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Abstract

We consider the problem of searching for a goal in an unknown environment, which may be a graph or a polygonal
environment. The search ratio is the worst-case ratio before the goal is found while moving along some search
path, over the shortest path from the start point to the goal, minimized over all search paths. We investigate the
problem of finding good approximations to the optimal search path, with or without a priori knowledge of the
environment. In the latter case, we are dealing with an online problem. We must compute a good search path while
exploring the unknown environment. We present a unified framework that allows us to derive competitive search
path algorithms from existing competitive exploration algorithms, if it is possible to modify them in a certain
natural way. Our transformation increases the competitive ratio at most by a factor of eight. This expresses the
relationship between competitive online exploration and online searching more precisely than before. We apply our
framework to searching in trees, (planar) graphs, and in (rectilinear) polygonal environments with or without holes.

Key words: Online motion planning, competitive ratio, searching, exploration, search ratio

1. Introduction

Exploration and searching are fundamental
tasks in online motion planning that have at-
tracted a lot of interest during the last decade, see
for example the survey by Berman [4]. Exploration
means that an agent should detect all objects in-
side an unknown environment whereas in search-
ing one particular goal object has to be detected.

The competitive ratio is an established perfor-
mance measure for online algorithms, see for ex-
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ample [3,7]. In exploration and search problems,
the cost of an algorithm is typically the length of
the path traveled by the agent.

Intuitively, there is a close relationship between
online searching and exploration. Since the goal
could be hidden anywhere, every search strat-
egy must eventually explore the entire scene. On
the other hand, there is a fundamental difference
between searching and exploration. In order to
achieve a small search ratio, a search strategy
should explore the environment in a breadth first
search manner, first exploring all locations close to
the starting point, then iteratively increasing the
search radius. In contrast, an exploration strategy
may decide to first follow some long path. For
example, for unknown undirected graphs depth
first search (DF'S) is a 2-competitive online ex-
ploration algorithm, but there is no competitive
online search algorithm, see [9]. This indicates
that online exploration may be an easier problem
than online searching.

Koutsoupias et al. [10] first studied how to com-
pute search path approximations offline. A search
path 7 explores the entire enviroment. If the goal
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becomes visible for the first time while moving
along 7, we can move towards it. The quality of
a search path is determined by a worst-case goal
point v that maximizes the ratio between the
length of the path to v via 7w and the shortest
path to v, among all goal points v. Koutsoupias et
al. called this worst-case ratio the search ratio of
w. An optimal search path has the minimal search
ratio among all search paths. They only studied
graphs with unit length edges where the goal can
only be located at one of the vertices of the graph,
and they only studied the offline case, i.e., with
full a priori knowledge of the graph. They showed
that computing the optimal search ratio offline is
an NP-complete problem, and they gave a poly-
nomial time 8-approximation algorithm based on
the doubling heuristic, which is also the main in-
gredient of our approach. The doubling heuristic
is a standard technique in online motion planning,
see for example [3,2].

Our goal is to approximate the optimal search
path in an unknown environment by a constant-
competitive online search algorithm. We propose
a general framework how to derive such a compet-
itive online algorithm when there exists a compet-
itive online exploration algorithm for the environ-
ment that can be adapted in a certain natural way.
Our framework can also be applied to offline ex-
ploration approximation algorithms, in which case
it yields offline approximation algorithms for the
optimal search ratio. The competitive ratio of the
search algorithm is only at most four or eight times
the approximation factor of the exploration algo-
rithm, depending on whether goals can only be hid-
den at some finite set of points, like the vertices of
a graph, for example, or whether the goal can be
hidden anywhere in the environment.

In this extended abstract, all proofs are omitted.

2. Definitions

We want to find a good search path in some
given environment E. In a graph environmen, edge
lengths do not necessarily represent Euclidean dis-
tances in some embedding of the graph, even if the
graph is planar. In particular, we do not assume
that the triangle inequality holds.

The goal set G C FE is the set of locations in
the environment where the goal might be hidden.
For example, if E is a graph G = (V, E), then the
goal may either be located anywhere on some edge

(geometric search), i.e. G =V U E, or it may only
be located at some vertex (vertex search), i.e., G =
V. To explore E means to move around in E and
eventually see all potential goal positions G. To
search E means to follow some exploration path
in F, the search path, until the goal is detected. A
path 7 is a search path if every point in G can be
seen from at least one point on 7. We assume that
search paths always return to their start point. We
make the usual assumption that goals must be at
least in distance 1 from the start point s. If goals
could be arbitrarily close to s, no algorithm could
be competitive.

For d > 1, let E(d) denote the part of E in dis-
tance at most d from s. A depth-d restricted explo-
ration explores all potential goal positions in G(d).
The search path may move outside E(d) as long
as it stays within E. Depth-d restricted search is
defined similarly.

Agents can either be blind, i.e., they can only
sense their very close neighborhood, or they can
have vision, i. e., they can see objects far away if the
line of view is not blocked by an obstacle. In a graph
environment, an agent with vision can usually see
the endpoints of all adjacent edges at a vertex (even
if the edges have a curved embedding in the plane).
A blind agent standing at a vertex can only sense
the outgoing edges of the vertex; it cannot see the
length or the endpoint of an edge, and it cannot
see the incoming edges [5].

In polygon searching we usually assume the
agents to have vision, whereas in graph searching
we usually assume the agents to be blind. Note
that a blind agent must eventually visit all points
in the goal set, wheras an agent with vision can
afford to skip some potential goal positions as long
as it can see them from somewhere else (maybe
far away). For example, when searching a polygon
it is sufficient to visit all visibility cuts, i.e., cuts
emanating from the edges of reflex vertices.

We assume that agents have perfect memory.
They always know a map of the already explored
part of F/, and they can always recognize when they
visit some point for the second time, i. e., they have
perfect localization.

Let m be a path in the environment E. For a point
p € 7 let w(p) denote the part of m between s and
p and sp(p) the shortest path from s to p in E. We
denote the length of a path segment 7(p) by |7 (p)|.
We write |A| for the length of the tour computed
by an algorithm A. For a point p € E let rise,(p)
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denote the point g € 7 from which p is seen for the
first time when moving along 7 starting at s.

The qualitiy of a search path is measured
by its search ratio sr(w), defined as sr(w) :=

max 7@ +lap]
peG  1sp(@)l

q = p for blind agents. An optimal search path,
Topt, is a search path with a minimum search
ratio stopt, 1. €., stopt = st(mop)-

Since the optimal search path seems hard to
compute [10], we are interested in finding good ap-
proximations of the optimal search path, in offline
and online scenarios. We say a search path m is
C-competitive (with respect to the optimal search
path mopt) if st(m) < C - sr(mopt).-

, where ¢ = rise;(p). Note that

3. A General Approximation Framework

In this section we will show how to transform an
exploration algorithm, offline or online, for a cer-
tain environment into a search algorithm, without
losing too much on the approximation factor.

Let E be the given environment and Topt an
optimal search path. We assume that, for any point
p, we can reach s from p on a path of length at most
sp(p). Note that this is not the case for directed
graphs, for example, but it is true for undirected
graphs and polygonal environments.

For d > 1, let Ezpl(d) be a family of depth-d re-
stricted exploration algorithms for F, either online
or offline. Let OPT and OPT(d) denote the corre-
sponding optimal offline depth-d restricted explo-
ration algorithms.

Definition 1 The family Ezpl(d) is DREP (depth
restricted exploration property) if there are con-
stants 3 > 0 and Cg > 1 such that, for any
d > 1, Expl(d) is Cg-competitive against the
optimal algorithm OPT(Bd), i.e., |Expl(d)] <
Cs - |OPT(Bd)|. O

In the normal competitive framework, § = 1.
Usually, we cannot just take an exploration al-
gorithm FEzpl for E and restrict it to points in
distance at most d from s. This way, we might
miss useful shortcuts outside of F(d). Even worse,
it may not be possible to determine in an online
setting which parts of the environment belong to
E(d), making it difficult to explore the right part
of E.

To obtain a search algorithm for E we use the
well-known doubling strategy. For + = 1,2,3,---,
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we successively run the exploration algorithm
Ezpl(2"), each time starting at s.

Theorem 2 The doubling strateqy based on a
DREP exploration strategy is a 43Cg-competitive
(plus an additive constant) search algorithm for
blind agents, and a 83Cg-competitive search algo-
rithm for agents with vision. O

In the next two sections we will apply our frame-
work to various types of environments and agents.
The difficult part is always to find good DREP ex-
ploration algorithms.

4. Searching Graphs and Polygons

When searching graphs, we assume agents are
blind. In the vertex search problem, we assume
w.l.o.g. that graphs do not have parallel edges.
Otherwise, there can be no constant-competitive
vertex search algorithm.

Theorem 3 For blind agents, there is no constant-
competitive online vertex search algorithm for non-
planar graphs with unit length edges, directed pla-
nar graphs with unit length edges, and undirected
planar graphs with arbitrary edge lengths. Further,
there is no constant-competitive online geometric
search algorithm for directed graphs with unit length
edges. O

Note that non-competitiveness for planar graphs
implies non-competitiveness for general graphs,
non-competitiveness for unit length edges implies
non-competitiveness for arbitrary length edges,
and non-competitiveness for undirected graphs
implies non-competitiveness for directed graphs.

On trees, DF'S is a 1-competitive online explo-
ration algorithm for vertex and geometric search
that is DREP; it is still 1-competitive when re-
stricted to search depth d, for any d > 1. Thus,
the doubling strategy gives a polynomial time 4-
competitive search algorithm for trees, online and
offline. On the other hand, it is an open problem
whether the computation of an optimal vertex or
geometric search path in trees with unit length
edges is NP-complete [10].

We will now give competitive search algorithms
for planar graphs with unit length edges and for
general graphs with arbitrary length edges. Both
algorithms are based on an online algorithm for
online tethered graph exploration. In the tethered
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exploration problem the agent is fixed to the start
point by a restricted length rope. An optimal solu-
tion to this problem was given by Duncan et al. [6].
As they pointed out, the algorithm can also be used
for depth restricted exploration. We note that it
can also be adapted to work on graphs with arbi-
trary length edges.

Lemma 4 In planar graphs with unit length edges,
Ezpl(d) is a DREP online vertex exploration algo-
rithm with 3 =1+ a and Cz = 10 + 1(1—6.

Theorem 5 The doubling strateqy based on
Expl(d) is a (104 + 40a + &)-competitive online
vertex search algorithm for blind agents in planar
graphs with unit length edges. O

16

For a =4/ 15+

the competitive factor is minimal.

Lemma 6 In general graphs with arbitrary length
edges, Frpl(d) is a DREP online geometric explo-
ration algorithm with 8 = 1+ and Cg = 4+§. o

Theorem 7 The doubling strategy based on
Ezpl(d) is a (48 + 16a + 32)-competitive online
geometric search algorithm for blind agents in
general graphs with arbitrary length edges. O

When searching polygons, we assume that
agents have vision. The only known algorithm,
PE, for the online exploration of a simple polygon
by Hoffmann et al. [8] achieves a competitive ratio
of 26.5. This algorithm can be adapted for depth
restricted exploration.

Lemma 8 In a simple polygon, PE(d) is a DREP
online exploration algorithm with 8 =1 and Cg =
26.5. O

Theorem 9 The doubling strategy based on PE(d)
is a 212-competitive online search algorithm for an
agent with vision in a simple polygon. There is also
a polynomial time 8-competitive offline search al-
gorithm. O

The problem of efficiently computing an optimal
search path in a polygon is still open.

Theorem 10 For an agent with vision in a sim-
ple rectilinear polygon there is a 8v/2-competitive
online search algorithm. There is also a polynomial
time 8-competitive offline search algorithm. O

Based on a construction by Albers et al. [1] we
can show the following theorem.

Theorem 11 For an agent with vision in a poly-
gon with rectangular holes there is no constant-
competitive online search algorithm. O

The offline exploration problem is NP-hard, and
there is an exponential time 8-approximation algo-
rithm. Thus, we get an approximation factor of 8
for the optimal search ratio. The results of Kout-
soupias et al. [10] imply that the offline problem
of computing an optimal search path in a known
polygon with (rectangular) holes is NP-complete.
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