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Abstract. In this paper, the study of systems that evolve in time by 
means of the comparison of time series is proposed. An improvement in 
the form to compare temporal series with the incorporation of qualita-
tive knowledge by means of qualitative labels is carried out. Each label 
represents a rank of values that, from a qualitative perspective, may be 
considered similar. The selection of labels of a single character allows 
the application of algorithms of string comparison. Finally, an index of 
similarity of time series based on the similarity of the obtained strings is 
defined.

1 Introduction

The study of the temporal evolution of systems is an incipient research area. The 
development of new methodologies to analyze and to process the time series 
obtained from the evolution of these systems is necessary. A time series is a 
sequence of real values, each one representing the value of a magnitude at a 
point of time. These time series are usually stored in databases.

We are interested in databases obtained from the evolution of dynamic sys-
tems. A methodology to simulate semiqualitative dynamic systems and to store 
the data into a database is proposed in [13]. This database may also be obtained 
by means of the data acquired from sensors installed in the real system. Anyway, 
there is a variety of applications that produce and store time series.

One of the biggest problems of working with time-series databases is to cal-
culate the similarity between two given time series. The interest of a similarity 
measure is multiple: finding the different behaviour patterns of the system stored 
in a database, looking for a particular pattern, reducing the amount of relevance 
series previously to the application of analysis algorithms, etc.

Many approaches have been proposed to solve the problem of an efficient 
comparison. In this paper, w e propose to carry out this comparison from a 
qualitative perspective, taking into account the variations of the time series va-
lues. The idea of our proposal is to abstract the numerical values of the time series 
and to concentrate on the comparison in the shape of the time series.



In this paper, time series with noise are not taken into account, and this is
postponed for future works.

The remain of this paper is structured as follows: first, some related works
that have been used to define our index will be analyzed. Next the Shape Def-
inition Language will be introduced, which is appropriated to carry out the
translation of the original values, and the problem of the Longest Common Sub-
sequence (LCS) will also be explained. Next section will introduce our approach,
the Qualitative Similarity Index. Finally, this index is applied to a semiqualita-
tive logistics growth model with a delay.

2 Related Work

In the literature, different approximations have been developed to study time
series. The shape definition language (SDL) is defined in [2]. This language
SDL is suitable for retrieving objects based on shapes contained in the histories
associated with these objects. An important feature of the language is its ability
to perform blurry matching where the user cares only about the overall shape.
This work is the key to translate the original data into a qualitative description
of its evolution.

On the other hand, the study of the problem of the Longest Common Sub-
sequence (LCS) is also related to this paper, because we use (LCS) algorithms
as the baseline to define QSI. A complete review of the most known solutions
to this problem is collected in [15].

There have been many works on comparison of time series [7]. Most of them
propose the definition of indexes, which are applied to a subset of values obtained
from the original data. These indexes provide an efficient comparison of time
series. They are defined taking into account only some of the original values. This
improvement of speed produces a decrease in the accuracy of the comparison.
These indexes are obtained applying a transformation from the time series values
to a lower dimensionality space.

Other approaches differ in the way to carry out this mapping or in the selected
target space. One option is to select only a few coefficients of a transformation
process to represent all the information of the original series. In this approach,
the change from the time domain to the frequency domain is carried out. The
Discrete Fourier Transform (DFT ) is used in [1] to reduce the series to the first
Fourier Coefficients. A solution based in the Discrete Wavelet Transform (DWT )
in a similar way is proposed in [5].

Other approaches reduce the original data in the time series, selecting a
subset of the original values. A piece-wise linear segmentation of the original
curve is used in [9]. In [10], the Dynamic Time Warping algorithm is applied over
the segmented data, and finally in work [11] a straight dimensionality reduction
with Piece-wise Constant Approximation is made, selecting a fixed number of
values of the original data. This is known as PCA-indexing.

The last option is to generate a 4-tuple-feature vector extracted from every
sequence [12]. A new distance function is defined as the similarity index.

In paper [6], the study of series with different time scales from a qualitative
perspective is proposed.



3 Shape Definition Language (SDL)

This language, proposed in [2], is very suitable to create queries about the evo-
lution of values or magnitudes along the time.

For any set of values stored for a period of time, the fundamental idea in
SDL is to divide the range of the possible variations between adjacent values in
a collection of disjoint ranges, and to assign a label for each one of them.
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Fig. 1. Possible assignment of labels

Figure 1 represents a sample division into three regions of the positive axis.
The behaviour of a time series may be described taking into account the tran-
sitions between consecutive values. A derivative series is obtained by means of
the difference of amplitude among the consecutive values of the time series. The
value of this difference matches in one of the disjoint ranges, and therefore this
definition of the value produces a label of the alphabet.

This translation generates a sequence of transitions based on an alphabet.
The symbols of this alphabet describe the magnitude of the increments of the
time series values. Every symbol is defined by means of four descriptors. The
firsts two are the lower and upper bounds of the allowed variation from the initial
value to the final value of the transition. The last two specify the constraints on
the initial and final value of the transition respectively.

The alphabet proposed in [2] has only 8 symbols. This translation gives
priority to the shape over the original values of the time series. This affirmation
will be later explained. Figure 2 shows an example of a translation using the
set of symbols (Down, down, stable, zero, up, Up). Every string of symbols may
describe an infinite number of curves. All of them verify the constraints imposed
for the symbols to the represented transitions. Figure 3 shows three different
curves with the same sequence of symbols, even though the curves have different
initial points. The SDL language is used to translate a time series described
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Fig. 2. Example of translation

by means of their numerical values into a string of symbols which represent the
variations between adjacent values.
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Fig. 3. Translation with identical sequence



4 Longest Common Subsequence (LCS)

Working with different kinds of sequences, from strings of characters to DNA
chains, one of the most used similarity measure is the Longest Common Subse-
quence (LCS) of two or more given sequences. LCS is the longest collection of
elements which appears in both sequences and in the same order.

The algorithms to compute LCS are well known and a deeper analysis of
them is detailed in [15].

Our interest in LCS comes from a double point of view:
• The SDL language generates a string of symbols from the original numeric

values of the time series.Therefore, it is possible to apply the LCS algorithm in
order to find a ”distance” between two time series, abstracting the shapes of the
curves.

• LCS is a special case of the Dynamic Time Warping (DTW ) algorithm,
reducing the increment of distance of each comparison to the values 0 or 1. This
reduction depends on the presence or absence of the same symbols. Thus, LCS
inherits all the DTW features.

DTW is an algorithm intensively used in the speech recognition area because
it is appropriated to detect similar shapes that are non-aligned in the time axis.
This lack of alignment induces catastrophic errors in the comparison of shapes
which use the Euclidean distance.

The idea of DTW is to find a set of ordered mappings between the values of
two series, so the global distance warping cost is minimized.

5 Qualitative Similarity Index (QSI)

The idea of this index is the inclusion of qualitative knowledge in the compar-
ison of time series. A measure based in the matching of qualitative labels that
represent the evolution of the series values is proposed. Each label represents a
range of values that may be assumed as similar from a qualitative perspective.
Different series with a qualitatively similar evolution produce the same sequence
of labels.

The proposed approximation performs better comparisons than previously
proposed methods. This improvement is mainly due to two characteristics of the
index: on the one hand, it maximizes the exactness because it is defined using
all the information of the time series; and on the other hand, it focuses the
comparison on the shape and not on the original values because it considers the
evolution of groups as similar. It is interesting to note that the time series are
supposed to be noise-free between two samples and with a linear and monotonic
evolution.

Let X = 〈x0, ..., xf 〉 be a time series. Our proposed approach is applied in
three steps. First, a normalization of the values of X is performed, yielding
X̃ = 〈x̃0, ..., x̃f 〉. Using this series, the difference series XD = 〈d0, ..., df−1〉 is
obtained, which is translated into a string SX = 〈c1, ..., cf−1〉. The similarity
between two time series is calculated by means of the comparison of the two



strings obtained from them, applying the previous transformation process, and
then using the LCS algorithm. The result is used as a similarity measure with
the original time series.

5.1 Normalization

Keeping in mind the qualitative comparison of the series, a normalization of the
original numerical values in the interval [0,1] is performed. This normalization
is carried out to allow the comparison of time series with different quantitative
scales.

Let X = 〈x0, ..., xf 〉 be a time series, and let X̃ = 〈x̃0, ..., x̃f 〉 be the normal-
ized temporal series obtained from X, as follows:

x̃i =
xi − min(x0, ..., xf )

max(x0, ..., xf )− min(x0, ..., xf )
(1)

where min and max are operations that return the maximum and minimum
values of a numerical sequence respectively.

Let XD = 〈d0, ..., df−1〉 be the series of differences obtained from X̃ as fol-
lows:

di = x̃i − x̃i−1 (2)

This difference series will be used in the labelling step to produce the string of
characters corresponding to X. It is interesting to note that every di ∈ XD is a
value in the [-1,1] interval, as a consequence of the normalization process.

5.2 Labelling Process

The proposed normalization in the previous section is focused on the slope evo-
lution and not on the original values. A label may be assigned to every different
slope, so the range of all the possible slopes is divided into groups and a quali-
tative label is assigned to every group.

The range division is defined depending on the parameter δ which is supplied
by experts according to their knowledge about the system. The value of this
parameter has a direct influence in the quality of the results. Therefore, this is
an open research area of this paper that will be detailed in future works.

Label Range Symbol
High increase [1/δ,+∞] H

Medium increase [1/δ2, 1/δ] M
Low increase [0, 1/δ2] L
No variation 0 0
Low decrease [−1/δ2, 0] l

Medium decrease [−1/δ,−1/δ2] m
High decrease [−∞,−1/δ] h



In this table, the first column represents the qualitative label for every range of
derivatives, which is shown in the second row. The last column contains the char-
acter assigned to each label. The proposed alphabet contains three characters for
increase and three for decrease ranges, and one additional character for constant
range. It is important to note that in our approach there is no application of the
constraints presented in SDL [2].

This alphabet is used to obtain the string of characters SX = 〈c1, ..., cf−1〉
corresponding to the time series X, where every ci represents the evolution
of the curve between two adjacent points of time in X. It is obtained from
XD = 〈d0, ..., df−1〉 assigning to every di its character in accordance with the
table above.

This translation of the time series into a sequence of symbols abstract from
the real values and focus our attention on the shape of the curve. Every sequence
of symbols describes a complete family of curves with a similar evolution.
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Fig. 4. Sample of translation

Figure 4 shows a normalized curve with their derivative values and the as-
signed label to each transition between adjacent values. This example has been
obtained with δ = 5.

5.3 Definition of QSI Similarity

Let X,Y be two time series, X = 〈x0, ..., xf 〉 and Y = 〈y0, ..., yf 〉. Let SX , SY

be the strings obtained when X,Y are normalized and labelled.



The QSI similarity between the strings SX , SY is defined as follows

QSI(SX , SY ) =
∇(LCS(SX , SY ))

m
(3)

where ∇S is the counter quantifier applied to string S. The counter quanti-
fier yields the number of characters of S. On the other hand, m is defined as
m = max(∇SX ,∇SY ). Therefore, the QSI similarity may be understood as
the number of ordered symbols that may be found in the same order in both
sequences simultaneously divided by the length of the longest sequence.

Properties of QSI. We are going to describe two properties of QSI.
Let SX , SY , SZ be three strings of characters obtained from the transforma-

tion of three temporal seriesX,Y, Z respectively. The definition ofQSI similarity
verifies that:
Property 1. QSI(SX , SY ) is a number in the interval [0, 1]. If X is absolutely
different of Y it is 0.

If LCS(SX , SY )) = ∅
⇓

∇LCS(SX , SY )) = 0
⇓

QSI(SX , SY ) = 0.

(4)

The QSI(SX , SY ) value increases according to the number of coincident char-
acters. This number is 1 if SX = SY .

If LCS(SX , SY )) = SX

⇓
∇LCS(SX , SY )) = SX

⇓
QSI(SX , SY ) = 1.

(5)

Property 2. The length of the strings to compare has also an important influence.
In this sense, two strings with approximated lengths and with a number of
coincident symbols are more similar than two strings with the same number of
coincident symbols but with different lengths:

∇SX ≈ ∇SY ,∇SX ≈ ∇SZ ,
∇LCS(SX , SY ) ≈ ∇LCS(SX , SZ)

⇓
QSI(SX , SY ) > QSI(SX , SZ)

(6)

5.4 Comparison with Other Approaches

When a new approach is introduced, it is interesting to test its validity and the
improvements with respect to the other approaches appeared in the literature. In
this paper, our approach is going to be compared with the algorithm introduced



in [10], called Segmented Dynamic Time Warping (SDTW ). This algorithm
carries out a clustering process with a set of time series. Every clustering process
joins sets of data in subsets trying to minimize the similarity among the elements
of every subset and the similarity between different subsets.

The SDTW algorithm was tested with the Australian Sign Language Dataset
from the UCI KDD [4] choosing 5 samples for each word. The data in the
database are the 3-D position of the hand of five signers, recorded by means
of a data glove.

In order to carry out the comparison between both approaches, the same
10 words used in [10] from the 95 words included in the database have been
chosen. Next, for every possible pairing of different words (45), the 10 sequences
(5 of each word) have been clustered, using a hierarchical average clustering
with two different distance measures. First, the distance defined in the classic
DTW algorithm applied to the original numerical values of the series was used.
The result was 22 correct clustering from 45. Then, the similarity QSI index,
proposed in this paper, over the string obtained from the translation of the origi-
nal values of the series was used. This time, the result was 44 correct clustering
from 45. Therefore, our index obtains a 97.7% of accuracy. The QSI error is
clearly lower than the obtained with DWT .

The total success obtained with DWT is exactly the same reported by [10],
but the success obtained with QSI similarity is better.

6 Application of QSI to a Logistics Growth Model with
a Delay

The following generic names: logistic, sigmoidal, and s-shaped processes are given
to those systems in which an initial phase of exponential growth is followed by
another phase of approaching to a saturation value asymptotically (figure 5).
This growth is exhibited by those systems for which exponential expansion is
truncated by the limitation of the resources required for this growth. In liter-
ature, these models have been profusely studied. They abound both in natural
processes, and in social and socio-technical systems. These models appear in the

exponential asymtotic behavior

t

growth

Fig. 5. Logistics growth curve



evolution of bacteria, in mineral extraction, in world population growth, eco-
nomic development, learning curves, some diffusion phenomena within a given
population such as epidemics or rumors, etc. In all these cases, their common
behaviours are shown in figure 6. There is a bimodal behaviour pattern attrac-
tor: A stands for normal growth, and O for decay. It can be observed how it
combines exponential with asymptotic growth. This phenomenon was first mod-
elled by the Belgian Sociologist P.F. Verhulst in relation with human population
growth. Nowadays, it has a wide variety of applications, some of which have just
been mentioned.

t
O

A

Fig. 6. Logistics growth model

Let S be the qualitative model. If a delay in the feedback paths of S is added,
then its differential equations are

Φ ≡




ẋ = x(n r − m),
y = delayτ (x), x > 0, r = h1(y),
h1 ≡ {(−∞,−∞),+, (d0, 0),+, (0, 1),

+, (d1, e0),−, (1, 0),−(+∞,−∞)}
being n the increasing factor, m the decreasing factor, and h1 a qualitative
continuous function defined by means of points and the derivative sign among
two consecutive points. These functions are explained in detail in [14]. This
function has a maximum point at (x1, y0). The initial conditions are

Φ0 ≡




x0 ∈ [LPx,MPx],
LPx(m),
LPx(n),
τ ∈ [MPτ , V Pτ ]

where LP,MP, V P are the qualitative unary operators slightly positive, moder-
ately positive and very positive for the x, τ variables.

The methodology described in [13] is applied to this model in order to obtain
the database of time series. This methodology transforms this semiqualitative
model into a family of quantitative models. Stochastic techniques are applied to



choose a quantitative model of the family. The simulation of one selected quan-
titative model generates a time series that is stored into the database. We would
like to classify the different behaviours of the system applying the QSI simi-
larity to the obtained database. Figure 7 contains the table obtained when this
index is applied between every two time series of the database. Figure 7 shows
some of these time series. According to the obtained value QSI, three different

54X 55X 1X 18X 77X 17X 73X Series
0,87 0,872 0,41 0,44 0,494 0,43 0,376 50X

0,994 0,292 0,314 0,388 0,384 0,35 54X
0,294 0,316 0,39 0,384 0,35 55X

0,758 0,792 0,598 0,586 1X
0,754 0,58 0,552 18X

0,632 0,62 77X
0,93 17X

Fig. 7. QSI similarity of the model

behaviours appear in figure 7. These results to obtain the behaviour patterns of
the system are in accordance to others appeared in the bibliography [3] and [8],
where the results are concluded by means of a mathematical reasoning.

Figure 8 shows the time series grouped by these behaviours. The 50x, 55x
and 54x time series have a behaviour which is labelled as decay and extinction.
In a similar way, the 18x, 1x and 77x time series whose behaviour is classified as
recovered equilibrium and, finally, the 17x and, 73x time series whose behaviour
is labelled as retarded catastrophe are shown.

7 Conclusions and Further Work

In this paper, the QSI index to measure the similarity of the time series depend-
ing on its qualitative features has been introduced. Furthermore, the proposed
similarity index achieves better results than previous works with a similar com-
putational cost.

In order to apply theQSI similarity index between two time series, first of all,
a normalization process is necessary. Next, the sequence of differences is obtained
from this normalized series. Finally, this sequence is translated into a string of
characters using a qualitatively defined alphabet. The LCS algorithms are used
to calculate the index QSI. The results obtained are in accordance with other
previous works, although our approach produces an improved classification.

In the future, the idea is the automation and the optimization of the division
into ranges of the possible slopes by studying the number of regions and their
limits.
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Fig. 8. Representations
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