
Abstract— The behavior of a circuit able to implement
frequency division is studied. It is composed of a block
with an IV characteristic exhibiting Negative
Differential Resistance (NDR) built from MOS transistors
plus an inductor and a resistor. Frequency division is
obtained from the period adding sequences which appear
in its bifurcation diagram. The analyzed circuit is an “all
MOS” version of one previously reported which use
Resonant Tunneling Diodes (RTDs) The results show that
the dividing ratio can be selected by modulating the input
signal frequency, in a similar way to the RTD-based
circuit. 

I. INTRODUCTION

Non-autonomous, very simple frequency divider
circuit based on the period-adding bifurcation sequenc-
es which appear in an RTD chaos circuit have been re-
ported in the past few years [1], [2], [3], and
experimental results have been obtained, showing that
the phase noise is comparable to that of conventional di-
viders. These circuits exploit the NDR region in the
RTD IV characteristic to obtain autonomous nonlinear
oscillators and, in general, extremely complex behav-
iors with applications in diverse fields. Additionally,
when an external periodic excitation signal is used, such
circuits exhibit an increased variety of bifurcations se-
quences.

The basic block for these circuits is the RTD,
which consists of an emitter and a collector region and
a double tunnel barrier structure. This contains a low-
bandgap narrow quantum well, which allows electrons
to travel through only at the resonant energy level. The
thickness of the barrier layers as well as the width of the
well are in the nanometer range. The RTD IV charac-
teristic presents a typical N-shape with two positive dif-
ferential resistance (PDR) and one NDR zones. Most of
the reported working circuits have been fabricated in
III/V materials and require a technological process usu-
ally expensive and difficult to compatibilize with MOS
processes. In this paper we show an NDR device made

from MOS transistors that can be used to design a fre-
quency divider circuit which operation is based on the
same principle as the RTD.

II. THE MOS-NDR STRUCTURE

Figure 1a shows the structure of the MOS-NDR de-
vice we have used, which is based on the circuits de-
scribed in [4]. It consists of one CMOS inverter, made
up by NMOS1 and PMOS1 and biased by VINV, and one
NMOS transistor (NMOS2) whose gate-to-source volt-
age is modulated by the output voltage of the CMOS in-
verter. Figure 1b shows the simulated current-voltage
characteristic of the MOS-NDR device for transistor
parameters given by WPMOS,1 = 0.16m,
WNMOS,1 = 2m, and WNMOS,2 = 5.4m; channel
length for all of them is 0.12m. For this case, the peak
current (Ip) is 2.11mA for a peak voltage (Vp) of 0.25V.
Both, the PDR and the NDR zones of the IV character-
istics are obtained through the current of the NMOS2
transistor.
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Figure 1: (a) MOS-NDR device, (b) IV characteristic, (c)
Measured IV characteristics.
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The peak voltage and current of the IV character-
istic in Figure 1b can be modified by setting up properly
the sizes of the transistor. In this way, Ip is increased
with the width of NMOS2. Assuming that all transistors
have the same gate length, the position of Vp is control-
led by the ratio between the widths of NMOS1 and
PMOS1. In this way, higher values of Vp are obtained by
decreasing the ratio . Additional-
ly, we can obtain higher peak current values by increas-
ing VINV [5]. Compared to the RTD device, the IV
characteristic in the MOS-NDR device lacks the second
PDR zone and presents a typical -shape. Figure 1c de-
picts the I-V characteristic, measured by a HP-4145A
parameters analyzer, of a MOS-NDR which we have
designed and fabricated in a standard commercial
0.13m CMOS process.

III. ANALYSIS OF THE FREQUENCY DIVIDER.

The circuit topology used for the frequency divider
is shown in Figure 2. It is composed of an inductor L in
series with the parallel of the MOS-NDR device (the 
device) and one capacitor C. It is driven by an external
periodic excitation signal E, with a DC bias EDC, an am-
plitude EA, and a frequency f
( ).

By applying Kirchoff’s laws to this circuit, the
equations for the voltage vC across the capacitor C and
the current iL through the inductor L are given by the
following set of two first-order coupled non-autono-
mous differential equations: 

 (1)

where  is the mathematical representation of the
driving point characteristic of the MOS-NDR device.
The system is non-autonomous due to the explicit de-

pendence of time t in the expression for excitation sig-
nal E, and periodic with period . If we choose
EM and IM as scale parameters with physical dimen-
sions of voltage and current, respectively, and rescale

, , , ,
, and , then variables x, y, ,

and  will be dimensionless. Redefining now  as t, the
following set of normalized equations are obtained:

(2)

where  and  come from the
normalization of . The dynamics of Eq. (2) now
depends on parameters , and . As the circuit is
periodically driven, planes  and  can be
identified, and the 3D Euclidean phase space 
can be transformed into the cylindrical space

 [6] by defining the new variable
 which transforms the non-autonomous sys-

tem of Eq. (2) into an autonomous one, now with three
equations, by adding . In this space, time
turns around the unit circle , x is represented in the
horizontal axis of the cylinder and y in the vertical one. 

The dynamics of Eq. (2) has been extensively stud-
ied for different parameter values. By fixing

, the frequency of the external periodic sig-
nal has been used as the control parameter, and numer-
ical integration using an adaptive-step Runge-Kutta
algorithm has been carried out to build one-parameter
bifurcation diagrams in the  plane. These dia-
grams plot the normalized output voltage x sampled at
a fixed phase of the normalized input signal for each
normalized frequency , and solutions during the first
60 periods of the input signal have been discarded to
avoid transient behaviour. Figure 3 shows a typical bi-
furcation diagram for the circuit computed when the
normalized frequency  is swept in the range (0.01,1.5)
with the following values for the remaining parameters:

, , and . In circuit parameter val-
ues, this could correspond, among other possible set of
values, to C = 4pF, L = 1H, EM = 1V, IM = 1mA; an
external periodic signal with EDC = 0.3V, EA = 0.4V,
and a frequency between 10MHz and 1.5GHz. The
MOS-NDR device is biased in the negative resistance
region and a swing is applied. In this bifurcation dia-
gram two kinds of regions are identified: those with a
continuum of points for a given value of , where the
behaviour is quasi-periodic or chaotic, and regions with
a finite number of points, where a periodic solution with
a period which is a multiple of the driving signal is
found.
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Figure 2: Frequency divider circuit using a MOS-NDR
device (-device).
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From Figure 3, the solution is a periodic orbit with
a period equal to the one of the driving signal for up to

. From this until , the period of the
solution is the original one divided by 2. Then, until

, the division is by 3. For , frequen-
cy-locking states of variable period which are separated
by quasi-periodicity regions are obtained. Additionally,
it is interesting to note that the number of branches in
the periodic windows increases when the frequency in-
creases: this behaviour is known as period-adding bifur-
cations [7]. In these frequency-locking regions we can
obtain frequency division from the driving signal, with
the division factor being the number of points in such a
regions. Thus, between  and  the fre-
quency-locking state has period-4, for 
has period-5, period-6 for , etc. Over

, the bifurcation diagram is mainly formed by re-
gions of quasi-periodicity. Examples of numerical re-
sults for  (period 4) and  (quasi-
periodic behaviour) are shown in Figure 4 and Figure 5,
respectively. In particular, a period-4 trajectory in the
cylindrical space is shown in Figure 4a, while Figure 4b
plots this trajectory in plane , and the corre-
sponding Poincaré map with four points is shown in
Figure 4c. The quasi-periodic trajectory motion for

 is on the surface of the torus shown in Figure
5a (cylindrical space). Figure 5b shows such a trajecto-
ry in plane . Figure 5c shows the corresponding
Poincaré section, which is composed of an infinite set of
points which belong to an invariant closed curve, which
is typical in a quasi-periodic behaviour. 

In addition to the period-adding sequences, Figure
3 also shows that periods of some of the windows satis-
fy the Farey sequence [8]. Between the period- and pe-
riod- windows, there exists a period-(+) window.
Some examples of such Farey sequences in the bifurca-
tion diagram of Figure 3 are shown in Figure 6: when
the input normalized frequency  increases in the range

 (period-6 to period-7), we find a fre-
quency locked window of period-13 (=6+7) in the re-
gion . Farey sequences also appear
when finer regions are considered, as is also shown in
Figure 6, where a period as high as 19 (6+13) appears in
the region . Finally, we have also
performed some simulations to confirm our previous
theoretical study. Figure 7 shows the obtained results
for the circuit parameters in Section III (C = 4pF,
L = 1H, EM = 1V, IM = 1mA, EDC = 0.3V, and
EA = 0.4V). Figure 7a shows a division by 3 of a exter-
nal periodic signal of frequency 125MHz ( = 0.25),
and Figure 7b the division by 5 of a signal which fre-
quency is 10MHz ( = 0.38).

IV. CONCLUSIONS

We have shown an “all-MOS” device with an IV
characteristic exhibiting NDR which can be used to
build a frequency divider. One difference with previ-
ously reported RTD-based circuits is the possibility of
using a simple MOS process for its implementation. In
an analog way to these previous circuits, the frequency
division is also obtained from the period adding se-
quences which appear in its bifurcation diagram. Addi-
tionally, we have shown the Farey sequences which
appear in the dynamic behavior of the circuit. 
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Figure 3: Bifurcation diagram for circuit in Figure 2
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Figure 4: Trajectories from the numerical results for diagram for , ( , , and ).(a) in the

cylindrical space, (b) in the plane , and (c) Poincaré map.
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Figure 5: Trajectories from the numerical results for diagram for , ( , , and ).(a) in the cylin-

drical space, (b) in the plane , and (c) Poincaré map.
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Figure 6: Bifurcation diagrams illustrating Farey sequences
for the circuit in Figure 2.

Figure 7: Simulation results giving a frequency
division of (a) 3, and (b) 5.
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