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Abstrat

This paper shows an appliation of omputational geometry methods to the preparation of image-based digital

library editions. We present a formalism for desribing non-hierarahial markup of manusripts in terms of one-

and two-dimensional geometry. This formalism allows us to use geometri data strutures and algorithms to proess

marked-up douments. With this approah we an overome many well-known and inherently diÆult problems

with non-hierarhial markup. We present algorithms based on segment trees and range-query strutures for

performing a number of queries on markup struture. This appliation of omputational geometry data strutures

to a new domain also provides insights into novel types of geometri operations and queries. Some of these

tehniques are urrently being used by researhers in the Researh Computing for Humanities projet, whih aims

to produe eletroni editions of seleted manusripts from the British Library.

1. Introdution

From a omputational geometry point of view,

an old manusript, a folio (a sheet of writing mate-

rial) and the sript (a text on the manusript page)

have interesting features in one, two and three di-

mensions and all of them are important. Spatial

deformations of the folio an be studied for restora-

tion purposes in three dimensions. Illuminations,

damages, restorations, and paleographi features

of individual letters an be studied as two dimen-

sional objets. The sript, a sequene of lines of

text, an be viewed as one dimensional as it follows

visible or invisible rulings that guide the layout of

the text [B94℄. In fat, onneting the image view

of a manusript with its transript is typially the

�rst task. In this paper we will disuss this linear

aspet of folia and we will disuss geometri stru-

tures that support its tagging.

Extensive tagging or markup is an often exrui-

ating task in the preparation of eletroni editions

of manusripts. The tagging proess results in a

strutured desription of the doument's ontents,

its features and attributes in a form that an be
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used to view and e�etively query the edition. The

XML (eXtensible Markup Language) is a prevail-

ing format used for desribing literary and artisti

work for Digital Libraries. XML �les desribe well-

hierarhial strutures (e.g., book, volume, setion,

page, line, word and harater) of the doument

and for that reason they an be viewed as rooted

trees. Although it seems natural that most dou-

ments adhere to suh hierarhies, it is often not true

in pratie. Evenworse, this happens in the ontext

of ultural heritage that urgently requires preser-

vation: old and severely damaged manusripts. An

image of a damaged folio from Alfred the Great's

Old English translation of Boethius's Consolation

of Philosophy is demonstrated in Figure 1.

Words an span more than one line, damages or

restorations an overlap words and parts of them.

A rather simple ase is illustrated in Figure 2 where

in the onvoluted tagging one word spans two lines;

as suh, it is not well-formed XML.

It has been long reognized that, in spite of its

popularity, XML su�ers from an inability to en-

ode elements that are not in hierarhial relation-

ships [RMD93℄. There are numerous approahes

to address this problem alled the onurrent hi-

erarhies problem; see, for example, [B95℄. Mostly

these approahes are onerned with tagging tran-
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Fig. 1. An image of a damaged manusript page

Fig. 2. Markup that is not hierarhial

sripts (text-based douments). In our task a

manusript or an image of it is the primary soure

for preparing an eletroni edition and we need

to handle the onurrent hierarhies in geometri

ontext of the image. This image-based approah

is the most distinguishing aspet of our work.

A geometri view of the problem allows us to

engage many data strutures, in partiular multi-

dimensional ones. In this paper, we will fous on

two of them: segment trees and a grid based data

struture developed by Overmars for range queries

(we will use it for line segments rather than points,

though). We will analyze how these strutures sup-

port a variety of queries that are essential in the

ontext of editing and studying manusripts.

There are several ontributions of this paper.

The �rst is in applying omputational geometry to

a new area.We will present a formalism for onur-

rent hierarhies that allows us to onnet geomet-

ri strutures with XML douments. Spei�ally,

we will disuss a number of algorithms for querying

the struture of a doument, together with their

asymptoti omplexities.

2. De�nitions

In this setion we desribe a formalism for repre-

senting multihierarhial doument markup. This

formalism allows us to onnet the struture of

markup with a geometri representation; this al-

lows us to use geometri data strutures and algo-

rithms to proess tagged douments.

2.1. Markup elements

We represent a markup element as a tuple

(N;A; �; !) where N is the element name, A (a

map from strings to strings) the attributes, and �

and ! are integers with 1 � � � !. The interval

of a markup element e, written I(e), is the losed

interval [�(e); !(e)℄ � N.

Definition 2.1 Let e

1

and e

2

be two markup ele-

ments. We de�ne the relations:

{ e

1

� e

2

if !(e

1

) < �(e

2

)

{ e

1

� e

2

if �(e

1

) � �(e

2

) and !(e

1

) � !(e

2

)

and I(e

1

) 6= I(e

2

). In this ase we say that e

1

is

a desendant of e

2

, or equivalently that e

2

is an

anestor of e

1

.

We state without proof the following theorems:

Theorem 2.1 The relations � and � eah form a

strit partial order.

Theorem 2.2 Let e

1

and e

2

be two markup ele-

ments. Exatly one of the following holds: e

1

� e

2

;

e

2

� e

1

; e

1

� e

2

; e

2

� e

1

; e

1

overlaps e

2

; or I(e

1

) =

I(e

2

).

3. Hierarhies

Definition 3.1 Let E be a �nite set of markup

elements. E is hierarhial if:

{ There is an element r 2 E, alled the root, suh

that, for eah element e 2 E, e � r or e = r

{ No two elements of E overlap, and no distint

elements of E share the same interval.

Lemma 3.1 Let E be a hierarhial set of markup

elements, and e 2 E. Then either e is the root and

has no parents in E, or e is not the root and has

exatly one parent in E.
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Theorem 3.1 Let E be a hierarhial set of

markup elements. Let G be a graph on E suh that

the edge (e

1

; e

2

) is in G if e

1

is the parent of e

2

. G

is a tree.

This justi�es our use of the term \hierarhy".

Beause hildren of the same parent annot be de-

sendants of one another, by Theorem 2.2 they an

be ordered by �. The tree is therefore an ordered

tree.

4. Data strutures and queries

In this setion we desribe two geometri data

strutures and apply them to a number of ommon

queries on douments.

A segment tree [BW80, PS85℄ is a dynami data

struture to represent a set of segments. For inser-

tions and deletions it is assumed that the endpoints

belong to the set of n points known in advane.

The underlying struture is a balaned binary

tree with leaves representing atomi segments.

Eah node orresponds to the union of the atomi

segments rooted in this nodes. Intervals that be-

long to the olletion represented in the segment

tree are assoiated with nodes of the tree and sat-

isfy the following property: a node v stores s if the

union of its atomi segments is ontained in s but

the union of the atomi segments assoiated with

the parent of v do not. Thanks to this property

eah segment is represented in at most O(logn)

nodes.

Insertions and deletions an be performed in

O(logn) time. Also, in the same time one an ount

the number of segments in the olletion that in-

ludes a given query point.

While segment trees are well-suited for some

types of queries, there are other queries whih seg-

ment trees do not perform as eÆiently. We use a

range- query struture to support these queries.

We treat a segment S = [�; !℄ in U = [1;M ℄ as

a point p(S) = (�; !) in U

2

. We all this represen-

tation of (a olletion of) segments a segment grid.

Many properties of S then orrespond to range

properties of p(S) in the segment grid. For exam-

ple, S � T if and only if p(S) lies to the lower right

of p(T ).

We shall make use of general range queries of the

form: �nd all points lying in the (losed) retangle

bounded by (a; b) and (; d). There exist a number

of data strutures supporting suh queries in a two-

dimensional grid. A number of these strutures are

desribed in [O88℄; two are of partiular interest

for our purposes.

Theorem 4.1 (Overmars) We an represent n

points in U

2

(and thus n segments in U) using

O(n logn) spae in suh a way that range queries

take O(k+log log jU j) time, where k is the number

of results returned by the query.

This data struture makes use of perfet hash-

ing, and is therefore slow to build. There is an al-

ternative data struture with slightly worse query

time, but signi�antly better reation time:

Theorem 4.2 (Overmars) We an represent n

points in U

2

using O(n logn) spae in suh a way

that range queries take O

�

k +

p

log jU j

�

time,

where k is the number of returned results. This

data struture an be built in O(n logn) time.

Neither of the range-query data strutures per-

mits eÆient insertion or deletion. For more infor-

mation on these strutures, see [O88℄.

4.1. Desendant queries

A ommon query on douments is to �nd all el-

ements of a ertain type that are desendants of a

given element e. For example, given a <page> ele-

ment, one may wish to �nd all <damage> elements

ontained within that element, either diretly (as

hildren) or indiretly. We an perform this oper-

ation by �nding all desendants of e and reporting

only those of the requested type.

Reall from De�nition 2.1 that the desendants

of e are those elements whih begin no earlier than

e, end no later than e, and do not both begin and

end at the same point as e. In terms of the segment

grid, p(I(x)) is a desendant of e if I(x) 6= I(e)

and p(I(x)) lies in the retangle bounded by the

points (�(e); �(e)) and (!(e); !(e)). Using the data

struture from Theorem 4.2, we an �nd all suh

points in O(k +

p

logM) time, where M is the

doument's maximum o�set and k is the number

of results.

4.2. Overlap queries

Another useful query is: given an element e, �nd

all elements whih overlap e. If e

1

overlaps e

2

, e

1

ontains at least one of the endpoints of e

2

. Con-

versely, if e

1

ontains at least one endpoint of e

2

,

either e

1

overlaps e

2

, e

1

= e

2

, e

1

� e

2

, or e

2

� e

1

.

This suggests the following:

Theorem 4.3 LetD be a doument ontaining the

element e. Let k be the number of elements over-

lapping e, d the number of desendants of e, a the

number of anestors of e, andM the maximum o�-
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set of D. We an �nd all elements overlapping e in

O(k + d+ a+ logM) time.

We �rst �nd the sets B(e) and E(e) of all ele-

ments whose intervals ontain �(e) and !(e), re-

spetively, using stabbing queries in a segment tree.

B(e) ontains at most k+ d+ a+1 elements, and

likewise for E(e). The stabbing queries an there-

fore be performed in time O(k+d+a+logM). We

then iterate through the results, reporting those

whih atually overlap e. Testing whether a given

segments overlaps e requires onstant time, so this

step does not inrease the omplexity.�

We an improve on this bound somewhat by

making use of range queries. If e

1

overlaps e

2

, e

1

ontains exatly one endpoint of e

2

. In the seg-

ment grid, segments ontaining �(e) but not !(e)

lie in the retangle R

�

bounded by the points

(1; �(e)) and (�(e); !(e)). Likewise, segments on-

taining !(e) but not �(e) lie in the retangle R

!

bounded by (�(e); !(e)) and (!(e);M), where M

is the maximum o�set of the doument. While

these retangles ontain all the elements whih

overlap e, they do not ontain only suh elements.

As with the stabbing queries desribed above, the

range queries also return e, and may return some

anestors and desendants of e, so we must remove

these from the result set. It is lear, however, that

the retangles do not ontain any element x suh

that x � e or e � x.

Theorem 4.4 LetD be a doument ontaining the

element e. Let k be the number of elements over-

lapping e, d the number of desendants of e, a the

number of anestors of e, andM the maximum o�-

set of D. We an �nd all elements overlapping e in

O(k + d+ a+

p

logM) time.

Eah range query returns at most k + d+ a+ 1

elements, and an therefore be performed in time

O(k+d+a+

p

logM). As with the stabbing query,

we then iterate through the results of the range

query, reporting those elements whih overlap e;

again, this does not a�et the overall omplexity

of the overlap query.�

The running time of overlap queries an be im-

proved still further if we impose additional restri-

tions on the endpoints of elements:

Theorem 4.5 Let D be a doument suh that no

two elements share an endpoint in ommon, and let

e be an element inD. If k is the number of elements

overlapping e and M is the maximum o�set of D,

we an �nd all elements overlapping e in O(k +

p

logM) time.

5. Conlusion

We have presented a formalism that onnets

the realm of omputational geometry to algorith-

mi problems that we have faed in the marking

up of image-based eletroni editions. As exam-

ples of geometri strutures we have disussed seg-

ment trees and range query strutures and have

applied them to the well-reognized and inherently

diÆult problem of non-hierarhial markup. Two-

dimensional aspets of manusript marking, suh

as marginalia, paleographi features and damages

will involve additional geometri strutures.
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