref. [65], and the terms �V<(E) and �V>(E) are
the dispersive corrections owing to the asymmetric terms of
Eqs. (21) and (22), respectively, calculated as described in
Ref. [71]. Unfortunately, the equation giving the dispersive
correction �V>(E) in Ref. [71] contains several typos, so we
give the correct expression below.

Using the notation E
L

= E
F

+ Ea , the �V>(E) contribu-
tion for volume nonlocality correction is exactly

�V>(E) = 1

π
×
[√|E

F
| arctan

2
√

E
L
|E

F
|

E
L

− |E
F
| + E3/2

L

2E
F

ln
Ea

E
L

]

+ 1

π
×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
E ln

√
E+√

E
L√

E−√
E

L

+ 3
2

√
E

L
ln

E−E
L

Ea
+ E3/2

L

2E
ln

E
L

E−E
L

, for E > E
L
,

3
2

√
E

L
ln

24/3E
L

Ea
, for E = E

L
,

√
E ln

√
E+√

E
L√

E
L
−√

E
+ 3

2

√
E

L
ln

E
L
−E

Ea
+ E3/2

L

2E
ln

E
L

E
L
−E

, for E
L

> E > 0,

3
2

√
E

L
ln

E
L

Ea
+ 1

2

√
E

L
, for E = 0,

−√|E| arctan 2
√

E
L
|E|

E
L
−|E| + 3

2

√
E

L
ln

E
L
−E

Ea
+ E3/2

L

2E
ln

E
L

E
L
−E

, for E < 0.

(24)

The resulting dispersive correction for the asymmetric case
starts to increase already for energies above 50 MeV, making

a significant contribution to the real part of the OMP at
high energies. It should be noted that nonlocality corrections
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TABLE I. Dispersive coupled-channels optical-model potential parameters for nucleon-induced reaction on actinides.

Volume Surface Spin-orbit Coulomb

Real V0 = 50.47 + 0.0292 (A − 238) MeV Vspo = 6.1 MeV CCoul = 1.36 MeV
potential λHF = 0.00977 MeV−1 – λso = 0.005 MeV−1

parameters Cviso = 17.3 MeV
Av = 11.81 MeV W0 = 17.43 MeV Wspo = −3.1 MeV

Imaginary Bv = 81.81 MeV Bs = 10.57 MeV Bso = 160 MeV
potential Ea = 55 MeV Cs = 0.01331 MeV−1

parameters αv = 0.355 MeV1/2 Cwiso = 28.9 MeV
rHF = 1.2468 − 0.00183 (A − 238) fm rs = 1.1717 + 0.0041 (A − 238) fm rso = 1.1214 fm rc = 1.2894 fm

Potential aHF = 0.638 + 0.002134 (A − 238) fm as = 0.618 fm aso = 0.59 fm ac = 0.547 fm
geometry rv = 1.2657 fm

av = 0.6960 − 0.00021 (A − 238) fm

[Eqs. (21) and (22)] can be used either for the volume or
surface imaginary potential; however, Mahaux and Sartor [51]
have shown that nonlocality consideration for the surface
imaginary potential has a very small effect on the calculated
cross sections. Therefore, in this work we followed Ref. [52]
and only considered the effects of nonlocality in the volume
absorption.

C. Dispersive coupled-channels optical-model analysis

A survey of the experimental data for nucleon interaction
on actinide nuclei spanning from 0.001 to 150 MeV used in
the current work coincide with the data used by Soukhovitskii
and co-workers about 10 years ago [7]. The total cross-section
data considered cover all the critical energy points that are
necessary to reveal the structure owing to the Ramsauer
effect and extends up to 150 MeV. The experimental database
available for actinide nuclei other than 232Th and 238U is
very scarce, especially in the high-energy range; but some
angular distributions of scattered neutron and total cross-
section measurements are available for fissile actinides and
were considered in the fitting. Quasielastic scattering (p,n)
data on 232Th and 238U were also considered in the fit to fix
the isovector terms of the potential as described in Ref. [73].

The starting values of static deformation parameters β2,
β4, and β6 were taken from Finite Range Droplet Model
(FRDM) deformations theoretically derived by Möller et al.
[74]. Evaluated neutron strength functions for actinide nuclei,
S0 and S1, and potential scattering radius R′ [22,75] were
used for fine-tuning deformation parameters together with
measured (p,p′) angular distributions on excited states close
to the Coulomb barrier (Ep > 20 MeV) for actinide nuclei of
interest. The minimization procedure used the quantity χ2 as
described in previous references [19–21].

Both direct and statistical processes contribute to nucleon-
nucleus elastic scattering at these energies. However, accord-
ing to our estimation, the statistical processes are not important
above 3 MeV on actinides, so we neglect them in the OMP
derivation. The direct processes, increasingly dominant at
higher energies, can be described by the optical model.

The customary coupled-channels calculations were per-
formed by coupling the ground-state Kπ rotational band
with the selected members of vibrational (single-particle)

bands as shown in Appendix C for studied actinides. Optical-
model code OPTMAN [76,77] was used for OMP parameter
fitting. We were using symmetric surface and nonsymmetric
volume imaginary absorptive potentials, as described in the
previous section. The dispersion integrals were calculated
using analytical solutions [65,71] of dispersion relations with
Eq. (24) for the �V>(E) contribution.

In our formulation of the OMP in Eq. (10) the geometrical
parameters of the “Hartree-Fock” potential rHF and aHF are,
in general, different from geometrical parameters rv,av,rs,as

of the volume and surface absorptive potentials; however,
the real and imaginary spin-orbit terms share the same
geometric rso and aso parameters. Also, the surface �Vs and
volume �Vv dispersive corrections share the same geometry of
corresponding imaginary potentials Ws and Wv , respectively.
The employed actinide optical potential energy dependence is
very simple and we use energy-independent geometry and the
same OMP parameters for both neutron and proton projectiles.
A rather weak dependence of the dispersive potential geometry
on mass number A was previously observed [20,21]. The fitted
dispersive potential parameters are listed in Table I. These
parameters have to be complemented by a corresponding
coupling scheme, ground-state deformations, and coupling-
strength parameters (listed in Appendix C, Tables III–VIII) to
become a complete OMP parameter set for studied actinides.

VI. RESULTS AND DISCUSSION

The derived dispersive potential parameters shown in
Table I for actinide nuclei combined with deformation pa-
rameters and coupling strengths tabulated in Appendix C were
tested against selected experimental data. Average resonance
parameters are consistently described by our calculations,
as can be seen in Table II. A similar level of agreement
in calculated strength functions is seen for rigid-rotor OMP
results (RIPL 2408) within quoted evaluated uncertainties.
Current results for S0 are closer to evaluated ones for 235U
and 238U, but marginally worse for 239Pu. For S1, calculations
using the derived potential are closer to evaluations than those
using the RIPL 2408 potential, but S1 evaluated uncertainties
are large.

The aim of this work is to improve the description of neutron
inelastic scattering on actinides at incident neutron energies
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TABLE II. Comparison of calculated and experimental average resonance parameters. calculations using derived OMP are compared with
results using the RIPL 2408 potential [20,21]. The absolute uncertainties of evaluated strength functions and radii are given in parentheses.

Quantity Reference 232Th 233U 235U 238U 239Pu

This work 0.86 0.97 0.95 1.02 1.15
S0 [(eV)−1/2 10−4] RIPL 2408 OMP [20,21] 0.86 0.93 0.93 0.92 1.18

RIPL-3 evaluation [22] 0.84 (0.07) 0.90 (0.05) 0.98 (0.07) 1.03 (0.08) 1.20 (0.10)
Porodzinski et al. [78] 0.80 (0.08) 1.07 (0.14) 1.01 (0.10) 1.17 (0.10) 1.25 (0.13)
Mughabghab 2006 [79] 0.71 (0.04) 0.98 (0.09) 0.98 (0.07) 1.29 (0.13) 1.3 (0.10)

This work 1.66 1.41 1.60 1.68 2.05
S1 [(eV)−1/2 10−4] RIPL 2408 OMP [20,21] 1.72 2.20 1.93 1.72 2.19

RIPL-3 evaluation [22] 1.50 (0.30) – – 1.60 (0.20) –
Mughabghab 2006 [79] 1.35 (0.04) – 1.8 (0.30) 2.17 (0.19) 2.30 (0.40)

CSEWG 1991 [75] 1.60 (0.60) – 1.8 (0.30) 1.70 (0.30) 2.30 (0.40)
This work 9.68 9.60 9.58 9.52 9.50

R′ (fm) RIPL 2408 OMP [20,21] 9.68 9.56 9.51 9.64 9.49
Mughabghab 2006 [79] 9.65 (0.08) 9.75 (0.15) 9.63 (0.05) 9.60 (0.10) 9.48 (0.10)

CSEWG 1991 [75] 9.65 (0.30) 9.75 (0.20) 9.65 (0.10) – 9.60 (0.10)

from keVs to a few MeVs. Unfortunately, many neutron-
scattering physical observables (e.g., angular distributions
of elastic and inelastic scattering, inelastic scattering cross
sections, etc.) measured on actinides for incident neutron
energies below 3 MeV are influenced by a compound nuclear
decay that cannot be described by a coupled-channels optical
model alone, which is a direct reaction model. The total cross
section is one measured observable not affected by compound
nuclear processes.

Total cross sections for 233,235,238U and 232Th nuclei were
calculated with the derived potential parameters. An excellent
agreement with data in the whole energy range is achieved as
seen in Fig. 2. Similar agreement is also shown for the RIPL
2408 optical-model potential based on a rigid-rotor structure.
Calculated total cross sections do not show an improvement
for a new potential as both calculated results are within
quoted experimental uncertainty. However, it is remarkable
that the newly derived potential with extended couplings
preserves the achieved agreement with total cross section
and other scattering observables shown in Refs. [20,21],
while it allows predicting direct-interaction cross sections for
additional coupled-levels in the whole energy range of interest.

From the physical point of view, a newly derived OMP
utilizes a better description of the underlying nuclear struc-
ture compared to commonly used rigid-rotor potentials. The
inadequacy of the rigid-rotor description is clearly seen in the
deviation from the I (I + 1) rule of the energies of excited
states with large I in the ground-state rotational band of
even-even actinides. For example, for 238U and 232Th targets
increasingly larger differences from the I (I + 1) rule can
be seen for levels with I > 8 in the ground-state rotational
band, corresponding to excitation energies above 500 keV.
Such differences are mainly attributable to the change in
moment of inertia (stretching of the soft nucleus). Additionally,
K mixing increases for higher-spin states as, e.g., shown
in a soft-rotator structure description [23,24]. Therefore,
the accuracy of the rigid-rotor description of the nuclear
structure in even-even actinides rapidly deteriorates above
500 keV.

A lowest-energy vibrational mode in actinides is the
octupolar vibration (e.g., the octupolar bandhead in 238U is
located at 680 keV, as shown in Fig. 1). This vibrational mode

FIG. 2. Calculated total cross sections using the dispersive
potential with multiple-band coupling for neutron-induced reactions
on 233,235,238U and 232Th targets are compared with calculations using
the RIPL 2408 potential [20,21]. Experimental data are taken from
Refs. [80–87].

064605-10



NUCLEON SCATTERING ON ACTINIDES USING A . . . PHYSICAL REVIEW C 94, 064605 (2016)

results in an enhanced neutron inelastic scattering cross section
to negative-parity levels 1−, 3−, 5−, . . . , of the low-lying
octupolar band owing to the strong band coupling. As a result,
the neutron inelastic scattering cross sections increase from
680 keV up to 1 MeV in the region of utmost importance
for fast reactors. A smaller increase in inelastic scattering
cross sections of actinides is also observed owing to the strong
coupling of the ground-state band to other vibrational bands
(e.g., β and γ vibrations). The OMP derived in this work
offers a consistent description of the scattering of low-energy
neutrons on actinides that goes beyond the assumption of
rigid-rotor nuclear structure for those nuclei. However, the
question is how to show a clear advantage of new potential
using available experimental data?

It is generally accepted that differences of neutron total
cross sections among neighboring nuclei provide an unusually
stringent test of optical models [88–91]. At the same time it has
been shown that the standard optical-model treatment fails to
reproduce the observed differences of total cross sections for
tungsten isotopes [88]; incident neutron energies below 5 MeV
are especially challenging owing to the increasing impact of the
target nuclear structure on calculated cross sections. Indeed,
when the incident neutron energy becomes comparable with
the energy of excited nuclear levels, then the weak-coupling
assumption is not valid as the coupling becomes strong.
Under such conditions a commonly used distorted-wave Born
approximation (DWBA) method typically overestimates the
observed scattering cross sections on vibrational levels, as
shown in Ref. [2]. Only a coupled-channels calculation with
a consistent optical-model potential would allow describing
the observed cross section owing to the strong coupling of
vibrational bands.

We have already shown a good description of total cross
sections in Fig. 2. However, a description of total cross-section
differences is a much greater challenge. A natural test of the
success of our approach is to check calculated total cross-
section differences for several pairs of actinides vs measured
data at neutron incident energies below 5 MeV, where nuclear
structure plays an important role. Energy-averaged total cross-
section data measured by Poenitz in 1981 and 1983 [84,85]
on 239Pu, nat,238,235,233U, and 232Th targets have been selected
to benchmark our potential. Poenitz high-accuracy data goes
from 50 keV neutron incident energy up to 20 MeV, and data
were measured under the same conditions and at the same
installation, thereby minimizing any uncertainty in the ratio.
Energy-averaged total cross sections σtot for 232Th and 238U
nuclei measured by Abfalterer et al. [83] from 5 to 200 MeV
were also used to calculate the corresponding experimental
ratio R and associated experimental uncertainty. An small
shift (−0.01) of Poenitz data was applied for the experimental
R(232Th ,238U) ratio for a better matching of Abfalterer et al.
[83] data, well within the estimated uncertainty of the vertical
scale (0.02 [88]) arising from uncertainties in the areal
densities of the employed actinide targets.

Calculated total neutron cross-section data for 232Th and
233,235,238U and 239Pu nuclei were used to obtain the energy-
dependent ratio R(A1,A2) of the total cross-section difference
[σtot(A1) − σtot(A2)] of targets A1 and A2 to the correspond-
ing averaged total cross-section [σtot(A1) + σtot(A2)]/2 for the

RIPL 2408 potential [20,21] and the potential derived in this
work. Calculated ratios R are compared with experimental
ratios derived from Poenitz and Abfalterer data in Fig. 3
for the following target pairs: R(239Pu ,232Th), R(233Pu ,238U),
R(232Th ,238U), and R(235U ,238U). The measurements are very
well reproduced for all target pairs by the dispersive OMP
parameters shown in Table I combined with the corresponding
target deformation parameters and coupling strengths tabu-
lated in Appendix C. Therefore, the derived OMP for all five
studied nuclei is validated. Rigid-rotor (RIPL 2408) potential
[20–22] description of data is of inferior quality, especially
for incident neutron energies below 3 MeV, where nuclear
structure effects have the largest impact. Note that differences
seen in the figure are typically around 2%, being the largest
for R(239Pu ,232Th) at 50 keV (reaching about 5%). Such
differences are not noticeable in Fig. 2.

The depicted high-quality description of data with derived
potential at low incident neutron energies is attributable to
the improved description of the nuclear structure of target
nuclei considered in present calculations. The fact that such
description was achieved with exactly the same regional
potential for all targets with an energy-independent geometry
is evidence of the predictive power of the dispersive optical
model when combined with a proper description of the nuclear
structure of target nuclei.

The elastic and inelastic angular distributions on selected
ground-state band (GSB) coupled levels for the n + 238U
reaction below 3.0 MeV were not included in the OMP fit
as compound-nucleus contribution needs to be considered
at those energies. A comprehensive calculation of n + 238U
reactions was recently undertaken in Ref. [92]; calculated
angular distributions below 3 MeV were shown to be in very
good agreement with existing experimental data. An equally
good agreement was also shown for angular distributions of
scattered neutrons (including contributions from the lowest
levels of the ground-state rotational band) measured at higher
incident neutron energies from 4 up to 15 MeV [92].

Dietrich et al. [8] showed a strong impact on calculated
compound-nucleus formation cross section σCN(E), of the
number of coupled levels in the rigid-rotor model. Calculated
σCN(E) for n + 235,238U reactions using rigid-rotor RIPL 2408
potential (dashed line) is compared in Fig. 4 with calculations
using the new potential with full coupling (green solid line) or
with coupling reduced to GSB levels (black solid line). The
left panel shows results for the 235U target; calculated σCN(E)
from the potential derived in this work is much lower than the
RIPL 2408 results (using five coupled levels) below 3 MeV.
The observed difference is about 100 mb above 1 MeV (∼3%)
and reaches 300 mb (∼10%) at 100 keV. Such differences are
mainly attributable to the lack of saturation of the GSB coupled
levels as discussed by Dietrich et al. [8]. If we restrict the
number of coupled levels for the current potential to seven GSB
levels (K = 7/2− in Table VII), the results remain practically
the same below 3 MeV. A small difference is observed at higher
incident neutron energies owing to the extended coupling for
the 235U target, the full coupling result being slightly lower
than the one with GSB coupling. This result was expected as
the single-particle coupling of excited bands in odd-A nuclei
is much weaker than the collective coupling for vibrational
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FIG. 3. Energy dependence of the measured cross-section ratio vs calculated values using RIPL potential 2408 and the potential derived in
the current work with parameters shown in Table I combined with deformation parameters tabulated in Appendix C.

bands in even-even nuclei. For many applications, it will be a
very good approximation to couple seven levels or more of the
GSB in odd-A nuclei and neglect the multiple-band coupling.

The right panel of Fig. 4 shows σCN(E) calculations for
the 238U target. Again significant differences are seen below
3 MeV with the RIPL 2408 results (using five coupled levels)

compared to present work mainly owing to the lack of coupling
saturation. For this even-even target, stronger coupling owing
to vibrational collective levels induces larger differences
between the full coupling results (green solid line) and those
calculated with the GSB couplings (black solid line). Such
differences reach 3%, while no differences were practically
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FIG. 4. Energy dependence of the calculated compound-nucleus formation cross section on 235U and 238U targets using the rigid-rotor RIPL
2408 potential [20–22] (red dashed line) and the potential derived in the current work (solid green line). Calculations using the present work
potential with coupling limited to the ground-state rotational band are represented by a solid black line.
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observed for odd-A targets. The impact of collective levels
on calculated σCN(E) remains important from 50 keV up
to 3 MeV. Therefore, we may conclude that multiple-band
coupling including vibrational bands is very important for
even-even targets to accurately calculate σCN(E) in the whole
energy range of interest for applications.

VII. CONCLUSIONS

Tamura’s coupling formalism [5,93] has been extended to
consider low-lying bands of vibrational (single-particle) nature
observed in even-even (odd-A) actinides. These additional
excitations are introduced as a perturbation to the underlying
rigid-rotor structure that is known to describe well the ground-
state rotational band of major actinides.

A dispersive isospin-dependent coupled-channels optical-
model analysis of nucleon scattering on actinide nuclei from
1 keV to 150 MeV has been undertaken. A new optical-model
potential is derived that couples multiple vibrational (single-
particle) bands and is valid for even-even (odd-A) targets.
The isovector terms and the very weak dependence of the
geometrical parameters on mass number A allowed applying
the derived potential parameters to neighboring actinide nuclei
with a great confidence, provided that a suitable multiband
coupling scheme could be defined. A single set of potential
parameters given in Table I is able to describe all available
scattering data on major actinides provided that the given
coupling schemes and effective deformation parameters are
used. While the potential is common for all actinides, the
coupling scheme depends on the low-lying excitations of a
given target. Fitted deformations of the ground-state rotational
band are in reasonable agreement with FRDM deformations
theoretically derived by Möller et al. [74], as seen in
Table III.

Excellent agreement in the whole energy range between cal-
culations using derived dispersive coupled-channels optical-
model potential and the experimental total cross section for
242,240,239Pu, 238,235,233U, and 232Th nuclei is obtained. A better
nuclear structure description of the target nucleus also allowed
an excellent description of total cross-section differences
between pairs of actinide nuclei for neutron incident energies

from 50 keV up to 3 MeV, fulfilling the main goal of this
study: to improve the description of the neutron scattering
cross sections on actinides at low neutron incident energies.

In summary, we have shown that a proposed disper-
sive coupled-channels phenomenological optical model with
multiple-band coupling is capable of predicting “optical”
nucleon-induced cross section on actinides at a few percent
level and gives an excellent description of the total cross-
section differences among neighboring actinide nuclei (both
odd and even-even) from 50 keV up to 150 MeV. Multiple-band
coupling is needed for a proper calculation of compound-
nucleus formation cross sections on even-even targets in the
whole energy range of interest. However, it will be a very
good approximation to couple only ground-state band levels
in odd-A nuclei as long as the coupling is saturated [i.e., the
σCN(E) cross section does not change with increasing number
of coupled levels].

Current results inspire confidence in the use of the proposed
OMP with the corresponding coupling schemes to improve
evaluations of neutron scattering data at low neutron incident
energies as needed for many applications. Open issues like the
use of the soft-rotator model to describe structure of even-even
targets within the generalized optical-model potential will be
addressed in future works.
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APPENDIX A: MULTIPOLAR EXPANSION OF THE DEFORMED OPTICAL MODEL POTENTIAL
IN THE LABORATORY SYSTEM

Let us derive the expressions for nuclear potential expansion in spherical harmonics. If we insert nuclear shape Eq. (2) into the
optical potential to get deformed nuclear potential, and make a Taylor expansion up to the first order, we can obtain the following
expression for the potential expansion [similar to Eq. (3) in Sec. II]:

V (r,R(θ ′,ϕ′))  Vrot(r,Raxial(θ
′)) +

[
R0

∂

∂R
V (r,R(θ ′,ϕ′))

]
R=Raxial(θ ′)

(
β20

[
δβ2

β20
cos γ + cos γ − 1

]
Y20(θ ′)

+ (β20 + δβ2)
sin γ√

2
[Y22(θ ′,ϕ′) + Y2−2(θ ′,ϕ′)] + β3

{
cos ηY30(θ ′) + sin η√

2
[Y32(θ ′,ϕ′) + Y3−2(θ ′,ϕ′)]

})
+ (potential higher derivatives’ terms). (A1)
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The expansion was made around the equilibrium axially symmetric spheroidal rotor shape Raxial(θ ′) (instead of the spherical
shape R0 used by Tamura [5]), where

Raxial(θ
′) = R0

{
1 +

∑
λ=2,4,6,8,...

βλ0Yλ0(θ ′)

}
. (A2)

The radial shape Raxial(θ ′) corresponds to the shape used in the traditional rigid-rotor model, and is also mirror symmetric (as
only even λ � 2 are allowed in the sum). We know that the rigid rotor model is an excellent approximation for the ground-state
rotational band of actinide nuclei. On the other side, it is clear that V (r,R0) and V (r,Raxial(θ ′)) differ. The coupled-channels
potential derived by using a Taylor expansion around the spherical shape R0 = const does not describe the nucleon scattering
on deformed nuclei with large deformation (e.g., rare earth, actinides, ...). Using the rigid-rotor axial potential as a zero
approximation solves this problem; therefore, the aforementioned expansion is a key point in our derivation. It should be noted
that Raxial(θ ′) = R(θ ′,ϕ′)|(δβ2=0,γ=0,β3=0), i.e., the axial rigid rotor corresponds to the stable static deformation if δβ2, γ , and β3

deformation parameters are equal to zero.
Introducing the notation

(i) V1(r,θ ′) ≡ Vrot(r,Raxial(θ ′)) = [V (r,R(θ ′,ϕ′))]R=Raxial(θ ′),
(ii) V2(r,θ ′) ≡ [R0

∂
∂R

V (r,R(θ ′,ϕ′))]R=Raxial(θ ′),

the multipole expansion of both quantities Vi(r,θ ′) (with i = 1,2) in terms of the spherical harmonics with axial symmetry Yλ0(θ ′)
is performed,

Vi(r,θ
′) =

∑
λ(even)

v
(i)
λ (r)Yλ0(θ ′), (A3)

where

v
(i)
λ (r) = 2π

∫ π

0
Vi(r,θ

′)Yλ0(θ ′)sinθ ′dθ ′. (A4)

Note that the radial function v
(1)
λ (r) corresponds to the Legendre expansion coefficient of the rigid-rotor potential, which is

usually already available in existing coupled-channels codes.
Replacing the introduced notations into Eq. (A1) leads to

V (r,θ ′,ϕ′) ≡ V (r,R(θ ′,ϕ′)) =
∑

λ=0,2,4,...

v
(1)
λ (r)Yλ0(θ ′) +

∑
λ=0,2,4,...

v
(2)
λ (r)Yλ0(θ ′)

(
β20

[
δβ2

β20
cos γ + cos γ − 1

]
Y20(θ ′)

+ (β20 + δβ2)
sin γ√

2
[Y22(θ ′,ϕ′) + Y2−2(θ ′,ϕ′)] + β3

{
cos ηY30(θ ′) + sin η√

2
[Y32(θ ′,ϕ′) + Y3−2(θ ′,ϕ′)]

})
. (A5)

By using the formula for the product of two spherical harmonics and replacing Yλν(θ ′,ϕ′) (expressed in the intrinsic system
of reference) with

∑
μ Dλ

μ,νYλμ(θ,ϕ), where θ and ϕ are the polar angles referred to the space-fixed coordinates and Dλ
μ,ν are the

rotation Wigner functions, one obtains

V (r,θ,ϕ) =
∑

λ=0,2,4,...

v
(1)
λ (r)

∑
μ

Dλ
μ,0Yλμ(θ,ϕ) + β20

[
δβ2

β20
cos γ + cos γ − 1

] ∑
λ=0,2,4,...

[
ṽ

(2)
λ (r)

]
0

1√
2

∑
μ

Dλ
μ,0Yλμ(θ,ϕ)

+ (β20 + δβ2)
sin γ√

2

∑
λ=2,4,6,...

[
ṽ

(2)
λ (r)

]
2

∑
μ

[(
Dλ

μ,2 + Dλ
μ,−2

)
Yλμ(θ,ϕ)

]

+β3

⎧⎨⎩cos η
∑

λ=1,3,5,...

[
ṽ

(3)
λ (r)

]
0

∑
μ

Dλ
μ,0Yλμ(θ,ϕ)

⎫⎬⎭+ β3

⎧⎨⎩ sin η√
2

∑
λ=3,5,7,...

[
ṽ

(3)
λ (r)

]
2

∑
μ

[(
Dλ

μ,2 + Dλ
μ,−2

)
Yλμ(θ,ϕ)

]⎫⎬⎭
= Vdiag(r) + Vcoupling(r,θ,ϕ), (A6)

where Vdiag is the λ = μ = 0 component of the first term of Eq. (A6), while Vcoupling is the rest and

[
ṽ

(2)
λ (r)

]
0 =

∑
λ′=0,2,4,...

v
(2)
λ′ (r)

[
5(2λ′ + 1)

4π (2λ + 1)

]1/2

〈λ′200|λ0〉2, (A7)

[
ṽ

(2)
λ (r)

]
2 =

∑
λ′=0,2,4,...

v
(2)
λ′ (r)

[
5(2λ′ + 1)

4π (2λ + 1)

]1/2

〈λ′200|λ0〉〈λ′202|λ2〉, (A8)
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[
ṽ

(3)
λ (r)

]
0 =

∑
λ′=0,2,4,...

v
(2)
λ′ (r)

[
7(2λ′ + 1)

4π (2λ + 1)

]1/2

〈λ′300|λ0〉2, (A9)

[
ṽ

(3)
λ (r)

]
2 =

∑
λ′=0,2,4,...

v
(2)
λ′ (r)

[
7(2λ′ + 1)

4π (2λ + 1)

]1/2

〈λ′300|λ0〉〈λ′302|λ2〉, (A10)

with the following constraints:

(i) only even λ′ values are allowed in the summations which appear in the expressions of ṽ
(2)
λ (r) and ṽ

(3)
λ (r) in Eqs. (A7) to

(A10), because v
(2)
λ′ = 0 for odd λ′ (from the axial and reflection symmetry of the equilibrium nuclear shape);

(ii) only even λ values are allowed for the quadrupole vibrational coupling ṽ
(2)
λ (r) because of the 〈λ′200|λ0〉 Clebsch-Gordan

coefficient in Eqs. (A7) and (A8), because λ′ is even;
(iii) only odd λ values are allowed for the octupole vibrational coupling term ṽ

(3)
λ (r) because of the 〈λ′300|λ0〉 Clebsch-Gordan

coefficient in Eqs. (A9) and (A10), because λ′ is even;
(v) [ṽ(2)

0 ]2 = [ṽ(3)
1 ]2 = 0 owing to the second Clebsch-Gordan coefficient in Eqs. (A8) and (A10), as projection μ = 2 cannot

be larger than corresponding momentum λ.

The deformed optical-model potential of Eq. (A6), through its variables δβ2, γ , β3, and η (β20 is the static deformation and
does not play any role in the couplings) guarantees coupling of vibrational bands (coupling between rotational states, described
by the Wigner’s D functions, are made through the spherical harmonics). Thus, for example, the first term usually corresponds
to the intraband coupling (e.g., couples the rotational band members built on the same vibrational state); the second term couples
the ground-state band with quadrupolar vibrational states (e.g., β-vibrational and γ -vibrational bands); the third term couples
states in the ground-state band with states of the octupolar vibrational band; and so on.

APPENDIX B: COUPLED-CHANNELS MATRIX ELEMENTS

We will show how to calculate coupling matrix elements describing transitions between nuclear levels |i〉 and |f 〉 owing to the
deformed potential [using potential expansion (A6) derived in Appendix A], assuming that the incident projectile is a nucleon
with spin s = 1/2. Following Tamura’s notation and procedures from Refs. [5,93], and using the nuclear wave functions, we can
calculate the coupled-channels matrix elements needed in reaction calculations. As discussed, we have to analyze the even-even
and odd-nuclei separately.

1. Even-even nuclei

The nuclear wave function � ≡ |i〉 was defined in Eq. (5). Using the even-even wave function for both the initial and final
nuclear states |i〉 and |f 〉 (where

−→
j = −→

l + −→s is the total angular momentum of the projectile equal to the vector sum of the
orbital angular momentum

−→
l and the projectile spin −→s ), and following Eqs. (26–29) given by Tamura [5], we can derive the

coupled-channels matrix elements in terms of the reduced matrix elements as follows:

〈i|V (r,θ,ϕ)|f 〉 =
I∑
K

AIτ
K

I ′∑
K ′

AI ′τ ′
K ′

{ ∑
λ=0,2,4..

v
(1)
λ (r)

〈
IK

∣∣∣∣Dλ
;0

∣∣∣∣I ′K
〉
A

(
ljI ; l′j ′I ′; λJ

1

2

)
δK,K ′

+ 〈ni(λ = 2)
∣∣β20

[
δβ2

β20
cos γ + cos γ − 1

]∣∣nf (λ = 2)
〉

×
∑

λ=0,2,4,...

[
ṽ

(2)
λ (r)

]
0

〈
IK

∣∣∣∣Dλ
;0

∣∣∣∣I ′K
〉
A

(
ljI ; l′j ′I ′; λJ

1

2

)
δK,K ′

+ 〈ni(λ = 2)
∣∣(β20 + δβ2)

sin γ√
2

∣∣nf (λ = 2)
〉 ∑
λ=2,4,6,...

[
ṽ

(2)
λ (r)

]
2

〈
IK

∣∣∣∣(Dλ
;2 + Dλ

;−2

)∣∣∣∣I ′K ′〉
×A

(
ljI ; j ′l′I ′; λJ

1

2

)
+ 〈

ni(λ = 3)
∣∣β3 cos η

∣∣nf (λ = 3)
〉

×
∑

λ=1,3,5,...

[
ṽ

(3)
λ (r)

]
0

〈
IK

∣∣∣∣Dλ
;0

∣∣∣∣I ′K
〉
A

(
ljI ; l′j ′I ′; λJ

1

2

)
δK,K ′ + 〈

ni(λ = 3)
∣∣β3

sin η√
2

∣∣nf (λ = 3)
〉

×
∑

λ=3,5,7,...

[
ṽ

(3)
λ (r)

]
2

〈
IK

∣∣∣∣(Dλ
;2 + Dλ

;−2

)∣∣∣∣I ′K ′〉A(ljI ; l′j ′I ′; λJ
1

2

)⎫⎬⎭. (B1)
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Note that the collective variables δβ2, γ , β3, and η are averaged over the corresponding initial |ni(λ)〉 and final |nf (λ)〉 vibrational
wave functions. The diagonal elements in K and K ′ correspond to the case μ = 0 (�K = 0 transition) and usually describe the
intraband transitions. If we neglect small deformation parameters (δβ2 = β3 = 0) and assume axial symmetry (γ = 0), then the
coupling matrix element Eq. (B1) is simplified to the one equivalent to the axial rigid rotor,

〈i|V (r,θ,ϕ)|f 〉 =
∑

λ=0,2,4,...

v
(1)
λ (r)〈IK

∣∣∣∣Dλ
;0

∣∣∣∣I ′K
〉
A

(
ljI ; l′j ′I ′; λJ

1

2

)
δK,K ′ . (B2)

The pure geometrical factor A(ljI ; j ′l′I ′; λJ 1
2 ) was given by Tamura [see Eq. (28) in Ref. [5] written for s = 1/2; note a typo,

there is a missing hat on l and l′]. The A geometrical factor depends on the total momentum of the system J and is given by

A

(
ljI ; l′j ′I ′; λJ

1

2

)
= 1

4π
(−1)J− 1

2 −I ′+l+l′+ 1
2 (l′−l)

√
(2l + 1)(2l′ + 1)(2j + 1)(2j ′ + 1)〈ll′00|λ0〉W (jIj ′I ′; Jλ)W

(
lj l′j ′;

1

2
λ

)
,

(B3)

where 〈ll′00|λ0〉 corresponds to the Clebsch-Gordan and W (jIj ′I ′; Jλ) to the Racah coefficients [5,93]. It is important to remark
that the coefficient A(ljI ; l′j ′I ′; λJ 1

2 ) is present in all sums in Eq. (B1) and contains the Clebsch-Gordan coefficient 〈ll′00|λ0〉
that imposes the parity selection rule on the orbital momentum l,l′ of the incident nucleon and the transition multipolarity λ that
l + l′ + λ has to be an even number.

The expression of the coupling potential given by Eq. (B1) is general under the assumption of small deformations around
equilibrium axially symmetric shape (i.e., δβ2, γ , and β3 are small). If we further restrict to the monopole component of the axial
derivative of the potential V2(r,θ ′) because it carries the largest contribution, the following expression follows:

〈i|V (r,θ,ϕ)|f 〉 =
I∑
K

AIτ
K

I ′∑
K ′

AI ′τ ′
K ′

{ ∑
λ=0,2,4,...

v
(1)
λ (r)

〈
IK

∣∣∣∣Dλ
;0

∣∣∣∣I ′K
〉
A

(
ljI ; l′j ′I ′; λJ

1

2

)
δK,K ′ + v

(2)
0 (r)√

4π

×
{
〈ni(λ = 2)|β20

[
δβ2

β20
cos γ + cos γ − 1

]
|nf (λ = 2)〉〈IK

∣∣∣∣D2
;0

∣∣∣∣I ′K
〉
A

(
ljI ; l′j ′I ′; 2J

1

2

)
δK,K ′

+ 〈ni(λ = 2)
∣∣(β20 + δβ2)

sin γ√
2

∣∣nf (λ = 2)
〉〈
IK

∣∣∣∣(D2
;2 + D2

;−2

)∣∣∣∣I ′K ′〉A(ljI ; l′j ′I ′; 2J
1

2

)
+ 〈ni(λ = 3)

∣∣β3 cos η
∣∣nf (λ = 3)

〉〈
IK

∣∣∣∣D3
;0

∣∣∣∣I ′K
〉
A

(
ljI ; l′j ′I ′; 3J

1

2

)
δK,K ′

+ 〈
ni(λ = 3)

∣∣β3
sin η√

2

∣∣nf (λ = 3)
〉〈
IK

∣∣∣∣(D3
;2 + D3

;−2

)∣∣∣∣I ′K ′〉A(ljI ; l′j ′I ′; 3J
1

2

)}}
. (B4)

To derive the expression (B4) above, we have considered the fact that the terms that contribute with the main (monopolar) v
(2)
0 (r)

component of V2(r,θ ′) are the ones with λ = 2 for quadrupolar and λ = 3 for octupolar deformations, which automatically leads
to keeping in Eq. (B1) only the terms

[
ṽ

(2)
2 (r)

]
0 = [

ṽ
(2)
2 (r)

]
2 = [

ṽ
(3)
3 (r)

]
0 = [

ṽ
(3)
3 (r)

]
2  v

(2)
0 (r)√

4π
. (B5)

Moreover, the monopole component v
(2)
0 (r) of V2(r,θ ′) can be shown to be proportional to the quadrupole component of the

axial potential Vrot(r,Raxial(θ ′)) if we restrict to the first-order term of its expansion in the parameter β20:

Vrot(r,Raxial(θ
′)) = v0(r) +

[
R0

∂

∂Raxial
Vrot(r,Raxial(θ

′))
]

βλ0=0

×
∑

λ=2,4,6,...

βλ0Yλ0(θ ′)

+
∑
t>1

[
Rt

0
∂t

∂tRaxial
Vrot(r,Raxial(θ

′))
]

βλ0=0

×
( ∑

λ=2,4,6,...

βλ0Yλ0(θ ′)

)t

. (B6)
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Performing the multipole expansion of the axial rigid-rotor potential in spherical harmonics Yλ0(θ ′) according to Eq. (A3) and
comparing with Eq. (B6), we obtain the expressions for expansion coefficients v

(1)
0 (r) and v

(2)
0 (r) as

v
(1)
0 (r)Y00 = v0(r) +

∑
t>1

[
Rt

0
∂t

∂tRaxial
Vrot(r,Raxial(θ

′))
]

βλ0=0

×
[∑

βλ0

λ=2,4,6,...

Yλ0(θ ′)

]t

00

= v0(r) + O
(
β2

λ0

)  v0(r), (B7)

v
(1)
2 (r)Y20(θ ′) =

[
R0

∂

∂Raxial
Vrot(r,Raxial(θ

′))
]

βλ0=0

β20Y20(θ ′) +
∑
t>1

[
Rt

0
∂t

∂tRaxial
Vrot(r,Raxial(θ

′))
]

βλ0=0

×
[∑

βλ0

λ=2,4,6,...

Yλ0(θ ′)

]t

20

=
[
R0

∂

∂Raxial
Vrot(r,Raxial(θ

′))
]

βλ0=0

β20Y20(θ ′) + O
(
β2

λ0

)

[
R0

∂

∂Raxial
Vrot(r,Raxial(θ

′))
]

βλ0=0

β20Y20(θ ′). (B8)

And finally we obtain [
R0

∂

∂Raxial
Vrot(r,Raxial(θ

′))
]

βλ0=0

 v
(1)
2 (r)

β20
, (B9)

which, however, is the monopole term of the axially symmetric derivative of the potential, V2(r,θ ′). Therefore,

v
(1)
2 (r)

β20
 v

(2)
0 (r)√

4π
. (B10)

Including Eq. (B10) into Eq. (B4), we get the expression

〈i|V (r,θ,ϕ)|f 〉 =
I∑
K

I ′∑
K ′

AIτ
K AI ′τ ′

K ′

{ ∑
λ=0,2,4,..

v
(1)
λ (r)

〈
IK

∣∣∣∣Dλ
;0

∣∣∣∣I ′K
〉
A

(
ljI ; l′j ′I ′; λJ

1

2

)
δK,K ′ + v

(1)
2 (r)

β20

×
{〈

ni(λ = 2)
∣∣β20

[
δβ2

β20
cos γ + cos γ − 1

]∣∣nf (λ = 2)
〉〈
IK

∣∣∣∣D2
;0

∣∣∣∣I ′K〉A
(

ljI ; l′j ′I ′; 2J
1

2

)
δK,K ′

+ 〈ni(λ = 2)
∣∣(β20 + δβ2)

sin γ√
2

∣∣nf (λ = 2)
〉〈
IK

∣∣∣∣(D2
;2 + D2

;−2

)∣∣∣∣I ′K ′〉A(ljI ; l′j ′I ′; 2J
1

2

)

+ 〈ni(λ = 3)
∣∣β3 cos η

∣∣nf (λ = 3)
〉〈
IK

∣∣∣∣D3
;0

∣∣∣∣I ′K
〉
A

(
ljI ; l′j ′I ′; 3J

1

2

)
δK,K ′

+ 〈
ni(λ = 3)

∣∣β3
sin η√

2

∣∣nf (λ = 3)
〉〈
IK

∣∣∣∣(D3
;2 + D3

;−2

)∣∣∣∣I ′K ′〉A(ljI ; l′j ′I ′; 3J
1

2

)}}
, (B11)

where all radial functions v
(1)
λ (r) correspond to the Legendre expansion coefficient of the rigid-rotor potential.

To the lowest order in the dynamic deformations (i.e., all products of dynamical deformation variables are neglected),
which are averaged over the corresponding vibrational wave functions, the expression which has been coded in OPTMAN is
obtained,

〈i|V (r,θ,ϕ)|f 〉 =
I∑
K

I ′∑
K ′

AIτ
K AI ′τ ′

K ′

{ ∑
λ=0,2,4,..

v
(1)
λ (r)

〈
IK

∣∣∣∣Dλ
;0

∣∣∣∣I ′K
〉
A

(
ljI ; l′j ′I ′; λJ

1

2

)
δK,K ′

+ v
(1)
2 (r)

{[[
β2
]

eff + [γ20]eff
]〈
IK

∣∣∣∣D2
;0

∣∣∣∣I ′K
〉
A

(
ljI ; l′j ′I ′; 2J

1

2

)
δK,K ′ + [γ22]eff

〈
IK

∣∣∣∣(D2
;2 + D2

;−2

)∣∣∣∣I ′K ′〉
×A

(
ljI ; l′j ′I ′; 2J

1

2

)
+ [β30]eff

〈
IK

∣∣∣∣D3
;0

∣∣∣∣I ′K
〉
A

(
ljI ; l′j ′I ′; 3J

1

2

)
δK,K ′

+ [β32]eff
〈
IK

∣∣∣∣(D3
;2 + D3

;−2

)∣∣∣∣I ′K ′〉A(ljI ; l′j ′I ′; 3J
1

2

)}}
, (B12)
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E. SH. SOUKHOVITSKIĨ et al. PHYSICAL REVIEW C 94, 064605 (2016)

where the radial functions v
(1)
λ (r) are calculated by Eq. (A4).

Considering the orthogonality of the vibrational wave functions 〈ni(λ)|nf (λ)〉 = δif , the effective deformation coefficients
defining the interband coupling strength are given as follows:

(i) [β2]eff ≡ 〈ni(λ = 2)| δβ2

β20
|nf (λ = 2)〉 = 〈ni(β)| δβ2

β20
|nf (β)〉,

(ii) [γ20]eff ≡ 〈ni(λ = 2)|[cos γ − 1]|nf (λ = 2)〉 = 〈ni(γ )|[cos γ − 1]|nf (γ )〉 ≈ − 1
2 〈ni(γ )|[γ 2]|nf (γ )〉,

(iii) [γ22]eff ≡ 〈ni(λ = 2)|[ 1√
2

sin γ ]|nf (λ = 2)〉 = 〈ni(γ )|[ 1√
2

sin γ ]|nf (γ )〉 ≈ 1√
2
〈ni(γ )|[γ ]|nf (γ )〉,

(iv) [β30]eff ≡ 〈ni(λ = 3)|[ β3

β20
cos η]|nf (λ = 3)〉, and

(v) [β32]eff ≡ 〈ni(λ = 3)|[ 1√
2

β3

β20
sin η]|nf (λ = 3)〉.

Note that the cos γ Taylor expansion should be taken up to the second order to consider axial transitions between the excited
quadrupolar γ band (K = 0+) and the ground state (K = 0+); otherwise, no such transitions will be allowed. The above-defined
deformation factors can be treated as “effective” coupling strength of the excited bands as follows:

(i) [β2]eff, quadrupolar (λ = 2) axial transitions with �K = μ = 0 (e.g., between the K = 0+ β band and the ground state,
or intraband transitions);

(ii) [γ20]eff, quadrupolar (λ = 2) axial transitions with �K = μ = 0 (e.g., between the K = 0+ γ band and the ground
state);

(iii) [γ22]eff, quadrupolar (λ = 2) nonaxial transitions with �K = μ = ±2 (e.g., between the K = 2+ nonaxial quadrupolar
band and the ground state);

(iv) [β30]eff, octupolar (λ = 3) axial transitions with �K = μ = 0 (e.g., between the K = 0− axial octupolar band and the
ground state), and

(v) [β32]eff, octupolar (λ = 3) nonaxial transitions with �K = μ = ±2 (e.g., between the K = 2− nonaxial octupolar band
and the ground state).

If we had allowed for octupolar vibrations λ = 3 with odd projections (μ = ±1,±3), then we would have two additional
effective deformations [β31]eff and [β33]eff that correspond to octupolar (λ = 3) nonaxial transitions with �K = 1 (μ = ±1) and
�K = 3 (μ = ±3). Those transitions add an additional complexity to the coupling scheme if they are taken into account.

Considering the corresponding wave functions, the matrix elements in Eq. (B12) above contain the product of three Wigner
functions which can be calculated by the expression given by Davydov [31],∫

�

D∗J
MK (�)Dj1

m1k1
(�)Dj2

m2k2
(�)d� = 8π2

2J + 1
〈j1j2m1m2|JM〉〈j1j2k1k2|JK〉. (B13)

The general expression for coupling reduced matrix elements in even-even nucleus is given below,

〈
IK

∣∣∣∣[Dλ
;μ + (−1)μDλ

;−μ

]∣∣∣∣I ′K ′〉 = √
2I ′ + 1√

(1 + δK0)(1 + δK ′0)

[1 + (−1)λ+μ+λph+λ′
ph ]

2

× [〈I ′λK ′μ|IK〉 + (−1)I
′+λ′

ph〈I ′λ − K ′μ|IK〉
+ (−1)I+λph〈I ′λK ′μ|I − K〉 + (−1)I+I ′+λph+λ′

ph〈I ′λ − K ′μ|I − K〉], (B14)

where (−1)λ+μ+λph+λ′
ph = (−1)λ+λph+λ′

ph (as μ = even), defining the following selection rules:

(i) if the transition occurs intraband, then λph = λ′
ph; therefore, λ = even;

(ii) if the transition occurs between quadrupolar vibrational bands and the ground state, then λph = 0,λ′
ph = 2

(or λph = 2,λ′
ph = 0) [therefore λ = even (only quadrupolar transitions allowed)];

(iii) if the transition occurs between octupolar vibrational bands and the ground state λph = 0,λ′
ph = 3 (or λph = 3,λ′

ph = 0)
[therefore, λ = odd (only octupolar transitions allowed)];

(iv) transitions between excited vibrational bands are suppressed as the change in the number of vibrational phonons �n � 2
(one phonon should be annihilated and one created for such transitions).

Note that above selection rules may be expanded if we consider the K mixing in the nuclear wave functions.
Let us study intraband transitions in the ground-state rotational band when K = K ′ = 0 and the projection μ = 0. Obviously,

λph = λ′
ph = 0 (no phonons in the ground state); therefore, the transition multipolarity λ should be even. Additionally, I and I ′

are even numbers (I,I ′ = 0,2,4, . . .). From Eq. (B14) by doing some simple algebra, and considering that a factor of 2 arises
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from the left side of the equation for μ = 0, we obtain〈
IK

∣∣∣∣Dλ
;0

∣∣∣∣I ′K〉 = √
2I ′ + 1〈I ′λK0|IK〉. (B15)

Tamura studied the coupling of states that belong to the ground-state rotational band in even-even nuclei and derived exactly the
same formula (see Eq. (41) of Ref. [5]).

2. Odd-A nuclei

The wave function � for an odd-A nucleus was defined in Eq. (8), and it reduces to Eq. (9) if we assume axial symmetry
(in that case K is a good quantum number being K = �). In the following equations we will omit additional quantum numbers
denoted as τ for simplicity. Using the Eq. (8) for the odd-A nuclear wave function for both the initial and the final nuclear states
〈i| and |f 〉 we can derive the coupled-channels matrix elements in the same way as in the even-even case, using the similar
structure of the even-even and odd wave functions.

The Eq. (B12) should be slightly modified for odd-A nuclei as

〈i|V (r,θ,ϕ)|f 〉 =
∑
K>0

′
CIτ

K

∑
K ′>0

′
CI ′τ ′

K ′ α(ν,ν ′)

{ ∑
λ=0,2,4,..

v
(1)
λ (r)

〈
IK

∣∣∣∣Dλ
;0

∣∣∣∣I ′K
〉
A

(
ljI ; l′j ′I ′; λJ

1

2

)
δK,K ′

+ v
(1)
2 (r) ×

{[
[β2]eff + [γ20]eff

]〈
IK

∣∣∣∣D2
;0

∣∣∣∣I ′K
〉
A

(
ljI ; l′j ′I ′; 2J

1

2

)
δK,K ′

+ [γ22]eff
〈
IK

∣∣∣∣(D2
;2 + D2

;−2

)∣∣∣∣I ′K ′〉A(ljI ; l′j ′I ′; 2J
1

2

)
+ [β30]eff

〈
IK

∣∣∣∣D3
;0

∣∣∣∣I ′K
〉

× A

(
ljI ; l′j ′I ′; 3J

1

2

)
δK,K ′ + [β32]eff

〈
IK

∣∣∣∣(D3
;2 + D3

;−2

)∣∣∣∣I ′K ′〉A(ljI ; l′j ′I ′; 3J
1

2

)}}
, (B16)

where the overlapping of the single-particle wave functions is defined by an overlap factor α(ν,ν ′) = 〈χν |χν ′ 〉.
Because in practice it is simpler to deal with single-particle states of constant angular momentum j , we introduce the expansion

χν =
∑
j�

cν
j�|j�〉, (B17)

where |j�〉 are the single-particle basis functions that are eigenfunctions of j 2 and jz′ (spherical basis in the intrinsic x ′,y ′,z′
system). As pointed out in Ref. [35], in the limit of zero deformation (spherical shell model limit) all but one of the coefficients
cν
j� are equal to zero for a particular state ν, and the summation extends only over the possible values of j . The real coefficients

cν
j� determine the mixing of the spherical basis function |j�〉 into the single-particle wave function χν in the deformed nuclear

field. Those coefficients satisfy the symmetry conditions cν
j� = (−1)j−1/2πχcν

j−� (see p. 408 in Ref. [34]), where πχ is the parity
of the intrinsic wave function.

If we additionally consider the basis orthogonality condition 〈j�|j ′�′〉 = δjj ′δ��′ , we can write for the overlap factor the
following expression:

α(ν,ν ′) ≡
∑
j�

cν
j� cν ′

j�. (B18)

The expansion coefficients cν
j� and cν ′

j� are real numbers and correspond to different single-particle bandheads ν and ν ′ that
define the interband coupling. Note that in the asymmetric case ellipsoidal symmetry imposes additional restrictions on odd-A
wave function, in particular, (K − �) and (K ′ − �′) must be even integers. These restrictions are indicated by the apostrophe on
the summation symbols

∑
K>0

′ and
∑

K ′>0
′ in Eq. (B16).

Starting from the Eq. (B14), and considering that μ = even and I , I ′ and K in odd-A nuclei are half-integer (therefore,
δK,0 = δK ′,0 = 0, and I + I ′ = odd), and replacing the phases (−1)I+λph with (−1)I−1/2πχ [and (−1)I

′+λ′
ph by (−1)I

′−1/2πχ ′], as
discussed in the odd-A nucleus wave function section, we obtain for the reduced matrix elements for odd-A nuclei the following
general expression:〈

IK
∣∣∣∣[Dλ

;μ + (−1)μDλ
;−μ

]∣∣∣∣I ′K ′〉 = √
2I ′ + 1

[1 + (−1)λπχπχ ′]

2

[〈I ′λK ′μ|IK〉 + (−1)I
′−1/2πχ ′ 〈I ′λ − K ′μ|IK〉

+ (−1)I−1/2πχ 〈I ′λK ′μ|I − K〉 + (−1)I+I ′−1πχπχ ′ 〈I ′λ − K ′μ|I − K〉]. (B19)

For axially symmetric nuclei K = � become good quantum numbers, and the overlap factor α(ν,ν ′) = δK,K ′ ; therefore, only
multiband couplings with �K = 0 are allowed. Axial symmetry is a good approximation for odd-A actinides, where interband
coupling strengths are much weaker than in even-even nuclei.
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The following selection rules are a consequence of constraints from Eq. (B19):

(i) for intraband transitions the initial and final states are the same, i.e., χν ≡ χ ′
ν , therefore, πχπχ ′ = +1, λ = even, and

α(ν,ν) = ∑
j�(cν

j� )2 ≡ 1 owing to the orthogonality condition of the spherical basis;
(ii) for interband transitions, if πχ = πχ ′ , then λ = even; if πχ �= πχ ′ , then λ = odd. In both cases α(ν,ν ′) � 1. Note that

for this case the intrinsic states χν and χ ′
ν are different (and the coefficients cν

j� and cν ′
j� are also different) even if the

bandheads have the same approximate value of K .

As we did for the even-even reduced matrix elements, lets study the limiting case when the projection μ = 0, and we assume
that only intraband transitions are possible. As discussed above for intraband transitions, we get χν ≡ χ ′

ν ′ and πχπχ ′ = +1,
α(ν,ν) ≡ 1, and λ = even. Additionally, K is a positive number (K = 1/2,3/2, . . .) for odd-A nuclei; therefore, for K = K ′ we
obtain that 〈I ′λ − K ′0|IK〉 = 〈I ′λK ′0|I − K〉 = 0, and we can rewrite the expression (B19) as follows (note that a factor of 2
arises from the left side of the equation for μ = 0),〈

IK
∣∣∣∣Dλ

;0

∣∣∣∣I ′K〉 =
√

2I ′ + 1

2

[〈I ′λK0|IK〉 + (−1)I+I ′−1〈I ′λ − K0|I − K〉]. (B20)

Using the equalities 〈I ′λ − K0|I − K〉 = (−1)I
′+λ−I 〈I ′λK0|IK〉, (−1)2I ′ = −1 for I ′ half-integer, and using the fact that

λ = even, we can easily derive 〈
IK

∣∣∣∣Dλ
;0

∣∣∣∣I ′K
〉 = √

2I ′ + 1〈I ′λK0|IK〉. (B21)

The above-derived formula is exactly the same derived by Tamura (see Eq. (41) of Ref. [5]), as well as equal to Eq. (B15), which
is valid for ground-state band transitions both for even-even and odd-A nuclei assuming axial symmetry.

As mentioned above, big differences in the coupling strength are seen for interband couplings between even-even and odd-A
cases. These differences reflect the fact that the interband coupling in even-even nuclei is a pure collective transition, while in
odd-A nuclei the corresponding strength is reduced by a single-particle overlap factor α(ν,ν ′) � 1. This is a consequence of
the very different nuclear structure in even-even and odd-A nuclei; for the latter the couplings between low-lying states occur
between rotational bands built on single-particle excited states and therefore are much weaker. It is also worth noting that the
overlap factor α(ν,ν ′) should be set to zero for transitions between single-particle bands with bandheads K and K ′ without
overlap (e.g., between the isomeric K ′ = 1/2+ and the ground-state K = 7/2− rotational bands of 235U).

APPENDIX C: COUPLING SCHEME AND EFFECTIVE DEFORMATIONS FOR STUDIED ACTINIDES

The coupled-channels coupling schemes employed in the dispersive optical-model calculations for neutron-induced reactions
on 238U, 232Th, 239Pu, 235U, and 233U are tabulated below. For all selected actinides the ground-state rotational band was assumed
to be described by an axial rigid rotor with static deformations β2, β4, and β6 given in Table III. The multiband coupling strength is
defined by effective deformations [βλμ]eff averaged over vibrational wave functions for the even-even targets 238U and 232Th given
in Tables IV and V, respectively. For odd-A nuclei, the effective deformations are multiplied by a corresponding single-particle
factor α(ν,ν ′) reflecting the overlap of the wave functions of single-particle states ν and ν ′, with quantum numbers K and
K ′, respectively. Note that the overlap is different from zero because of the K and �-mixing for deformed wave functions
characterized by approximate quantum numbers � ( K) and �′ (K ′). Effective coupling parameters for odd-A nuclei are
given in Tables VI, VII, and VIII for 239Pu, 235U, and 233U, respectively.

TABLE III. The ground-state (GS) deformation parameters of actinides allowing the best fit of experimental data vs theoretical FRDM
deformation parameters derived by Möller et al. [74].

Target β2 β4 β6

Present FRDM [74] [21] Present FRDM [74] [21] Present FRDM [74] [21]

232Th 0.211 0.207 0.213 0.063 0.108 0.069 0.0018 0.003 0.0017
233U 0.200 0.207 0.203 0.129 0.117 0.100 −0.0152 0.008 −0.0300
235U 0.220 0.215 0.211 0.109 0.110 0.107 −0.057 −0.005 −0.0021
238U 0.230 0.215 0.228 0.062 0.093 0.062 −0.0096 −0.015 −0.0056
239Pu 0.236 0.223 0.219 0.086 0.095 0.095 −0.031 −0.018 −0.0016
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TABLE IV. Interband effective coupling parameters and coupling scheme for n + 238U reaction, 20 coupled levels. The excited vibrational
bandhead energies are 679.8 keV (octupole K = 0−), 927 keV (quadrupolar γ band K = 0+), 993 keV (quadrupolar β band K = 0+), and
1060.3 keV (nonaxial quadrupolar band K = 2+). Effective deformations [βλμ]eff are defined after Eq. (B12). The ground-state band and the
IAS band static deformations are the same. IAS need to be coupled for proton-induced reactions (the last two listed states).

Excitation energy (MeV) J π K Effective deformation

0.0000 0+ 0 GS
0.4490 2+ 0 GS
0.1484 4+ 0 GS
0.3074 6+ 0 GS
0.5174 8+ 0 GS
0.6798 1− 0 [β30]eff = 0.062
0.7313 3− 0 [β30]eff = 0.062
0.7759 10+ 0 GS
0.8267 5− 0 [β30]eff = 0.062
0.9270 0+ 0 [γ 2]eff = 0.011
0.9663 2+ 0 [γ 2]eff = 0.011
0.9664 7− 0 [β30]eff = 0.062
0.9930 0+ 0 [β2]eff = 0.024
1.0373 2+ 0 [β2]eff = 0.024
1.0564 4+ 0 [γ 2]eff = 0.011
1.0603 2+ 2 [γ ]eff = 0.07
1.1057 3+ 2 [γ ]eff = 0.07
1.1507 9− 0 [β30]eff = 0.062
19.493 0+ 0 IAS
19.538 2+ 0 IAS

TABLE V. Interband effective coupling parameters and coupling scheme for the n + 232Th reaction, 20 coupled levels. The excited
vibrational bandhead energies are 714.4 keV (octupole K = 0−), 730.6 keV (quadrupolar γ -band K = 0+), 1078.6 keV (quadrupolar β-band
K = 0+), and 785.3 keV (nonaxial quadrupolar band K = 2+). [βλμ]eff are defined after Eq. (B12). The ground-state band and the IAS band
static deformations are the same. IAS need to be coupled for proton-induced reactions (the last two listed states).

Excitation energy (MeV) J π K Effective deformation

0.0000 0+ 0 GS
0.4937 2+ 0 GS
0.1621 4+ 0 GS
0.3333 6+ 0 GS
0.5569 8+ 0 GS
0.7144 1− 0 [β30]eff = 0.047
0.7306 0+ 0 [γ 2]eff = 0.008
0.7742 2+ 0 [γ 2]eff = 0.008
0.7744 3− 0 [β30]eff = 0.047
0.7853 2+ 2 [γ ]eff = 0.008
0.8268 10+ 0 GS
0.8296 3+ 2 [γ ]eff = 0.008
0.8730 4+ 0 [γ 2]eff = 0.008
0.8838 5− 0 [β30]eff = 0.047
1.0429 7− 0 [β30]eff = 0.047
1.0786 0+ 0 [β2]eff = 0.01
1.1217 2+ 0 [β2]eff = 0.01
1.2496 9− 2 [β30]eff = 0.047
19.4934 0+ 0 IAS
19.5383 2+ 0 IAS
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TABLE VI. Interband effective coupling parameters and coupling scheme for the n + 239Pu reaction, 19 coupled levels. The excited
single-particle bandhead energies are 285.51 keV (K = 5/2+) and 469.8 keV (K = 1/2−). The excited band at 391.6 keV (K = 7/2−) is
not coupled as it corresponds to �K = 3 and parity change; therefore, we would need a nonzero β33 effective deformation, but the octupolar
vibrations with odd-μ were assumed to be zero. [βλμ]eff are defined after Eq. (B16). The single-particle overlap factor α(ν,ν ′) is given by
Eq. (B18).

Excitation energy (MeV) J π K Effective deformation

0.000 00 1/2+ 1/2 GS
0.007 86 3/2+ 1/2 GS
0.057 27 5/2+ 1/2 GS
0.075 70 7/2+ 1/2 GS
0.163 76 9/2+ 1/2 GS
0.192 80 11/2+ 1/2 GS
0.285 51 5/2+ 5/2 α(5/2,1/2) × [β32]eff = 0.025
0.318 50 13/2+ 1/2 GS
0.330 10 7/2+ 5/2 α(5/2,1/2) × [β32]eff = 0.025
0.358 10 15/2+ 1/2 GS
0.387 40 9/2+ 5/2 α(5/2,1/2) × [β32]eff = 0.025
0.462 00 11/2+ 5/2 α(5/2,1/2) × [β32]eff = 0.025
0.469 80 1/2− 1/2 α(1/2,1/2) × [β30]eff = 0.062
0.492 10 3/2− 1/2 α(1/2,1/2) × [β30]eff = 0.062
0.505 60 5/2− 1/2 α(1/2,1/2) × [β30]eff = 0.062
0.519 30 17/2+ 1/2 GS
0.556 20 7/2− 1/2 α(1/2,1/2) × [β30]eff = 0.062
0.583 00 9/2− 1/2 α(1/2,1/2) × [β30]eff = 0.062
0.661 10 11/2− 1/2 α(1/2,1/2) × [β30]eff = 0.062

TABLE VII. Interband effective coupling parameters and coupling scheme for n + 235U reaction, 19 coupled levels. The excited
single-particle bandhead energies are 393.2 keV (K = 3/2+), 445.6 keV (K = 7/2+), and 637.8 keV (K = 3/2−). The excited
band built on the isomeric state (K = 1/2+) is not coupled to the ground-state band as the isomerism means that the overlap
of the corresponding single-particle bandheads is negligible small. The excited bands at 129.3 keV (K = 5/2+) and 332.8 keV (K = 5/2+) are
not coupled as they correspond to �K = 1 and parity change, therefore we would need a non-zero β31 effective deformation, but the octupolar
vibrations with odd-μ were assumed to be zero. [βλμ]eff are defined after Eq. (B16). The single-particle overlap factor α(ν,ν ′) is given by
Eq. (B18).

Excitation energy, (MeV) J π K Effective deformation

0.0000 7/2− 7/2 GS
0.0462 9/2− 7/2 GS
0.1030 11/2− 7/2 GS
0.1715 13/2− 7/2 GS
0.2491 15/2− 7/2 GS
0.3385 17/2− 7/2 GS
0.3932 3/2+ 3/2 α(3/2,7/2) × [β32]eff = 0.040
0.4267 5/2+ 3/2 α(3/2,7/2) × [β32]eff = 0.040
0.4394 19/2− 7/2 GS
0.4456 7/2+ 7/2 α(7/2,7/2) × [β30]eff = 0.0455
0.4738 7/2+ 3/2 α(3/2,7/2) × [β32]eff = 0.040
0.5106 9/2+ 7/2 α(7/2,7/2) × [β30]eff = 0.0455
0.5332 9/2+ 3/2 α(3/2,7/2) × [β32]eff = 0.040
0.5512 21/2− 7/2 GS
0.5788 11/2+ 7/2 α(7/2,7/2) × [β30]eff = 0.0455
0.6082 11/2+ 3/2 α(3/2,7/2) × [β32]eff = 0.0400
0.6378 3/2− 3/2 α(3/2,7/2) × [γ22]eff = 0.030
0.6645 5/2− 3/2 α(3/2,7/2) × [γ22]eff = 0.030
0.6902 13/2+ 7/2 α(7/2,7/2) × [β30]eff = 0.0455
0.7012 7/2− 3/2 α(3/2,7/2) × [γ22]eff = 0.030
0.7550 9/2− 3/2 α(3/2,7/2) × [γ22]eff = 0.030
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TABLE VIII. Interband effective coupling parameters and coupling scheme for n + 233U reaction, 16 coupled levels. The excited single-
particle bandhead energies are 298.8 keV (K = 5/2−) and 398.5 keV (K = 1/2+). The excited band at 311.9 keV (K = 3/2+) is not coupled
as it corresponds to �K = 1 and no parity change, therefore we would need a non-zero β21 effective deformation, but the quadrupole vibrations
with odd-μ were assumed to be zero. [βλμ]eff are defined after Eq. (B16). The single-particle overlap factor α(ν,ν ′) is given by Eq. (B18).

Excitation energy, (MeV) J π K Effective deformations

0.00000 5/2+ 5/2 GS
0.04035 7/2+ 5/2 GS
0.09216 9/2+ 5/2 GS
0.15523 11/2+ 5/2 GS
0.22947 13/2+ 5/2 GS
0.29880 5/2− 5/2 α(5/2,5/2) × [β30]eff = 0.065
0.31460 15/2+ 5/2 GS
0.32080 7/2− 5/2 α(5/2,5/2) × [β30]eff = 0.065
0.35380 9/2− 5/2 α(5/2,5/2) × [β30]eff = 0.065
0.39760 11/2− 5/2 α(5/2,5/2) × [β30]eff = 0.065
0.39850 1/2+ 1/2 α(1/2,5/2) × [β32]eff = 0.034
0.41170 17/2+ 5/2 GS
0.41580 3/2+ 1/2 α(1/2,5/2) × [β32]eff = 0.034
0.45610 5/2+ 1/2 α(1/2,5/2) × [β32]eff = 0.034
0.51755 19/2+ 5/2 GS
0.63527 21/2+ 5/2 GS
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