The Riemann-Hilbert problem for matrix-valued orthogonal polynomials ${ }^{1}$

Manuel Domínguez de la Iglesia

Department of Mathematics, K. U. Leuven

Seminar classical analysis
Leuven, November 5, 2008

${ }^{1}$ joint work with Andrei Martínez Finkelshtein

Outline

(1) Preliminaries
(2) The RH problem for OMP
(3) An example

Outline

(1) Preliminaries

(2) The RH problem for OMP

(3) An example

Let W be a $N \times N$ a weight matrix such that $d W(x)=W(x) d x$. We can construct a family of OMP such that

The matrix-valued polynomials of the second kind, defined by

$$
Q_{n}(x)=\int_{\mathbb{R}} \frac{P_{n}(t) W(t)}{t-x} d t, \quad n \geqslant 0
$$

$\left(P_{n}\right)_{n}$ and $\left(Q_{n}\right)_{n}$ satisfy a three term recurrence relation

$$
\begin{aligned}
& t P_{n}(t)=A_{n+1} P_{n+1}(t)+B_{n} P_{n}(t)+A_{n}^{*} P_{n-1}(t), \quad n \geqslant 0 \\
& \operatorname{det}\left(A_{n+1}\right) \neq 0, \quad B_{n}=B_{n}^{*}
\end{aligned}
$$

Let W be a $N \times N$ a weight matrix such that $d W(x)=W(x) d x$. We can construct a family of OMP such that

$$
\begin{aligned}
& \int_{\mathbb{R}} P_{n}(x) W(x) P_{m}^{*}(x) d x=\delta_{n, m} /, \quad n, m \geqslant 0 \\
& P_{n}(x)=\gamma_{n}\left(x^{n}+a_{n, n-1} x^{n-1}+\cdots\right)=\gamma_{n} \widehat{P}_{n}(x)
\end{aligned}
$$

The matrix-valued polynomials of the second kind, defined by

Let W be a $N \times N$ a weight matrix such that $d W(x)=W(x) d x$. We can construct a family of OMP such that

$$
\begin{aligned}
& \int_{\mathbb{R}} P_{n}(x) W(x) P_{m}^{*}(x) d x=\delta_{n, m} l, \quad n, m \geqslant 0 \\
& P_{n}(x)=\gamma_{n}\left(x^{n}+a_{n, n-1} x^{n-1}+\cdots\right)=\gamma_{n} \widehat{P}_{n}(x)
\end{aligned}
$$

The matrix-valued polynomials of the second kind, defined by

$$
Q_{n}(x)=\int_{\mathbb{R}} \frac{P_{n}(t) W(t)}{t-x} d t, \quad n \geqslant 0
$$

Let W be a $N \times N$ a weight matrix such that $d W(x)=W(x) d x$. We can construct a family of OMP such that

$$
\begin{aligned}
& \int_{\mathbb{R}} P_{n}(x) W(x) P_{m}^{*}(x) d x=\delta_{n, m} l, \quad n, m \geqslant 0 \\
& P_{n}(x)=\gamma_{n}\left(x^{n}+a_{n, n-1} x^{n-1}+\cdots\right)=\gamma_{n} \widehat{P}_{n}(x)
\end{aligned}
$$

The matrix-valued polynomials of the second kind, defined by

$$
Q_{n}(x)=\int_{\mathbb{R}} \frac{P_{n}(t) W(t)}{t-x} d t, \quad n \geqslant 0
$$

$\left(P_{n}\right)_{n}$ and $\left(Q_{n}\right)_{n}$ satisfy a three term recurrence relation

$$
\begin{aligned}
& t P_{n}(t)=A_{n+1} P_{n+1}(t)+B_{n} P_{n}(t)+A_{n}^{*} P_{n-1}(t), \quad n \geqslant 0 \\
& \operatorname{det}\left(A_{n+1}\right) \neq 0, \quad B_{n}=B_{n}^{*}
\end{aligned}
$$

The coefficients of the TTRR satisfy

$$
A_{n}=\gamma_{n-1} \gamma_{n}^{-1}, \quad B_{n}=\gamma_{n}\left(a_{n, n-1}-a_{n+1, n}\right) \gamma_{n}^{-1}
$$

The TTRR for monic OMP

Second-order differential equations of hypergeometric type

The coefficients of the TTRR satisfy

$$
A_{n}=\gamma_{n-1} \gamma_{n}^{-1}, \quad B_{n}=\gamma_{n}\left(a_{n, n-1}-a_{n+1, n}\right) \gamma_{n}^{-1}
$$

The TTRR for monic OMP

$$
\begin{aligned}
& x \widehat{P}_{n}(x)=\widehat{P}_{n+1}(x)+\alpha_{n} \widehat{P}_{n}(x)+\beta_{n} \widehat{P}_{n-1}(x), \quad n \geqslant 0 \\
& \alpha_{n}=a_{n, n-1}-a_{n+1, n}, \quad \beta_{n}=\left(\gamma_{n}^{*} \gamma_{n}\right)^{-1}\left(\gamma_{n-1}^{*} \gamma_{n-1}\right)
\end{aligned}
$$

Second-order differential equations of hypergeometric type
$P_{n}^{\prime \prime}(x) F_{2}(x)+P_{n}^{\prime}(x) F_{1}(x)+P_{n}(x) F_{0}(x)=\Lambda_{n} P_{n}(x), \quad n \geqslant 0$ $\operatorname{deg} F_{i} \leqslant i, \quad \Lambda_{n}$ Hermitian

The coefficients of the TTRR satisfy

$$
A_{n}=\gamma_{n-1} \gamma_{n}^{-1}, \quad B_{n}=\gamma_{n}\left(a_{n, n-1}-a_{n+1, n}\right) \gamma_{n}^{-1}
$$

The TTRR for monic OMP

$$
\begin{aligned}
& x \widehat{P}_{n}(x)=\widehat{P}_{n+1}(x)+\alpha_{n} \widehat{P}_{n}(x)+\beta_{n} \widehat{P}_{n-1}(x), \quad n \geqslant 0 \\
& \alpha_{n}=a_{n, n-1}-a_{n+1, n}, \quad \beta_{n}=\left(\gamma_{n}^{*} \gamma_{n}\right)^{-1}\left(\gamma_{n-1}^{*} \gamma_{n-1}\right)
\end{aligned}
$$

Second-order differential equations of hypergeometric type

$$
P_{n}^{\prime \prime}(x) F_{2}(x)+P_{n}^{\prime}(x) F_{1}(x)+P_{n}(x) F_{0}(x)=\Lambda_{n} P_{n}(x), \quad n \geqslant 0
$$

$\operatorname{deg} F_{i} \leqslant i, \quad \Lambda_{n}$ Hermitian

Outline

(1) Preliminaries

(2) The RH problem for OMP

(3) An example

Solution of the RH for OMP

$Y^{n}: \mathbb{C} \rightarrow \mathbb{C}^{2 N \times 2 N}$ such that
(1) Analyticity. Y^{n} is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) Jump Condition. $Y_{+}^{n}(x)=Y_{-}^{n}(x)\left(\begin{array}{cc}I & W(x) \\ 0 & I\end{array}\right)$ when $x \in \mathbb{R}$
(3) Normalization. $Y^{n}(z)=(I+\mathcal{O}(1 / z))\left(\begin{array}{cc}z^{n} I & 0 \\ 0 & z^{-n} I\end{array}\right)$ as $z \rightarrow \infty$

For $n \geqslant 1$ the unique solution of the RH problem above is given by

Solution of the RH for OMP

$Y^{n}: \mathbb{C} \rightarrow \mathbb{C}^{2 N \times 2 N}$ such that
(1) Analyticity. Y^{n} is analytic in $\mathbb{C} \backslash \mathbb{R}$
(2) Jump Condition. $Y_{+}^{n}(x)=Y_{-}^{n}(x)\left(\begin{array}{cc}I & W(x) \\ 0 & I\end{array}\right)$ when $x \in \mathbb{R}$
(3) Normalization. $Y^{n}(z)=(I+\mathcal{O}(1 / z))\left(\begin{array}{cc}z^{n} I & 0 \\ 0 & z^{-n} I\end{array}\right)$ as $z \rightarrow \infty$

For $n \geqslant 1$ the unique solution of the RH problem above is given by

$$
Y^{n}(z)=\left(\begin{array}{cc}
\widehat{P}_{n}(z) & \frac{1}{2 \pi i} \int_{\mathbb{R}} \frac{\widehat{P}_{n}(t) W(t)}{t-z} d t \\
-2 \pi i \gamma_{n-1}^{*} \gamma_{n-1} \widehat{P}_{n-1}(z) & -\gamma_{n-1}^{*} \gamma_{n-1} \int_{\mathbb{R}} \frac{\widehat{P}_{n-1}(t) W(t)}{t-z} d t
\end{array}\right)
$$

Also we find a solution of the inverse

$$
\left(Y^{n}\right)^{-1}=\left(\begin{array}{cc}
-\left(\int_{\mathbb{R}} \frac{W(t) \widehat{P}_{n-1}^{*}(t)}{t-z} d t\right) \gamma_{n-1}^{*} \gamma_{n-1} & -\frac{1}{2 \pi i} \int_{\mathbb{R}} \frac{W(t) \widehat{P}_{n}^{*}(t)}{t-z} d t \\
2 \pi i \widehat{P}_{n-1}^{*}(z) \gamma_{n-1}^{*} \gamma_{n-1} & \widehat{P}_{n}^{*}(z)
\end{array}\right)
$$

Also we find a solution of the inverse

$$
\left(Y^{n}\right)^{-1}=\left(\begin{array}{cc}
-\left(\int_{\mathbb{R}} \frac{W(t) \widehat{P}_{n-1}^{*}(t)}{t-z} d t\right) \gamma_{n-1}^{*} \gamma_{n-1} & -\frac{1}{2 \pi i} \int_{\mathbb{R}} \frac{W(t) \widehat{P}_{n}^{*}(t)}{t-z} d t \\
2 \pi i \widehat{P}_{n-1}^{*}(z) \gamma_{n-1}^{*} \gamma_{n-1} & \widehat{P}_{n}^{*}(z)
\end{array}\right)
$$

- The Liouville-Ostrogradski formula

$$
Q_{n}(z) P_{n-1}^{*}(z)-P_{n}(z) Q_{n-1}^{*}(z)=A_{n}^{-1}
$$

- The Hermitian property

Also we find a solution of the inverse

$$
\left(Y^{n}\right)^{-1}=\left(\begin{array}{cc}
-\left(\int_{\mathbb{R}} \frac{W(t) \widehat{P}_{n-1}^{*}(t)}{t-z} d t\right) \gamma_{n-1}^{*} \gamma_{n-1} & -\frac{1}{2 \pi i} \int_{\mathbb{R}} \frac{W(t) \widehat{P}_{n}^{*}(t)}{t-z} d t \\
2 \pi i \widehat{P}_{n-1}^{*}(z) \gamma_{n-1}^{*} \gamma_{n-1} & \widehat{P}_{n}^{*}(z)
\end{array}\right)
$$

- The Liouville-Ostrogradski formula

$$
Q_{n}(z) P_{n-1}^{*}(z)-P_{n}(z) Q_{n-1}^{*}(z)=A_{n}^{-1}
$$

- The Hermitian property

$$
Q_{n}(z) P_{n}^{*}(z)=P_{n}(z) Q_{n}^{*}(z)
$$

The three-term recurrence relation

If we call $R=Y^{n+1}\left(Y^{n}\right)^{-1}$ and denoting

$$
\begin{aligned}
& Y^{n}(z)=\left(I+\frac{1}{z} Y_{1}^{n}+\mathcal{O}_{n}\left(1 / z^{2}\right)\right)\left(\begin{array}{cc}
z^{n} I & 0 \\
0 & z^{-n} I
\end{array}\right), \quad z \rightarrow \infty \\
& Y^{n+1}(z)=\left(\begin{array}{cc}
z I+\left(Y_{1}^{n+1}\right)_{11}-\left(Y_{1}^{n}\right)_{11} & -\left(Y_{1}^{n}\right)_{12} \\
\left(Y_{1}^{n+1}\right)_{21} & 0
\end{array}\right) Y^{n}(z)
\end{aligned}
$$

The three-term recurrence relation

If we call $R=Y^{n+1}\left(Y^{n}\right)^{-1}$ and denoting

$$
Y^{n}(z)=\left(I+\frac{1}{z} Y_{1}^{n}+\mathcal{O}_{n}\left(1 / z^{2}\right)\right)\left(\begin{array}{cc}
z^{n} I & 0 \\
0 & z^{-n} I
\end{array}\right), \quad z \rightarrow \infty
$$

$$
Y^{n+1}(z)=\left(\begin{array}{cc}
z l+\left(Y_{1}^{n+1}\right)_{11}-\left(Y_{1}^{n}\right)_{11} & -\left(Y_{1}^{n}\right)_{12} \\
\left(Y_{1}^{n+1}\right)_{21} & 0
\end{array}\right) Y^{n}(z)
$$

- $\gamma_{n-1}^{*} \gamma_{n-1}=-\frac{1}{2 \pi i}\left(Y_{1}^{n}\right)_{21}=-\frac{1}{2 \pi i}\left(Y_{1}^{n-1}\right)_{12}^{-1}$

The three-term recurrence relation

If we call $R=Y^{n+1}\left(Y^{n}\right)^{-1}$ and denoting

$$
\begin{gathered}
Y^{n}(z)=\left(I+\frac{1}{z} Y_{1}^{n}+\mathcal{O}_{n}\left(1 / z^{2}\right)\right)\left(\begin{array}{cc}
z^{n} I & 0 \\
0 & z^{-n} I
\end{array}\right), \quad z \rightarrow \infty \\
Y^{n+1}(z)=\left(\begin{array}{cc}
z I+\left(Y_{1}^{n+1}\right)_{11}-\left(Y_{1}^{n}\right)_{11} & -\left(Y_{1}^{n}\right)_{12} \\
\left(Y_{1}^{n+1}\right)_{21} & 0
\end{array}\right) Y^{n}(z)
\end{gathered}
$$

- $\gamma_{n-1}^{*} \gamma_{n-1}=-\frac{1}{2 \pi i}\left(Y_{1}^{n}\right)_{21}=-\frac{1}{2 \pi i}\left(Y_{1}^{n-1}\right)_{12}^{-1}$
- $\alpha_{n}=\left(Y_{1}^{n}\right)_{11}-\left(Y_{1}^{n+1}\right)_{11}, \quad \beta_{n}=\left(Y_{1}^{n}\right)_{12}\left(Y_{1}^{n}\right)_{21}$

The three-term recurrence relation

If we call $R=Y^{n+1}\left(Y^{n}\right)^{-1}$ and denoting

$$
\begin{gathered}
Y^{n}(z)=\left(I+\frac{1}{z} Y_{1}^{n}+\mathcal{O}_{n}\left(1 / z^{2}\right)\right)\left(\begin{array}{cc}
z^{n} I & 0 \\
0 & z^{-n} I
\end{array}\right), \quad z \rightarrow \infty \\
Y^{n+1}(z)=\left(\begin{array}{cc}
z I+\left(Y_{1}^{n+1}\right)_{11}-\left(Y_{1}^{n}\right)_{11} & -\left(Y_{1}^{n}\right)_{12} \\
\left(Y_{1}^{n+1}\right)_{21} & 0
\end{array}\right) Y^{n}(z)
\end{gathered}
$$

- $\gamma_{n-1}^{*} \gamma_{n-1}=-\frac{1}{2 \pi i}\left(Y_{1}^{n}\right)_{21}=-\frac{1}{2 \pi i}\left(Y_{1}^{n-1}\right)_{12}^{-1}$
- $\alpha_{n}=\left(Y_{1}^{n}\right)_{11}-\left(Y_{1}^{n+1}\right)_{11}, \quad \beta_{n}=\left(Y_{1}^{n}\right)_{12}\left(Y_{1}^{n}\right)_{21}$
- $B_{n}=\gamma_{n}\left(\left(Y_{1}^{n}\right)_{11}-\left(Y_{1}^{n+1}\right)_{11}\right) \gamma_{n}^{-1}, \quad A_{n}^{*}=\gamma_{n}\left(Y_{1}^{n}\right)_{12}\left(Y_{1}^{n}\right)_{21} \gamma_{n-1}^{-1}$

The three-term recurrence relation

If we call $R=Y^{n+1}\left(Y^{n}\right)^{-1}$ and denoting

$$
\begin{gathered}
Y^{n}(z)=\left(I+\frac{1}{z} Y_{1}^{n}+\mathcal{O}_{n}\left(1 / z^{2}\right)\right)\left(\begin{array}{cc}
z^{n} I & 0 \\
0 & z^{-n} I
\end{array}\right), \quad z \rightarrow \infty \\
Y^{n+1}(z)=\left(\begin{array}{cc}
z I+\left(Y_{1}^{n+1}\right)_{11}-\left(Y_{1}^{n}\right)_{11} & -\left(Y_{1}^{n}\right)_{12} \\
\left(Y_{1}^{n+1}\right)_{21} & 0
\end{array}\right) Y^{n}(z)
\end{gathered}
$$

- $\gamma_{n-1}^{*} \gamma_{n-1}=-\frac{1}{2 \pi i}\left(Y_{1}^{n}\right)_{21}=-\frac{1}{2 \pi i}\left(Y_{1}^{n-1}\right)_{12}^{-1}$
- $\alpha_{n}=\left(Y_{1}^{n}\right)_{11}-\left(Y_{1}^{n+1}\right)_{11}, \quad \beta_{n}=\left(Y_{1}^{n}\right)_{12}\left(Y_{1}^{n}\right)_{21}$
- $B_{n}=\gamma_{n}\left(\left(Y_{1}^{n}\right)_{11}-\left(Y_{1}^{n+1}\right)_{11}\right) \gamma_{n}^{-1}, \quad A_{n}^{*}=\gamma_{n}\left(Y_{1}^{n}\right)_{12}\left(Y_{1}^{n}\right)_{21} \gamma_{n-1}^{-1}$
- $\left(Y_{1}^{n+1}\right)_{21}\left(Y_{1}^{n}\right)_{12}=\left(Y_{1}^{n}\right)_{12}\left(Y_{1}^{n+1}\right)_{21}=I, \quad\left(Y_{1}^{n}\right)_{11}+\left(Y_{1}^{n}\right)_{22}^{*}=0$

The kernel

Let $\left(P_{n}\right)_{n}$ an orthonormal family. Then we have

$$
K_{n}(x, y)=\sum_{j=0}^{n-1} P_{j}^{*}(y) P_{j}(x)=\frac{P_{n-1}^{*}(y) A_{n} P_{n}(x)-P_{n}^{*}(y) A_{n}^{*} P_{n-1}(x)}{x-y}
$$

This kernel has the following properties
(1) $K_{n}(x, y)=K_{n}^{*}(y, x)$
(2) $K_{n}(x, y)=\int_{\mathbb{R}} K_{n}(s, y) W(s) K_{n}(x, s) d s$

We also have that

The kernel

Let $\left(P_{n}\right)_{n}$ an orthonormal family. Then we have

$$
K_{n}(x, y)=\sum_{j=0}^{n-1} P_{j}^{*}(y) P_{j}(x)=\frac{P_{n-1}^{*}(y) A_{n} P_{n}(x)-P_{n}^{*}(y) A_{n}^{*} P_{n-1}(x)}{x-y}
$$

This kernel has the following properties
(1) $K_{n}(x, y)=K_{n}^{*}(y, x)$
(2) $K_{n}(x, y)=\int_{\mathbb{R}} K_{n}(s, y) W(s) K_{n}(x, s) d s$

The kernel

Let $\left(P_{n}\right)_{n}$ an orthonormal family. Then we have

$$
K_{n}(x, y)=\sum_{j=0}^{n-1} P_{j}^{*}(y) P_{j}(x)=\frac{P_{n-1}^{*}(y) A_{n} P_{n}(x)-P_{n}^{*}(y) A_{n}^{*} P_{n-1}(x)}{x-y}
$$

This kernel has the following properties
(1) $K_{n}(x, y)=K_{n}^{*}(y, x)$
(2) $K_{n}(x, y)=\int_{\mathbb{R}} K_{n}(s, y) W(s) K_{n}(x, s) d s$

We also have that

$$
K_{n}(x, y)=\frac{1}{2 \pi i(x-y)}\left(\begin{array}{ll}
0 & I
\end{array}\right)\left(Y^{n}\right)_{+}^{-1}(y)\left(Y^{n}\right)_{+}(x)\binom{I}{0}
$$

A differential equation

We consider weight matrices of the form

$$
W(x)=\rho(x) T(x) T^{*}(x)
$$

where T satisfies $T^{\prime}(x)=G(x) T(x)$.
Consider

Then $\frac{d}{d z} X^{n}(z) X^{n}(z)^{-1}$ is entire and near infinity it behaves like

A differential equation

We consider weight matrices of the form

$$
W(x)=\rho(x) T(x) T^{*}(x)
$$

where T satisfies $T^{\prime}(x)=G(x) T(x)$.
Consider

$$
X^{n}(z)=Y^{n}(z) J(z)=Y^{n}(z)\left(\begin{array}{cc}
\rho(z)^{1 / 2} T(z) & 0 \\
0 & \rho(z)^{-1 / 2}(T(z))^{-*}
\end{array}\right)
$$

Then $\frac{d}{d z} X^{n}(z) X^{n}(z)^{-1}$ is entire and near infinity it behaves like

A differential equation

We consider weight matrices of the form

$$
W(x)=\rho(x) T(x) T^{*}(x)
$$

where T satisfies $T^{\prime}(x)=G(x) T(x)$.
Consider

$$
X^{n}(z)=Y^{n}(z) J(z)=Y^{n}(z)\left(\begin{array}{cc}
\rho(z)^{1 / 2} T(z) & 0 \\
0 & \rho(z)^{-1 / 2}(T(z))^{-*}
\end{array}\right)
$$

Then $\frac{d}{d z} X^{n}(z) X^{n}(z)^{-1}$ is entire and near infinity it behaves like

$$
\left(I+\frac{Y_{1}}{z}+\mathcal{O}\left(z^{-2}\right)\right)\left(\begin{array}{cc}
\frac{1}{2} \frac{\rho^{\prime}(z)}{\rho(z)}+G(z) & 0 \\
0 & -\frac{1}{2} \frac{\rho^{\prime}(z)}{\rho(z)}-G(z)^{*}
\end{array}\right)\left(I-\frac{Y_{1}}{z}+\mathcal{O}\left(z^{-2}\right)\right)
$$

Outline

(1) Preliminaries

(3) An example

We will study in detail the RH problem for the weight matrix

$$
W(x)=e^{-x^{2}} e^{A x} e^{A^{*} x}, \quad x \in \mathbb{R}
$$

where

$$
A=\left(\begin{array}{ccccc}
0 & v_{1} & 0 & \cdots & 0 \\
0 & 0 & v_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & v_{N-1} \\
0 & 0 & 0 & \cdots & 0
\end{array}\right), \quad v_{i} \in \mathbb{C} \backslash\{0\}
$$

Therefore, $\rho(z)=e^{-z^{2}}$ and $T(z)=e^{A z}$ with $T^{\prime}(z)=A T(z)$.
It was shown by Durán-Grünbaum that
$\widehat{P}_{n}^{\prime \prime}(z)+\widehat{P}_{n}^{\prime}(z)(2 A-2 z I)+\widehat{P}_{n}(z)\left(A^{2}-2 J\right)=\left(-2 n I+A^{2}-2 J\right) \widehat{P}_{n}(z)$, where J is the diagonal matrix $J=\sum_{i=1}^{N}(N-i) E_{i, i}$. .

We will study in detail the RH problem for the weight matrix

$$
W(x)=e^{-x^{2}} e^{A x} e^{A^{*} x}, \quad x \in \mathbb{R}
$$

where

$$
A=\left(\begin{array}{ccccc}
0 & v_{1} & 0 & \cdots & 0 \\
0 & 0 & v_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & v_{N-1} \\
0 & 0 & 0 & \cdots & 0
\end{array}\right), \quad v_{i} \in \mathbb{C} \backslash\{0\}
$$

Therefore, $\rho(z)=e^{-z^{2}}$ and $T(z)=e^{A z}$ with $T^{\prime}(z)=A T(z)$. It was shown by Durán-Grünbaum that

$$
\widehat{P}_{n}^{\prime \prime}(z)+\widehat{P}_{n}^{\prime}(z)(2 A-2 z I)+\widehat{P}_{n}(z)\left(A^{2}-2 J\right)=\left(-2 n I+A^{2}-2 J\right) \widehat{P}_{n}(z)
$$

where J is the diagonal matrix $J=\sum_{i=1}^{N}(N-i) E_{i, i}$.

The Lax pair

Let Y^{n} be the solution of the RH for W and consider

$$
X^{n}(z)=Y^{n}(z)\left(\begin{array}{cc}
e^{-z^{2} / 2} e^{A z} & 0 \\
0 & e^{z^{2} / 2} e^{-A^{*} z}
\end{array}\right)
$$

The Lax pair

Let Y^{n} be the solution of the RH for W and consider

$$
X^{n}(z)=Y^{n}(z)\left(\begin{array}{cc}
e^{-z^{2} / 2} e^{A z} & 0 \\
0 & e^{z^{2} / 2} e^{-A^{*} z}
\end{array}\right)
$$

$$
\begin{aligned}
X^{n+1}(z) & =\left(\begin{array}{cc}
z I+\left(Y_{1}^{n+1}\right)_{11}-\left(Y_{1}^{n}\right)_{11} & -\left(Y_{1}^{n}\right)_{12} \\
\left(Y_{1}^{n+1}\right)_{21} & 0
\end{array}\right) X^{n}(z) \\
\frac{d}{d z} X^{n}(z) & =\left(\begin{array}{cc}
-z I+A & 2\left(Y_{1}^{n}\right)_{12} \\
-2\left(Y_{1}^{n}\right)_{21} & z l-A^{*}
\end{array}\right) X^{n}(z)
\end{aligned}
$$

The Lax pair

Let Y^{n} be the solution of the RH for W and consider

$$
X^{n}(z)=Y^{n}(z)\left(\begin{array}{cc}
e^{-z^{2} / 2} e^{A z} & 0 \\
0 & e^{z^{2} / 2} e^{-A^{*} z}
\end{array}\right)
$$

$$
\begin{aligned}
X^{n+1}(z) & =\left(\begin{array}{cc}
z I+\left(Y_{1}^{n+1}\right)_{11}-\left(Y_{1}^{n}\right)_{11} & -\left(Y_{1}^{n}\right)_{12} \\
\left(Y_{1}^{n+1}\right)_{21} & 0
\end{array}\right) X^{n}(z) \\
\frac{d}{d z} X^{n}(z) & =\left(\begin{array}{cc}
-z l+A & 2\left(Y_{1}^{n}\right)_{12} \\
-2\left(Y_{1}^{n}\right)_{21} & z I-A^{*}
\end{array}\right) X^{n}(z)
\end{aligned}
$$

Compatibility conditions

$$
\begin{aligned}
& 2\left(\beta_{n+1}-\beta_{n}\right)=A \alpha_{n}-\alpha_{n} A+I \\
& \alpha_{n}=\frac{1}{2}\left(A+\left(\gamma_{n}^{*} \gamma_{n}\right)^{-1} A^{*}\left(\gamma_{n}^{*} \gamma_{n}\right)\right)
\end{aligned}
$$

Ladder operators

Lowering operator

$$
\widehat{P}_{n}^{\prime}(z)=A \widehat{P}_{n}(z)-\widehat{P}_{n}(z) A+2 \beta_{n} \widehat{P}_{n-1}(z)
$$

Therefore

$$
\beta_{n}=\frac{1}{2}\left(n l+a_{n, n-1} A-A a_{n, n-1}\right)
$$

Ladder operators

Lowering operator

$$
\widehat{P}_{n}^{\prime}(z)=A \widehat{P}_{n}(z)-\widehat{P}_{n}(z) A+2 \beta_{n} \widehat{P}_{n-1}(z)
$$

Therefore

$$
\beta_{n}=\frac{1}{2}\left(n l+a_{n, n-1} A-A a_{n, n-1}\right)
$$

Raising operator

$$
\widehat{P}_{n}^{\prime}(z)=-2 \widehat{P}_{n+1}(z)+2 z \widehat{P}_{n}(z)+A \widehat{P}_{n}(z)-\widehat{P}_{n}(z) A-2 \alpha_{n} \widehat{P}_{n}(z)
$$

Second-order differential equations

Introduce the following differential/difference operators

$$
\begin{aligned}
& R_{1}=\partial^{1}+\partial^{0} A, \quad L_{1}=2 \beta_{n} E^{-1}+A E^{0} \\
& R_{2}=\partial^{1}+\partial^{0}(A-2 z I), \quad L_{2}=-2 E^{1}+\left(A-2 \alpha_{n}\right) E^{0} \\
& \partial^{k}=\frac{d^{k}}{d z^{k}}, \quad E^{k} f(n)=f(n+k)
\end{aligned}
$$

The ladder operators are equivalent to

Therefore, the OMP \widehat{P}_{n} satisfy two second-order differential equations

Second-order differential equations

Introduce the following differential/difference operators

$$
\begin{aligned}
& R_{1}=\partial^{1}+\partial^{0} A, \quad L_{1}=2 \beta_{n} E^{-1}+A E^{0} \\
& R_{2}=\partial^{1}+\partial^{0}(A-2 z I), \quad L_{2}=-2 E^{1}+\left(A-2 \alpha_{n}\right) E^{0} \\
& \partial^{k}=\frac{d^{k}}{d z^{k}}, \quad E^{k} f(n)=f(n+k)
\end{aligned}
$$

The ladder operators are equivalent to

$$
\widehat{P}_{n}(z) R_{1}=L_{1} \widehat{P}_{n}(z), \quad \text { and } \quad \widehat{P}_{n}(z) R_{2}=L_{2} \widehat{P}_{n}(z)
$$

Therefore, the OMP \widehat{P}_{n} satisfy two second-order differential equations

Second-order differential equations

Introduce the following differential/difference operators

$$
\begin{aligned}
& R_{1}=\partial^{1}+\partial^{0} A, \quad L_{1}=2 \beta_{n} E^{-1}+A E^{0} \\
& R_{2}=\partial^{1}+\partial^{0}(A-2 z I), \quad L_{2}=-2 E^{1}+\left(A-2 \alpha_{n}\right) E^{0} \\
& \partial^{k}=\frac{d^{k}}{d z^{k}}, \quad E^{k} f(n)=f(n+k)
\end{aligned}
$$

The ladder operators are equivalent to

$$
\widehat{P}_{n}(z) R_{1}=L_{1} \widehat{P}_{n}(z), \quad \text { and } \quad \widehat{P}_{n}(z) R_{2}=L_{2} \widehat{P}_{n}(z)
$$

Therefore, the OMP \widehat{P}_{n} satisfy two second-order differential equations

$$
\begin{aligned}
& \widehat{P}_{n}(z) R_{1} R_{2}=L_{1} \widehat{P}_{n}(z) R_{2}=L_{1} L_{2} \widehat{P}_{n}(z), \\
& \widehat{P}_{n}(z) R_{2} R_{1}=L_{2} \widehat{P}_{n}(z) R_{1}=L_{2} L_{1} \widehat{P}_{n}(z)
\end{aligned}
$$

We will proof the following:

- Both equations are equivalent
- They are also equivalent to the second-order differential equation of hypergeometric type

$$
\widehat{P}_{n}^{\prime \prime}(z)+\widehat{P}_{n}^{\prime \prime}(z)(2 A-2 z /)+\widehat{P}_{n}(z)\left(A^{2}-2 J\right)=\left(-2 n l+A^{2}-2 J\right) \widehat{P}_{n}(z)
$$

The first one is

$\widehat{P}_{n}^{\prime \prime}(z)+2 \widehat{P}_{n}^{\prime \prime}(z)(A-z /)+\widehat{P}_{n}(z) A(A-2 z /)=$
$-4 \beta_{n} \widehat{P}_{n}(z)+2 \beta_{n}\left(A-2 \alpha_{n-1}\right) \widehat{P}_{n-1}(z)-2 A \widehat{P}_{n+1}(z)+A\left(A-2 \alpha_{n}\right) \widehat{P}_{n}(z)$

And the second

$$
\begin{aligned}
& \widehat{P}_{n}^{\prime \prime}(z)+2 \widehat{P}_{n}^{\prime}(z)(A-z \prime)+\widehat{P}_{n}(z)(A-2 z /) A-2 \widehat{P}_{n}(z)= \\
& -4 \beta_{n+1} \widehat{P}_{n}(z)+2\left(A-2 \alpha_{n}\right) \beta_{n} \widehat{P}_{n-1}(z)-2 A \widehat{P}_{n+1}(z)+\left(A-2 \alpha_{n}\right) A \widehat{P}_{n}(z)
\end{aligned}
$$

We will proof the following:

- Both equations are equivalent
- They are also equivalent to the second-order differential equation of hypergeometric type

$$
\widehat{P}_{n}^{\prime \prime}(z)+\widehat{P}_{n}^{\prime}(z)(2 A-2 z I)+\widehat{P}_{n}(z)\left(A^{2}-2 J\right)=\left(-2 n I+A^{2}-2 J\right) \widehat{P}_{n}(z)
$$

The first one is
$\widehat{P}_{n}^{\prime \prime}(z)+2 \widehat{P}_{n}^{\prime}(z)(A-z \prime)+\widehat{P}_{n}(z) A(A-2 z \prime)=$
$-4 \beta_{n} \widehat{P}_{n}(z)+2 \beta_{n}\left(A-2 \alpha_{n-1}\right) \widehat{P}_{n-1}(z)-2 A \widehat{P}_{n+1}(z)+A\left(A-2 \alpha_{n}\right) \widehat{P}_{n}(z)$

And the second

We will proof the following:

- Both equations are equivalent
- They are also equivalent to the second-order differential equation of hypergeometric type

$$
\widehat{P}_{n}^{\prime \prime}(z)+\widehat{P}_{n}^{\prime}(z)(2 A-2 z I)+\widehat{P}_{n}(z)\left(A^{2}-2 J\right)=\left(-2 n I+A^{2}-2 J\right) \widehat{P}_{n}(z)
$$

The first one is

$$
\begin{aligned}
& \widehat{P}_{n}^{\prime \prime}(z)+2 \widehat{P}_{n}^{\prime}(z)(A-z I)+\widehat{P}_{n}(z) A(A-2 z I)= \\
& \quad-4 \beta_{n} \widehat{P}_{n}(z)+2 \beta_{n}\left(A-2 \alpha_{n-1}\right) \widehat{P}_{n-1}(z)-2 A \widehat{P}_{n+1}(z)+A\left(A-2 \alpha_{n}\right) \widehat{P}_{n}(z)
\end{aligned}
$$

We will proof the following:

- Both equations are equivalent
- They are also equivalent to the second-order differential equation of hypergeometric type

$$
\widehat{P}_{n}^{\prime \prime}(z)+\widehat{P}_{n}^{\prime}(z)(2 A-2 z I)+\widehat{P}_{n}(z)\left(A^{2}-2 J\right)=\left(-2 n I+A^{2}-2 J\right) \widehat{P}_{n}(z)
$$

The first one is

$$
\begin{aligned}
& \widehat{P}_{n}^{\prime \prime}(z)+2 \widehat{P}_{n}^{\prime}(z)(A-z I)+\widehat{P}_{n}(z) A(A-2 z I)= \\
& \quad-4 \beta_{n} \widehat{P}_{n}(z)+2 \beta_{n}\left(A-2 \alpha_{n-1}\right) \widehat{P}_{n-1}(z)-2 A \widehat{P}_{n+1}(z)+A\left(A-2 \alpha_{n}\right) \widehat{P}_{n}(z)
\end{aligned}
$$

And the second

$$
\begin{aligned}
& \widehat{P}_{n}^{\prime \prime}(z)+2 \widehat{P}_{n}^{\prime}(z)(A-z I)+\widehat{P}_{n}(z)(A-2 z I) A-2 \widehat{P}_{n}(z)= \\
& \quad-4 \beta_{n+1} \widehat{P}_{n}(z)+2\left(A-2 \alpha_{n}\right) \beta_{n} \widehat{P}_{n-1}(z)-2 A \widehat{P}_{n+1}(z)+\left(A-2 \alpha_{n}\right) A \widehat{P}_{n}(z)
\end{aligned}
$$

Subtracting two last equations we get an important relation

$$
\beta_{n}\left(A-2 \alpha_{n-1}\right)=\left(A-2 \alpha_{n}\right) \beta_{n}
$$

Using ladder operators we get that both equations are

$$
\begin{aligned}
& \widehat{P}_{n}^{\prime \prime}(z)+2 \widehat{P}_{n}^{\prime}(z)(A-z I)+\widehat{P}_{n}(z)(A-2 z I) A= \\
& \quad 2\left(A-\alpha_{n}\right)\left(\widehat{P}_{n}^{\prime}(z)+\widehat{P}_{n}(z) A-A \widehat{P}_{n}(z)\right) \\
& \quad+\left(A^{2}-2 z A-4 \beta_{n+1}-2 \alpha_{n} A+2 A \alpha_{n}+2 I\right) \widehat{P}_{n}(z)
\end{aligned}
$$

Subtracting two last equations we get an important relation

$$
\beta_{n}\left(A-2 \alpha_{n-1}\right)=\left(A-2 \alpha_{n}\right) \beta_{n}
$$

Using ladder operators we get that both equations are

$$
\begin{aligned}
& \widehat{P}_{n}^{\prime \prime}(z)+2 \widehat{P}_{n}^{\prime}(z)(A-z I)+\widehat{P}_{n}(z) A(A-2 z I)= \\
& 2\left(A-\alpha_{n}\right)\left(\widehat{P}_{n}^{\prime}(z)+\widehat{P}_{n}(z) A-A \widehat{P}_{n}(z)\right)+\left(A^{2}-2 z A-4 \beta_{n}\right) \widehat{P}_{n}(z)
\end{aligned}
$$

$$
\begin{aligned}
& \widehat{P}_{n}^{\prime \prime}(z)+2 \widehat{P}_{n}^{\prime}(z)(A-z I)+\widehat{P}_{n}(z)(A-2 z I) A= \\
& \quad 2\left(A-\alpha_{n}\right)\left(\widehat{P}_{n}^{\prime}(z)+\widehat{P}_{n}(z) A-A \widehat{P}_{n}(z)\right) \\
& \quad+\left(A^{2}-2 z A-4 \beta_{n+1}-2 \alpha_{n} A+2 A \alpha_{n}+2 I\right) \widehat{P}_{n}(z)
\end{aligned}
$$

To proof that the equations above are of hypergeometric type we use that

$$
\begin{gathered}
\left(A-\alpha_{n}\right) \widehat{P}_{n}^{\prime}(z)+\left(A-\alpha_{n}+z\right)\left(\widehat{P}_{n}(z) A-A \widehat{P}_{n}(z)\right)-2 \beta_{n} \widehat{P}_{n}(z)= \\
\widehat{P}_{n}(z) J-J \widehat{P}_{n}(z)-n \widehat{P}_{n}(z)
\end{gathered}
$$

To proof that the equations above are of hypergeometric type we use that

$$
\begin{gathered}
\left(A-\alpha_{n}\right) \widehat{P}_{n}^{\prime}(z)+\left(A-\alpha_{n}+z I\right)\left(\widehat{P}_{n}(z) A-A \widehat{P}_{n}(z)\right)-2 \beta_{n} \widehat{P}_{n}(z)= \\
\widehat{P}_{n}(z) J-J \widehat{P}_{n}(z)-n \widehat{P}_{n}(z)
\end{gathered}
$$

Remarks

- The OMP \widehat{P}_{n} satisfy a first-order differential equation (not of hypergeometric type), something that is not possible in the scalar case. situation (Hermite polynomials with $\alpha_{n}=0$ and $\beta_{n}=\frac{1}{2} n$).

To proof that the equations above are of hypergeometric type we use that

$$
\begin{gathered}
\left(A-\alpha_{n}\right) \widehat{P}_{n}^{\prime}(z)+\left(A-\alpha_{n}+z\right)\left(\widehat{P}_{n}(z) A-A \widehat{P}_{n}(z)\right)-2 \beta_{n} \widehat{P}_{n}(z)= \\
\widehat{P}_{n}(z) J-J \widehat{P}_{n}(z)-n \widehat{P}_{n}(z)
\end{gathered}
$$

Remarks

- The OMP \widehat{P}_{n} satisfy a first-order differential equation (not of hypergeometric type), something that is not possible in the scalar case.
- These results are consistent if we compare them with the scalar situation (Hermite polynomials with $\alpha_{n}=0$ and $\beta_{n}=\frac{1}{2} n$).

