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It is shown that the use of a proper form factor in the study of the pygmy dipole resonance (PDR) is of paramount
importance in order to determine the correct values for the relevant quantities characterizing these new modes.
Form factors calculated within a microscopic model are compared with those provided by different macroscopic
collective models. Their differences, shown in the shape and magnitude, are reflected on the calculated cross
section and therefore jeopardize the extracted physical quantities.
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I. INTRODUCTION

Among the new features revealed in the studies of nuclei
far from the stability line, one of the most interesting aspects
present in nuclei with neutron excess is the occurrence of a
small peak in the low energy region of the dipole strength
distribution in almost all nuclei with a very high N/Z
ratio [1,2]. The importance of these states, interesting by
themselves, is enhanced by their relation with the symmetry
energy term of the equation of state (EOS) [3–6]. Theoretical as
well as experimental studies have shown that for these dipole
states an investigation using an isoscalar probe is possible
due to the well-established mixture of isoscalar and isovector
natures of these states [2,7]. This is due to the distinctive
behavior of the neutron and proton transition densities, which
are in phase inside the nucleus, while at the surface only
the neutron one gives the major contribution, the proton one
being almost zero. Therefore, both the isoscalar and isovector
transition densities have a peak at the surface region, arising
just from the neutron contribution and for this reason having
almost the same intensity [1,2,8,9].

In the last few years many experiments have been done with
an isoscalar probe to study the pygmy dipole resonance (PDR)
states [2,10–16] on stable nuclei. Many more experiments
have been already performed or are presently planned with
nuclei far from the stability line. In all these cases the
extraction of information about the strength and the relative
energy-weighted sum rule (EWSR) percentage is mostly based
on distorted-wave Born approximation (DWBA) calculations
which depend very much on the models used for the inelastic
form factor. Therefore the use of proper form factors is of
paramount importance in the deduction of these physical
quantities. In this paper, different form factors are compared
and their differences in the corresponding differential cross
section are illustrated. These form factors are calculated
within the double-folding procedure whose main ingredients
are given by the transition densities of the states taken into
consideration.

II. TRANSITION DENSITIES

A. Macroscopic model for the isovector giant
dipole resonance state

In macroscopic models the collective vibrational modes are
considered as oscillations of the nuclear surface and therefore
they are often associated with the deformation of the density,
usually described in terms of the derivative of the ground-state
density. Consequently the macroscopic form factors have been
mainly expressed in terms of the derivative of the optical
potential which governs the elastic scattering of the colliding
nuclei. These macroscopic form factors describe quite well
the inelastic excitation process of most of the collective states
[17–19] except for the dipole and monopole modes. In
particular, for the dipole states one has to take care of the
center-of-mass motion which gives rise to a spurious state and
does not correspond to a real excitation of the nucleus. For
this mode specific models have been formulated to take into
account this aspect. The Steinwedel and Jensen [20] model
as well as the Goldhaber and Teller [21] models pictured the
isovector giant dipole resonance (GDR) state as an oscillation
of neutrons against protons: one maintaining the nucleons
within a rigid sphere (Steinwedel and Jensen) and the other
allowing the rigid sphere of protons and neutrons to vibrate
one against the other (Goldhaber and Teller). In the latter model
the spurious c.m. motion is taken into account by scaling in a
proper way the proton and neutron transition densities [22]:
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where δ1 is the so-called deformation length and ρ
p

(ρ
n
)

are the proton (neutron) densities. If the proton and neutron
densities have the same radial form, that is, their ratio is equal
to N/Z, then the isoscalar transition density is zero. This is
expected to be a good approximation for nuclei with N = Z;
however, when N > Z the proton and neutron densities may
have different radial shapes producing an isoscalar transition
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density different from zero and therefore making possible an
excitation of the isovector GDR by an isoscalar probe. Indeed,
expanding it in the neutron excess parameter, according to
Satchler [22], the isoscalar transition density for the GDR
state can be written in the form

δρIS
GDR(r) ≈ δ1γ

(
N − Z

A

)[
dρ(r)

dr
+ R0

3

d2ρ(r)

dr2

]
, (2)

where R0 = (Rn + Rp)/2 is the average radius of the total
nuclear density ρ(r) and the parameter γ is related to the
measure of the neutron skin �R = Rn − Rp by the relation
γ (N − Z)/A = 3/2(�R/R0) [23]. The isoscalar transition
density is therefore, to leading order, directly proportional to
the size of the neutron skin.

B. Macroscopic model for the high-lying isoscalar dipole state

In addition to the giant dipole resonance another collective
state is expected due to 3�ω nuclear transitions generated
by the second-order �L = 1 transition operator and which
can be seen as a compressional mode. Also for this isoscalar
dipole excitation a macroscopic collective model description
is possible. Such formulation has been done in Refs. [24,25]
where a macroscopic collective transition density has been
extracted from the isoscalar dipole sum rule. Assuming that the
isoscalar dipole energy-weighted sum rule is fully exhausted
by a single collective state, the corresponding isoscalar
transition density, as deduced by Harakeh and Dieperink (HD)
is [25]
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where the coupling parameter β1 is
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E2 and E0 being the giant quadrupole and giant monopole
excitation energies, respectively. The distance R is the
half-density radius of the mass distribution. The transition
density expression contains the c.m. correction, and the terms
containing ε may be disregarded for nuclei with A � 40. It
is straightforward to show that the condition of translational
invariance

∫
δρHD(r)r3dr = 0 is satisfied.

C. Macroscopic model for the pygmy state

Most of the microscopic theoretical calculations have
shown that the excitation of the pygmy dipole resonances is
due, in the most part, to the presence of a neutron excess
and this has been verified in both stable and unstable nuclei.
The most popular picture behind this mode corresponds to
an out of phase oscillation of a core, formed by proton and
neutron, against a neutron skin which may be formed by the

FIG. 1. (Color online) Schematic representation of the PDR state
generated as an oscillation of the core against the neutron skin.

neutron excess. This can be visualized in the cartoon shown in
Fig. 1 where the oscillation is schematically shown. To keep
the center of mass steady, the displacement of the core and the
skin, along the axis which join the center of mass of the skin
and the core, should be in the form

�xS = −x
Z + NC

A
, �xC = x

NS

A
,, (5)

where the indices C and S stand for core and skin, respectively.
The density is then the sum of three terms

ρ(r) = ρ
p
(r) + ρC

n
(r) + ρS

n
(r), (6)

and if one assumes that the transition densities are given by a
modified Goldhaber-Teller model [21]
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one can construct the isoscalar and isovector transition
densities
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The neutron core density as well as the neutron skin one can
be calculated within the Hartree-Fock (HF) approach imposing
that the core is formed by the protons and neutrons occupying
equal orbitals. We are implicitly assuming that the protons
are more strongly interacting with the neutrons of the core
than with the neutrons of the skin. We can then calculate the
derivatives numerically in order to get the transition densities
of Eqs. (7) and (8).

D. Microscopic model for the isoscalar dipole states

The transition densities that we commonly use are deter-
mined with the wave function and the X and Y amplitudes
coming from a HF plus random-phase approximation (RPA)
calculation. The explicit expression can be found in Eq. (B.37)
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FIG. 2. (Color online) RPA transition densities for the (a) low-
lying dipole states and (b) ISGDR for 68Ni calculated with the SGII
interaction. As indicated in the legend, we plot the proton, neutron,
isoscalar, and isovector components.

of Ref. [19]. Here, we present calculations done for the nucleus
68Ni with a SGII interaction [26] and in Fig. 2 we show the
transition densities for the PDR state (at E = 10.4 MeV) and
the ones for the isoscalar giant dipole resonance (ISGDR),
which is predicted by our RPA calculation at an excitation
energy E = 32.2 MeV [see Fig. 1(b) of Ref. [27]]. The
transition densities for protons (black dashed line) and neutron
(red dot-dashed line) as well the isoscalar (black solid line) and
isovector (blue dotted line) combinations are shown separately
in the figure. In Fig. 2(a) the trend shown is typical of the
PDR states: the proton and neutron transition densities are
in phase inside the nucleus while at the surface only the
neutrons contribute to the isovector and isoscalar components
which have the same shape and strength. Indeed, in most of
the microscopic many-body calculations this state is found
to be essentially a neutron particle-hole mode. In Fig. 2(b),
the characteristic shapes of a compressional mode is shown
by the transition densities of the ISGDR: the proton and
neutron contributions are always in phase giving rise to a strong
isoscalar component with a node close to the nuclear radius.

The comparison among the transition densities of the
Macroscopic Pygmy Model (MPM) described by Eq. (7)
with the ones calculated within the RPA model is shown in
Fig. 3, where proton and neutron transition densities for the
two different approaches are plotted. The HF ground-state
densities were used for protons and neutrons. In this case the
normalization has been done imposing that the integral of
the transition density for protons (times r3dr) for the MPM
was equal to the corresponding RPA one. The comparison
shows that the general behaviors of the transition densities
are not very different; however, they differ in some details
which are important for the cross-section calculations. The
transition densities for protons are very similar but the one
corresponding to the MPM has the peak shifted to a peripheral
nuclear region. The maxima of the neutron transition densities
are at the same surface region but the microscopic goes down
slower then the macroscopic one. This can be ascribed to the
fact that the microscopic transition densities are built up from
the particle-hole configurations which may have, in particular
for the neutron component, tails longer than those associated
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FIG. 3. (Color online) Comparison among the RPA transition
densities and the ones calculated within our MPM [Eq. (7)] for the
low-lying dipole states for 68Ni. As indicated in the legend, we plot
the proton and neutron transition densities for both microscopic and
macroscopic calculations.

with the occupied single-particle orbits. For the macroscopic
transition densities, since they are constructed as derivative of
the ground-state densities, the difference between their peaks
cannot be larger then the difference of their density radii.

We move now to a comparison with the isoscalar HD model.
To compare the HD transition density with the microscopic
RPA one, a normalization of the δρHD is in order. Because
of the translational invariance condition the normalization is
given by imposing the following equality:∫

δρRPA(r)r5dr =
∫

δρHD(r)r5dr. (9)

The calculation is again done for the nucleus 68Ni and in
Fig. 4 the microscopic RPA isoscalar transition density is
compared with δρHD for two dipole states of 68Ni. The same
ground-state density (HF with the SGII interaction) employed
for the RPA calculations has been used to build up the δρHD. In
Fig. 4(b), the transition densities for the ISGDR are shown for
the two different calculations. The transition densities show
the typical pattern of a compressional mode with a node in the
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FIG. 4. (Color online) Comparison between the isoscalar micro-
scopic (RPA) transition densities (solid black line) and the one
calculated according to Eq. (3) (HD) (red dashed line) for two dipole
states of 68Ni: (a) PDR state, (b) ISGDR state.
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FIG. 5. (Color online) Comparison among the microscopic
(RPA) transition densities, one calculated according to Eq. (3) (HD),
and one by the MPM, Eq. (7), for the PDR state of 68Ni.

interior of the nucleus. The transition densities calculated with
the approach followed in Ref. [25] are almost identical, after
normalization, to the RPA one. On the contrary, the agreement
for the low-lying dipole state, found at E = 10.4 MeV, is
not good: for δρHD the peak at the nuclear surface is too
high and it goes down a bit faster than the RPA one. The
differences are due to the fact that, as it is well known and as it
is shown in Fig. 2, the PDR has a strong isovector component
which, by construction, is not present in the transition densities
built up in Ref. [25]. So if one adopts for the PDR state
the same prescription used for the ISGDR, one is implicitly
assuming that the pygmy state is a pure isoscalar state which
is in contradiction to what has been found in many theoretical
many-body calculations.

The global comparison between the microscopic transition
densities and those calculated with the macroscopic models of
Eqs. (3) and (7) is shown in Fig. 5. In Fig. 5(a), the isoscalar
transition density of Eq. (8a) is shown (blue dot-dashed
line) together with the other two isoscalar transition densities
already shown in Fig. 4. The agreement with the microscopic
RPA one seems better at least in the peripheral region. In
the MPM, one can also calculate the isovector transition
density [Eq. (8b)] and this is compared with the RPA one in
Fig. 5(a). In this case the agreement with the microscopic one
is even better. So our crude, raw model seems to contain the
fundamental characteristics which are of central importance
in the definition of the PDR state: a mixing of isoscalar and
isovector components which makes possible the population of
the state via both isoscalar and isovector probes.

We are aware of the fact that other macroscopic mod-
els, much more sophisticated than the one presented here,
have been developed for this low-lying state, such as the
incompressible three-fluid model [28] (protons, neutrons of
the core and the neutrons excess) in the same spirit of the
Steinwedel-Jensen model [20]. In this model a low-lying
dipole state is found as an oscillation of the neutrons and
protons of the core against the neutrons excess, although the
calculated strength was too weak. A modified version of this
model is given in Ref. [29] where only two incompressible
fluids were considered, namely, the core and the neutron
excess. The strength of the low-lying dipole state coming out is

in reasonable agreement with the experimental data available
at that time [30], for some β stable nuclei having few neutron
excess. Another macroscopic approach that takes explicitly
into account the neutron skin [31] follows the Goldhaber-Teller
prescription [21], finding results similar to the ones obtained
in Ref. [29]. Another macroscopic model where the nucleus is
considered as a spherical piece of elastic continuous medium
(static core) [32] has investigated the PDR in terms of an
elastodynamic excitation mechanism of peripheral dynamic
layers implying the pure isoscalar nature of the state.

III. NUCLEAR FORM FACTORS

The description of inelastic nuclear excitation can be
done within different approaches ranging from the first-order
theory, like DWBA where elastic scattering is dominant,
to the coupled-channel models where higher order effects,
like the strong coupling to other states outside the one
taken in consideration, are explicitly worked out. Along with
these full quantal calculations, semiclassical models have
been developed and used for the description of heavy-ion
collision and inelastic cross-section calculations. In all these
approaches, one of the most important ingredients is the
determination of the form factors.

The expression of the form factors can be derived either
within a macroscopic collective model or in a microscopic
approach. One of the most effective ways to construct a
microscopic form factor is by using the well-known double-
folding procedure [17,33]. In this method the double-folding
potential between two heavy ions is obtained by integrating
the nucleon-nucleon interaction over the densities of the two
nuclei. In a similar way the form factors are constructed by
using the density of one nucleus on one side and the transition
densities of the exited nucleus on the other side.

In previous work [8,9,34] we have followed this procedure
and the internal structure of the nucleus has been described by
means of a many-body model (often HF plus RPA calculations
were used) which yielded microscopic neutron and proton
transition densities. In addition one should include the isospin-
dependent part of the nucleon-nucleon interaction

v12 = v0(r12) + v1(r12)τ 1 · τ 2, (10)

where the isoscalar part v0 generates an isoscalar ion-ion
potential and the isovector term v1 gives an isospin-dependent
folding potential; here the τ i’s are the isospins of the nucleons.
With this choice the form factors have two components with
the following forms:

F0 =
∫∫ [

δρA
n (r1) + δρA

p (r1)
]

×v0(r12)
[
ρB

p (r2) + ρB
n (r2)

]
r2

1 dr1r
2
2 dr2, (11)

F1 =
∫∫ [

δρA
n (r1) − δρA

p (r1)
]

×v1(r12)
[
ρB

n (r2) − ρB
p (r2)

]
r2

1 dr1r
2
2 dr2. (12)

where the δρi (i = n,p) are the transition densities of the state
under study of nucleus A which is excited by the mean field of
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FIG. 6. (Color online) Form factors for the system 68Ni+ 12C for
the PDR state left frame and for the ISGDR right frame. All of
them are calculated with the double-folding procedure but starting
from different transition densities: microscopic RPA, HD, and MPM
[Eq. (7)].

nucleus B. In the particular case when ρn/ρp = (N/Z), then
the form factor (12) is zero when one or both partners of the
reaction have N = Z [17]. For v0 and v1 we use the M3Y
nucleon-nucleon interaction, Reid type [35], whose explicit
expressions can be found in Ref. [33]. This interaction is not
density dependent and it has been successfully used for the
description of several cases of elastic and inelastic reactions.
The implementation of a density dependence shows that the
obtained potential are almost not distinguishable. However,
when different density dependences are taken into account
there are some differences among the corresponding potential
obtained. However, these differences are in the interior part of
the nucleus while at the surface the potentials are practically
identical [36]. Therefore, since the reactions studied with this
model explore the peripheral region of the two colliding nuclei,
the use of the M3Y, as we employ it, seems to be well justified.

The calculation of the form factors are done in the
momentum-space making use of the Fourier transform because
the calculation with this method is fast and convenient [33].

With the transition densities constructed as described in
the previous section we can calculate the corresponding form
factors. This has been done for the system 68Ni+ 12C which
will be the subject of an experimental investigation in the near
future. The nuclear form factors have been calculated with the
double-folding procedure with the three transition densities
described above and the results are shown in Fig. 6 for the two
dipole states under study.

For the ISGDR state, the microscopic nuclear form factor
(solid black line) and the one calculated with the Harakeh
and Dieperink (HD) transition densities (red dashed line) are
almost identical in all the significant distance range as can be
seen in Fig. 6(b). Only in the very peripheral region can one
appreciate some difference and this almost certainly will not
have any effect when used for cross-section calculations.

On the contrary, strong differences can be appreciated in the
comparisons in the PDR state. In Fig. 6(a), the red dashed line,
corresponding to the HD form factor, is entirely different from
the microscopic one (black solid line) both in the intensity

and especially in the slope in the most important surface
region. Also for the form factor calculated with the transition
density of the MPM the agreement is not at all satisfactory,
although the position of the second maximum is the same as the
microscopic one. This may be surprising since, at first glance,
it seems that our isoscalar macroscopic transition density was
closer to the microscopic one than the HD one (see Fig. 5).
These differences have an implication on the differential cross
section.

IV. INELASTIC CROSS SECTION

Once the form factors are constructed, the inelastic cross
section can be calculated within the full quantal coupled-
channel model or within its semiclassical version, among
others. To appreciate and single out the differences in the
form factors calculated in the previous section we have chosen
to perform the inelastic cross section calculations with the
DWBA approach. We have done DWBA calculations for the
system 68Ni + 12C at 10 MeV/u with the code DWUCK4 [37].

As it was expected from the shape of the form factors, the
differential cross section for the ISDR state, shown in Fig. 7(b),
for the microscopic form factors and the HD ones are almost
indistinguishable. This result shows, once again, that this state
is a pure isoscalar state and it is well described by the procedure
employed in Refs. [24,25]. On the other hand, the agreement
for the PDR case is not good: the results corresponding to the
HD form factors are higher with respect to the microscopic
one up to a factor of 3 in the more important forward angular
region. Also for our macroscopic pygmy model the results are
far from the microscopic ones with the difference that they
differ by the same factor in the whole angular region. This
can be ascribed to the different transition density shapes at
the surface of the nucleus. The distinct slopes in the surface
region (see Fig. 3) give rise to different slopes in the same
region of the form factors. This is the part which gives the
stronger contribution to the excitation process since we are
dealing with surface processes. Indeed, the almost factor of 3
in the external region of the form factors is generating a factor
of almost 9 in the cross section.
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FIG. 7. (Color online) Differential cross sections for the system
68Ni + 12C at 10 MeV/u for the (a) PDR state and (b) ISGDR state.
They have been calculated with the DWUCK4 code.
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Our microscopic form factor has been successfully em-
ployed in the analysis of various experiments performed with
17O as isoscalar probe [14–16]. In these papers, only the use
of the microscopic form factor has allowed the extraction of
the isoscalar components of the 1− excited states.

V. CONCLUSIONS

The low-lying dipole state (PDR) is a mode whose isoscalar
and isovector components are strongly mixed as it is clearly
manifested in their transition densities. This feature opens the
possibility of studying these PDR states by using an isoscalar
probe in addition to the conventional isovector one. Recently,
many experiments have been performed using isoscalar probes
such as α particles [2,10–13] or 17O [14–16] and, according
to the standard prescription, these experiments have been
analyzed by comparing the experimental differential cross
section with theoretical calculations. The latter rely very much
on the radial form factors which, in the standard codes, are
constructed according to collective model prescriptions.

Here we have compared results of differential cross-section
calculations based on three different structure models, using
in all cases the double-folding procedure to generate the form
factors from the transition densities. The transition densities
used were the one extracted by a sum rule approach deduced for
the high-lying ISGDR [24,25], the one deduced according to
a simple macroscopic model for the PDR, and those obtained
from a microscopic RPA approach. The comparison among
the models has shown a very good agreement with the RPA

for the high-lying ISGDR state for both the form factors as
well as for the differential cross section. In the case of the
PDR state, on the other hand, the weakly bound nature of
the involved orbitals leads to different slopes in the tails of
the macroscopic and microscopic transition densities, with
consequent differences in the corresponding form factors and
cross sections.

Therefore, our message is that one has to carefully use the
proper form factor in the experimental analysis of PDR state
excitations. According to the standard procedure, a DWBA
calculation based on collective models is employed to establish
the amount of B(E1) to attribute to the state as well as the
percentage of EWSR to be assigned to it. Since we have shown
that the use of different form factors may lead to different
differential cross sections, it is of paramount importance to use
the ”correct” microscopically based one. Use of inappropriate
form factors has consequences on the calculated cross section
and therefore in jeopardizing the extracted physical quantities.
Only the microscopic form factor, by construction, includes
all the important properties of these states, starting from the
strong mixing of isoscalar and isovector characters.
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