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Abstract
Neuro-fuzzy systems can theoretically solve any

problem since they are universal approximators. Be-
sides, they combine the advantages of the neuro and
fuzzy paradigms. This paper describes and compares
the different strategies that can be adopted to imple-
ment the learning and inference mechanisms involved
in a neuro-fuzzy system. CAD tools, most of them in-
tegrated into the fuzzy system development environ-
ment Xfuzzy 2.0 [1], have been developed to assist
the designer in the implementation of neuro-fuzzy
systems in FPGAs or ASICs.

1. Introduction
Neuro-fuzzy systems are drawing recently a great

interest in many applications because they combine
the advantages of the neuro and fuzzy paradigms: the
automatic knowledge acquisition capability of neural
networks and the human-like knowledge representa-
tion and reasoning capability of fuzzy systems. Be-
sides, neuro-fuzzy systems are universal approxima-
tors and, since the processing involved is numerical,
they can be implemented by microelectronic circuits.
The design of an integrated circuit to implement a
neuro-fuzzy system has to consider the requirements
imposed not only by the fuzzy inference process but
also by the learning process.

This paper focuses on discussing and comparing
different microelectronic strategies for implementing
universal approximator neuro-fuzzy systems, point-
ing out the advantages of using CAD tools. Section II
describes the approximation capability of neuro-
fuzzy systems. Section III discusses the two basic
VLSI strategies for implementing the fuzzy inference
process while Section IV describes the three strate-
gies for implementing the neural learning process.

2. Neuro-Fuzzy Systems as Approximators
Among the fuzzy logic-based inference methods,

the singleton or zero-order Takagi-Sugeno method is
the most suitable for hardware implementation. In
this method, the consequents of the fuzzy IF-THEN
rules are represented by singleton values, ci, and the
output provided is given by:

(1)

where hi is the activation degree of the i-th rule and R
is the number of rules.

This behavior is equivalent to that of a neural net-
work based on radial basis functions [2]. From this
equivalence, it is apparent that the learning methods
employed to tune radial basis function networks can
be applied to tune singleton fuzzy systems. We will
name these so-tuned singleton fuzzy systems as sin-
gleton neuro-fuzzy systems.

Let us consider a singleton neuro-fuzzy system
whose input universes of discourse are partitioned
into L linguistic labels. If α is the maximum overlap-
ping degree, L+1-α intervals can be distinguished per
input. They are separated by the points {ai1, ai2, ...,
aiN}, where N is L-α. Given an input vector xo=(x1o,
..., xuo), the output provided by the neuro-fuzzy sys-
tem depends only on αu active rules:

(2)

where hpk is the activation degree of one of the αu

active rules and cpk is its corresponding consequent
function.
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The parameters that define the piece yp(x) are a
few of the global parameters that define the global
output, y(x). In this sense, a neuro-fuzzy system is
viewed as a local piecewise interpolator. The interpo-
lation provided can be piecewise constant, piecewise
linear, piecewise quadratic, or piecewise nonlinear, in
general, depending on whether yp is constant, linear,
quadratic, or nonlinear in x. In particular, neuro-fuzzy
systems that cover their input universes of discourse
with normalized triangular membership functions
(which are B-splines of degree 1), as shown in Figure
1, and that employ the normalized product or the
meet-like operator as antecedent connective, are
piecewise multilinear interpolators [3]-[4]. Those
neuro-fuzzy systems which employ B-splines of de-
gree 2 and the product or the meet-like operator as an-
tecedent connective are piecewise multiquadratic in-
terpolators. In general, the use of nonlinear member-
ship functions or the minimum as connective lead to
piecewise nonlinear interpolators. In any case, neuro-
fuzzy systems can approximate any input-output sur-
face and that is why they can be called universal ap-
proximators [3]-[4].

3. VLSI strategies for the inference
mechanism

There are basically two VLSI strategies for imple-
menting the fuzzy logic-based inference of a neuro-
fuzzy system. One of them, which will be called
memory-based approach, is to implement directly
each piece yp of the interpolation. This approach has
been employed in digital realizations with DSPs [4]
and analog ASICs [5]. Programmable parameters of
this approach can be the points aij that allow identify-
ing the active grid cell, and the constants that define
the piece yp in that grid cell. The other strategy is to
implement the different stages of the fuzzy inference
mechanism. These stages are: calculation of the mem-
bership degrees, µj(xi), (by membership function cir-
cuits, MFCs), calculation of the activation degrees of
the rules, hpk(x), (by connective circuits), and compu-
tation of a weighted average. This approach will be
called MFC-based approach because its main differ-
ence with the previous one is that membership de-
grees are calculated explicitly. This approach has

been followed by many analog, digital and mixed-sig-
nal fuzzy ASICs [6]. The programmable parameters
can be again the points aij (which separate the Li+1-α
intervals) and the parameters of the consequent func-
tions cpk. Universal approximator fuzzy chips can be
obtained by both approaches. They can be adjusted to
a particular application by an adequate learning
mechanism. These two approaches for implementing
piecewise interpolator systems are illustrated in the
following.

3.1. Memory-based approach

The most direct strategy to approximate a given
surface is to implement a look-up table that contains
all the output values corresponding to every possible
combination of the input signals. If there are u inputs,
x=(x1, ..., xu), coded by N bits, a look-up table divides
the input space into 2N•u cells and associates to each
cell a constant output value. Hence, look-up tables
implement piecewise constant interpolators.

The microelectronic circuits suitable to carry out
this strategy are standard digital memories and pro-
grammable logic devices (PLDs). One advantage of
this realization is that the response time is very short
because the only operation (apart from the possible
data conversions) is to retrieve data from a memory
and this can be performed in a few nanoseconds. As a
drawback, look-up table implementations are practi-
cal only when the number of inputs and their quanti-
zation degrees are low, otherwise the total number of
bits to store is very large.

The fuzzy system development environment
Xfuzzy [1] has a tool named xftl which automatically
directs the synthesis tools of Synopsys and Xilinx to
obtain an implementation of a piecewise constant in-
terpolator on an FPGA. The input to xftl is the de-
scription of the interpolator system in the high-level
specification language of Xfuzzy: XFL (this descrip-
tion can be performed via graphical user interfaces).
The output of xftl consists of two files. The first file
contains a formal description of the look-up table in
PLA format. This table can be minimized by any tool
able to accept the PLA format and implemented either
by a combinational circuit or by a memory. The sec-
ond of the output files of xftl is intended to control the
Synopsys logical synthesis tools for minimizing the
look-up table and extracting the Boolean equations in
order to implement the table using the combinational
resources of a Xilinx FPGA. The graphical user inter-
face of xftl is shown in Figure 2.

Another way to approximate a given surface is to
divide the input space into 2N•u cells and associate to
each cell a multilinear function, y= yp(x). Compared
with look-up tables, piecewise multilinear interpo-
lators need less input space resolution. In the case of
two inputs, they provide the following kind of pieces:

 Fig. 1: Covering of the input space with an overlap-
ping degree of 2.
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(3)

where a, b, c, d are constants.
The memory-based implementation of program-

mable piecewise multilinear controllers requires to
retrieve the programmable parameters from a memo-
ry and to implement multiplication and addition oper-
ations.

A parallel realization of these operations offers
the shortest processing time but the largest circuitry.
For instance, the memory that contains the program-
mable parameters (a, ..., d, in Equation (4)) must have
2u output buses. In the case of analog current-mode
circuitry, the additions can be performed by simply
connecting wires; and the following blocks are re-
quired: D/A converters (like programmable current
mirrors), to convert and to scale the constants; and
multipliers. The block diagram of this type of realiza-
tion for the case of two inputs is shown in Figure 3.

The circuitry can be reduced by performing the
operations sequentially. For instance, operations can
be performed in 2u steps by using 1 adder, 1 multipli-
er, and a memory with 1 output bus, as shown in Fig-
ure 4 for the case of two inputs.

3.2. MFC-based approach

Instead of implementing directly the expression of
each output piece, the MFC-based approach imple-
ments the different stages of a fuzzy inference mech-
anism: fuzzification, calculation of the activation de-
grees of the rules and computation of a weighted av-
erage. Circuitry can be simplified if certain
constraints are imposed. In this sense, the member-
ship functions that cover each input universe of dis-
course usually overlap each other with a degree, α, of
2 or 3. This happens, for instance, when B-splines of
degrees 1 and 2 are selected as membership functions.
This means that 2 or 3 MFCs per input are required to
generate the membership functions. Another con-
straint is that the membership functions can be nor-
malized, that is, their sum is constant (as shown in
Figure 1). In this case, α-1 MFCs per input are re-

quired because the other membership degree can be
calculated with an addition.

If normalized membership functions are em-
ployed and if the normalized product or the meet-like
operator is chosen as the connective operator, the de-
nominator of the weighted average is constant, so that
no divider is required.

If the membership functions do not overlap, the
output value is directly the consequent function and
there is anything fuzzy. In this case and if the conse-
quents are constant, the result is a piecewise constant
interpolator.

If the overlapping degree of membership func-
tions is 2, the input space is divided into (2M-1)u cells,
where 2M is the number of membership functions that
cover each input variable. If the membership func-
tions are linear (like those in Figure 1), the antecedent
connective is the normalized product or the meet-like
operator, and the consequents are constant, the result-
ing fuzzy system is a piecewise multilinear interpo-
lator. For instance, given two inputs, x1 and x2, and
using the normalized product as antecedent connec-
tive the output piece is given by:

(4)

 Fig. 2: Graphical user interface for xftl.
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 Fig. 3: Memory-based parallel current-mode real-
ization of a piecewise multilinear controller.
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 Fig. 4: Memory-based sequential realization of a
piecewise multilinear interpolator.
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where µRi and 1-µRi are the two non-zero member-
ship degrees of the input xi.

If the minimum operator is chosen as the anteced-
ent connective, the denominator of the weighted aver-
age is not constant, a divider is required, and a piece-
wise nonlinear interpolation is performed.

Similar to the memory-based approach, this MFC-
based approach requires also multiplications between
two variables and to retrieve 2u constants from a
memory. An important difference is that the number
of words to store is now 2M•u, while it is 2(L+1)•u in the
memory-based approach, considering input space
partitions of (2M-1)u and 2L•u cells, respectively. This
means that, for equal input space partitions, the mem-
ory size in the MFC-based approach is almost half of
the memory size in the other approach. The reason is
that each word of the memory in the MFC-based strat-
egy is used by 2u different cells while in the other ap-
proach it is used by only 1 cell. The cost to pay for this
memory reduction is to include several multiplexers
and, in this case, 1 MFC block per input variable.

A parallel current-mode realization following this
MFC-based strategy is shown in Figure 5 for the case
of a piecewise bilinear interpolation. In a parallel re-
alization, the memory of 2M•u words is divided into 2u

parts, each one containing 2(M-1)u words that are nev-
er required simultaneously. Multiplexers have to be
added to select which of the 2u parts provides each of
the 2u words required [7]. The circuitry can be re-
duced by sequentializing the operations. For instance,
operations can be performed in 2u steps by using 1 ac-
cumulator, 1 multiplier, and a memory with 1 output
bus [6].

There are three basic approaches to implement the
MFCs. One approach is to generate all the member-
ship functions of a variable by means of a memory.
This is the most versatile approach because it allows
different shapes for all the membership functions
(bell-shaped, triangular, trapezoidal, etc.). A second
approach is to generate the same shape for all the
membership functions of an input variable by means

of a memory (in this case, the first operation is to
identify the input interval to which the input belongs).
The third approach is to generate the same shape for
all the membership functions of an input variable by
means of an arithmetic block (again the input interval
to which the input belongs has to be identified firstly).
Examples of arithmetic MFCs are current-mode ana-
log MFCs or digital MFCs that generate triangular
membership functions and transconductance-mode
analog MFCs, based on differential pairs, that gener-
ate bell-shaped membership functions [6].

The environment Xfuzzy has a tool named xfvhdl
which starts from the high-level specification of the
fuzzy system and produces a VHDL description. This
tool is intended to automatically synthesizing piece-
wise nonlinear interpolators (with a minimum opera-
tor as antecedent connective) that follows a sequential
architecture and that implement the MFCs with mem-
ories or with arithmetic circuits. The code generated
by xfvhdl can be used for implementing the fuzzy sys-
tem as an ASIC or as a Xilinx FPGA. The graphical
user interface of xfvhdl is shown in Figure 6.

4. Strategies for the learning mechanism
Typical neural learning mechanisms are super-

vised, that is, they employ a set of numerical input
values and their desired output values, and the objec-
tive is to minimize the error between the actual and
the desired output for the given input vectors.
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 Fig. 5: MFC-based parallel current-mode realization of a piecewise multilinear fuzzy system with 4•22N rules.
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4.1. Off-chip learning

Two factors are determinative when selecting an
adequate strategy to implement the learning mecha-
nism. One factor is the type of application towards
which the neuro-fuzzy system is addressed. Static ap-
plications, like the modeling of static systems, em-
ploy fuzzy systems whose knowledge base does not
change with time. Hence, the learning process can be
performed off chip and only the inference process
needs to be integrated on silicon. In this case, a second
factor to be considered is the application range of the
circuit. If it is conceived to be dedicated to a specific
application, the learning process can be performed
prior to the fabrication of the chip and the learnt fuzzy
system can be integrated in a non-programmable de-
vice, which is the least costly solution. If the circuit is
going to be applied to different tasks, it should be pro-
grammable. In this case, the learning process is car-
ried out prior to the use of the chip and the learnt pa-
rameters are downloaded to the chip before its opera-
tion. A precise emulation of the fuzzy inference
hardware is very important for the effectiveness of the
off-chip learning. For this purpose, we have devel-
oped a CAD tool named fmcsim that simulates at a be-
havioral level the performance of the fuzzy inference
hardware. Given a desired input-output mapping to
reproduce, this tools allows: (a) to compare the output
provided by the different VLSI strategies for the in-
ference mechanism depending on the input partitions,
the resolution of the building blocks employed (mem-
ories and computing blocks), the types of MFCs and
connective operators (in the case of an MFC-based
approach), and (b) to find the adequate input parti-
tions and the adequate values for the parameters that
define the output pieces, taking into account the reso-
lution of the building blocks.

As an example, Figure 7 illustrates the results ob-
tained with fmcsim when off-chip adjusting different
designs of a fuzzy inference chip to approximate the
following surface (Figure 7a):

(5)

The fuzzy inference chips simulated follow an
MFC-based approach, implement 3x5=15 rules, and
employ consequents with an 8-bit resolution. Figure
7b shows the simulated output provided by a piece-
wise linear digital realization which employs the
meet-like operator as connective and MFCs imple-
mented by memories with words of 3 bits. Figure 7c
illustrates the output of an analog piecewise nonlinear
realization which employs the product as connective
and transconductance-mode MFCs working in strong
inversion. In this example, it can be seen that digital
computing blocks introduce quantization errors that
usually dominate the approximation error.

4.2. On-chip learning

There is another type of applications for which a
dynamically changing knowledge base is needed.
Examples of this type of applications are identifica-
tion and modeling of non-linear dynamic systems,
adaptive prediction of time series, adaptive noise can-
cellation, adaptive control, etc. In these cases, the
neuro-fuzzy systems employed are called adaptive
fuzzy systems because they adapt their knowledge
base to match the new situation, thus resorting to the
use of the learning mechanism as they are operating.
Two approaches can be used for these applications.
One of them is to implement the learning mechanism
on chip together with the inference mechanism. This
is the feasible solution when requirements of low
power consumption, embedded operation (low area
occupation), and real-time performance apply not
only to the inference engine but also to the learning
loop [6].

The tool fmcsim also allows the user to emulate
the behavior of a neuro-fuzzy chip with on-chip learn-
ing mechanisms: weight perturbation for antecedent
parameters and gradient-descent for the singleton val-
ues of the consequents.
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 Fig. 7: Simulated performance of different VLSI neuro-fuzzy systems approximating the surface shown in (a).
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4.3. Chip-in-the-loop learning

The third approach to implement the learning
mechanism is known as chip-in-the-loop training
and can be applied if the chip is programmable. This
approach relies on a host computer which provides
the input training vectors to the chip, compares the
desired output vectors with the output generated by
the chip, and reprogram adequately the chip. Hence,
the computer must be provided with a data acquisition
card, as shown in Figure 8.

A CAD tool named xflab allows the designer con-
figuring the data acquisition card, defining the input
and output signals, and monitoring the fuzzy infer-
ence chip [6]. Figure 9 shows the main window of the
xflab graphical user interface as well as the input/out-
put configuration window.

5. Conclusions
Different strategies for implementing the infer-

ence and learning mechanisms of universal approxi-
mator neuro-fuzzy systems have been described and
compared. The VLSI strategies for the inference
mechanism differ in the type of hardware resources
employed (more use of memory against computing
blocks or vice versa) and in the system performance
achieved (more flexibility against simplicity or vice
versa). Piecewise constant, linear, and non-linear be-
havior have been discussed, and analog, digital, and
mixed-signal realizations have been illustrated. The
adequate implementation strategy for the learning
mechanism depends on the type of application. For
off-chip or chip-in-the-loop learning strategies, the
learning mechanism is implemented by a host compu-
ter. Different CAD tools (xftl, xfvhdl, fmcsim, and
xflab), most of them currently integrated into the
Xfuzzy 2.0 development environment, have been de-
veloped to assist the designer in the hardware imple-
mentation of neuro-fuzzy systems as FPGAs or
ASICs.
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