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Chapter 1

Introduction

In engineering components subject to external stresses, local plasticity at stress

concentrations has always been a concerning issue as it may lead to failure. Ex-

amples of the stress raising features include holes, notches, sharp edges, grooves

and keyways. Researchers have been introducing methods in order to improve

the modelling of local plasticity. While designing a component containing stress

raising features and subject to stresses, the stress state arising in the neighbor-

hood of the stress raiser needs to be determined in order to avoid undesirable

local yielding of components. Different methods for local plasticity analysis at

stress concentrations will be discussed briefly. One method is to make an elastic

stress analysis of the component and then to determine the cyclic plastic behav-

ior by calculating the local strain state analytically using the methods of Neuber

[1] or Glinka [2]. Although these methods are economic and fast to be done,

however, they have the inconvenience that they do not give an exact solution and

cannot predict local strain history. Another method is to make an elastic-plastic

1
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finite element analysis of the component over a number of load cycles. While this

method is precise to a great extent and can predict the local stress-strain history,

it requires a lot of computation capability as it does not take into account that the

component is mostly elastic during the calculation process.

An improved method have been proposed by Blomerus and Hills [3] in order

to model local plasticity efficiently. This method employs stationary edge dislo-

cations at the positions where yielding is expected to occur to simulate plastic-

ity. This method shows good agreement with the results from the finite element

(FEM) analysis and at the same time, is easy to be applied. Another method

outlined by Mura [4] is similar to the method proposed by Blomerus and Hills.

The method proposed by Blomerus and Hills can be applied to elastic-perfectly

plastic materials and takes into account the redistribution of stresses that accom-

panies plastic flow, while on other hand, the method outlined by Mura is only

applied to perfectly plastic materials and does not take into consideration the

redistribution of stress.

The research group of Professor Alfredo Navarro in the Department of Me-

chanical Engineering and Manufacturing has been using dislocation models of

short crack growth for many years now in order to account for the interaction

between cracks and microstructural barriers to plastic slip such as grain bound-

aries.

Building upon the classical work of Bilby, Cottrell and Swinden on the rep-

resentation of a crack and its associated plastic zones by means of dislocations

[5], Navarro and de los Rios initially developed a model for fatigue microcracks

growing in plain infinite bodies [6]. It was assumed that plastic displacement
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takes place in rectilinear slip bands cutting across the grains of the material.

The simplification of reducing the crack and the plastic zones to a single line

seems appropriate in the early stages of fatigue failure under uniaxial loading

since it is now well-known that the fatigue limit in metallic materials is a thresh-

old condition for the propagation of short cracks growing within a few grains.

Experimental evidence has shown that in plain specimens subjected to uniaxial

loads near the fatigue limit cracks form on persistent slip bands and grow along

them. Thus, it makes sense to consider that dislocations are constrained (e.g.

by stacking fault energy) to remain on their original planes and pile up against

grain boundaries, giving rise to rectilinear slip bands extending through the first

few grains. The microcrack nucleates in the grain which presents the most fa-

vorable size and crystallographic orientation for the formation of persistent slip

bands. Within the first grain, the plastic zone spreads from the crack tip to the

first microstructural barrier (e.g. the grain boundary), where it will be stopped

until the local stress at the barrier is high enough for activating plastic slip in the

following grain. The calculation of the stress acting upon the barrier is thus of

fundamental importance in this framework. It can be shown that it depends on

the applied stress and on the relative position of the crack tip with respect to the

barrier, in such a way that the nearer the crack tip is to the barrier, the higher

the stress acting upon it is. The fatigue limit is the threshold applied stress be-

low which plastic slip in the next grain will not be activated even when the crack

itself reaches the boundary. In this case, the crack becomes non-propagating.

If, on the other hand, the applied stress is above the fatigue limit, plastic slip

will be promoted in the following grain once the crack tip is sufficiently close

to the barrier. In this case, the process of spreading up to the next grain and
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blocking is repeated at every successive grain. Thus the plastic zone is thought

to grow in jumps. An oscillating crack propagation rate with smaller and smaller

oscillations is predicted, which seems to be in agreement with the experimental

evidence.

These Microstructural Fracture Mechanics models have been quite success-

ful in explaining all known features of short fatigue cracks in the early stages of

propagation. As it is has been stated above, these models rely heavily upon the

assumption that both the crack and the associated plastic zones remain in the

same (rectilinear) slip band. Now there are a number of important practical sit-

uations where this critical hypothesis may not apply. That would be the case for

example of specimens subject to biaxial out-of-phase loads, where the rotation

of the principal components of stress and strain may almost certainly result in

plasticity being smeared in two-dimensional regions, as opposed to the case on

in-phase loading where dislocations are more likely to remain in the maximum

shear planes.

Another case of interest arises when studying notched components subjected

to low-cycle fatigue, where the influence of the plastic zone associated with the

notch itself, aside from the one associated with the propagating crack, is of high

importance. The notch plastic zone is a bidimensional region even when the load

acting upon the specimen is uniaxial.

Thus there is a lot of interest in our group in being able to model biaxial

plastic zones (and their interaction with the microstructure). The present study

represents a first step in this direction. We wanted to learn how to deal with

the additional dimension and we chose a problem which seemed tractable in the
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short span of time available for a Master’s thesis and that could also be contrasted

with continuum solutions readily obtainable too in a straight forward manner,

such as a simple FEM model. We decided to implement the procedure proposed

by Blomerus and Hills to describe the plastic zone created around a circular notch

subjected to remote tension. We were, in particular, very much interested in their

way to cope with the yield criterion and the plastic flow rule, i.e. we wanted to

understand fully how these macroscopic concepts translate into the microscopic

modeling by means of dislocations. On the other hand, it is not at all clear how

the microstructure of the material may be brought in at the present stage of our

investigation.

I would like to start this work with one of the simpler examples of the use

of distributed dislocations to model plastic zones, namely the famous model of

Bilby, Cottrell and Swinden for the plastic zones of a crack in an infinite medium.

Consider a crack situated in the region −a < x < a in an infinite body subjected

to mode II loading. The plastic zone is situated at the ends of the crack in the

linear regions −c < x < −a and a < x < c. As shown in Figure 1.1, the crack and

the plastic zones are modeled by a continuous distribution of infinitesimal edge

dislocations whose Burgers vectors are in the x direction. The stresses, σ1 and

σ2 represent the friction stress, σf , in the crack and the plastic zone respectively.

The friction stress on the crack σ1 is assumed to vanish if the crack faces are not

in contact. When the plastic zone extends to a sufficient number of grains, the

friction stress on the plastic zone σ2 is considered equal to the elastic limit.

The equilibrium of dislocations is determined by an integral equation of the

Cauchy type [5, 7]. The equation would be the same for the case of loading in
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Figure 1.1: Representation of a crack and the crack tip plastic zone by edge dis-
locations.

mode III and I. The integral equation normalized with respect to c, in terms of

the dimensionless coordinates x = x́/c and xj = x́j /c, is as follows:

A

∫ 1

−1

f (xj)dxj
x − xj

+ (τ − σf ) = 0 (1.1)

Where f (xj) is the dislocations distribution function that gives the number of

dislocations between xj and dxj , τ is the applied shear stress and A is a constant

for which A = µb/2π for screw dislocations or A = µb/2π(1− ν) for edge disloca-

tions, where µ is the shear modulus of the material, b is the dislocation Burgers

vector and ν is Poisson’s ratio. The first term in the equation represents the sum

of the stresses produced due to the interactions between the dislocations. Mean-

while σf is the friction stress that opposes the motion of dislocations in the crack

and the plastic zone, taking values of σ1 and σ2 respectively.

This integral equation whose unknown is the dislocations distribution func-

tion f (xj) has an exact solution and can be solved analytically by the inversion
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theory of Muskhelishvili [8]. There are two different solutions for the dislocation

distribution function f (xj) depending on whether it is considered bounded or

unbounded at the ends of the plastic zones [8, 7].

As the dislocations distribution function is bounded at both ends, it has the

following expression [6]:

f (xj) =
σf
π2A

[
cosh−1

(∣∣∣∣∣∣1−nxjn− xj

∣∣∣∣∣∣
)
− cosh−1

(∣∣∣∣∣∣1 +nxj
n+ xj

∣∣∣∣∣∣
)]

(1.2)

Where n = a/c. There is an existence condition for the bounded solution which

is as follows:

n = cos
(
π
2
τ
σf

)
(1.3)

As the distribution function is bounded at the ends of the plastic zones, this

solution is possible only when the applied stress τ is lower than the friction stress

opposing the movements of dislocations, i.e. τ < σf .

In the procedure proposed by Blomerus and Hills, in order to calculate the

strength and direction of Burgers vector for each dislocation, two requirements

should be met. The first is that the net stress state should lay on the yield surface;

and the second is that the flow direction must obey the associated flow rule, i.e.

the normality condition on the yield surface. In the BCS model, the flow rule is

automatically satisfied, as the dislocations that model the plastic zone are aligned

with the slip bands emanating from the crack. Also in the BCS model, the friction

stress is used for the equation of equilibrium of dislocations, while in the model

of Blomerus and Hills, the yield stress is used.

This thesis applies the model proposed by Blomerus and Hills [3] to an infinite
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plate containing a circular hole and subject to uniaxial remote tension in order

to predict the yielded zone. The base idea of the method applied is to distribute

stationary dislocations in the neighborhoods of the stress raising feature to pre-

dict the plastic zone of an elastic-perfectly plastic material under plane strain

conditions. The dislocations distributed have similar properties as the edge dis-

locations in order to form a perturbation on the elasticity solution to a problem.

The circular hole is implicitly included in the formulation by using specialized

kernels; hence the efficiency of the procedure is improved.



Chapter 2

Description of the procedure

2.1 Introduction to the procedure

The method of Blomerus and Hills [3] has its idea developed from an analysis of

crack tip plasticity concept of the BCS model [5]. Only plane strain conditions

have been considered resulting to zero out-of-plane strain. Therefore the analysis

of local plasticity is a plane strain one.

According to Blomerus and Hills, when analyzing crack tip plasticity, the

maximum shear stress is aligned along rays that make an angle of about ±70.5◦

with the crack plane line. The plastic flow is customary assumed to happen only

along these rays. These rays represent the plastic zone area collapsed on to a

line. The directions of the dislocations Burgers vectors are assumed to be aligned

along these rays. This results in the following integral equation:

∫
ray

[
σdxy(x,xj) + σdimxy (x,xj)

]
Bx(xj)dxj + σ̃xy(x) = k (2.1)

9
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Where Bx(xj) is the density of active dislocations and is equivalent to ∂bx/∂x

where bx is the Burgers vector of a single dislocation, σ̃xy(x) is the accumulated

stress along the ray, k is the yield strength of the material in shear, which is equal

to σY /2 according to Tresca’s yield criterion or equal to σY /
√

3 according to von

Mises yield criterion, σdxy is the stress resulting due to a single dislocation and

σdimxy are the image terms resulting from the symmetry conditions and the re-

quirements that no traction stresses are present along the faces of the crack. The

x-y is a right-handed Cartesian coordinate system with its x axis aligned with the

direction of the ray.

The dislocation density at any position and the length of the plastic line can

be found using equation (2.1) where a bounded solution is to be found, as the

transition between the elastic and plastic stress states is smooth at the tip of the

plastic line. By plotting the yield parameter contours normalized with respect

to the yield stress of the material at some load level, a small and finite zone of

plasticity where the yield condition is exceeded can be observed as shown in

Figure 2.1 (a). This means that the assumption that plastic flow happens along a

single line is just an approximation and the model needs to be improved.

To improve the modelling of the plastic flow, we need to modify the orienta-

tion of the distributed dislocations according to their physical meaning. There-

fore we need to study the physical meaning of an edge dislocation [9]. To create

a dislocation in two dimensions, a slit is made in an infinite body from the core

of the dislocation to any infinitely remote point. The trajectory of this slit may

take any form, and the formation of the dislocation is achieved by the imposition

of constant displacement between adjacent points positioned at both side of the
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Figure 2.1: Yield contours for the model of inclined strip yield of crack tip plas-
ticity with dislocations aligned with (a) ray and (b) slip directions [3].

slit, and then by the insertion or removal of material as necessary, and finally by

welding the material back together. The imposed constant relative displacement

is called the Burgers vector. Edge dislocations are used for the plane problems,

where the Burgers vectors are located in the plane. The stress state induced by

the dislocation depends on the Burgers vector components bx and by , whereas it

does not depend on the path cut taken.

There are two ways for an edge dislocation that has a Burgers vector compo-

nent bx to be created: by an opening displacement ”climb” as shown in Figure

2.2 (a) and by a tangential displacement ”glide” as shown in Figure 2.2 (b). In

the first case, a cut is made along the positive y-axis, material is pulled apart,

and then a thin strip of thickness equivalent to bx is added before rejoining. In

the second case, a cut is made along the positive x-axis and material slip occurs

below the cut in the x-direction by an amount bx before rejoining.

The meaning of the sign of the Burgers vector component bx can be under-
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Figure 2.2: Creation of an edge dislocation (a) by an opening displacement
”climb” or (b) by a tangential displacement ”glide” [9].

stood by starting from the core of the dislocation and walking along the cut,

hence we can differentiate between the positive side (+) on the right, and the neg-

ative side (−) on the left as shown in Figure 2.2 [10]. We need to differentiate

between the ”climb” dislocation and the ”glide” dislocation. If the Burgers vector

is perpendicular to the path cut, hence a strip is to be added as shown in Figure

2.2 (a), then the dislocation is called a ”climb” one. If the Burgers vector is paral-

lel to the path cut, hence shear displacements are present as shown in Figure 2.2

(b), then the dislocation is called a ”glide” one, and the ”glide plane” is defined

by the path cut. In the present model, glide dislocations will be used to model

plasticity.

Returning to the problem of crack tip plasticity, Figure 2.3 shows how an

edge dislocation is generated. A cut is made along the glide plane from the core

of the edge dislocation to infinity. Material is displaced in a shear sense by an

amount bx along both sides of the cut line. Hence, the increment of plastic flow

can be represented macroscopically by material slip due to dislocations. This slip
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of material occurs along the direction of the maximum shear stress under plane

strain conditions by either Tresca or von Mises yield criterion.

 

Figure 2.3: Representation of an increment in plastic flow by a distribution of
edge dislocation [3].

Hence the modelling of the crack tip plasticity problem can be improved by

aligning the dislocations Burgers vectors at each dislocation insertion point with

the potential slip direction; i.e., the maximum shear stress direction. Figure 2.1

(b) shows the corresponding yield contours and it is obvious that the zone where

the yield condition is exceeded is smaller, hence the solution is improved. Equa-

tion (2.1) is reformulated to take this into consideration and then an iterative

method can be used in order to solve the problem.

The procedure has now been developed and can be applied for solving many

problems with local plasticity present. The procedure models plastic flow of the

material by distributing stationary dislocations. To demonstrate the model, the

problem of a circular hole in an infinite plate subject to uniform tension will be

analyzed.
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2.2 Procedure outline

In the present model, glide dislocations will be used to model local plasticity in

the neighborhood of an infinite plate containing a circular hole. The increase

of plastic flow in a region can be represented by a continuous distribution of

edge dislocations with their Burgers vectors aligned with the direction of the in-

stantaneous maximum shear stress and also with their branch cuts following the

trajectories of this stress.

The edge dislocations used in this model have similar physical properties as a

crystallographic defect but they are used in a different way. In a crystallographic

material, plastic flow is produced by the motion of dislocations through the ma-

terial, while in this procedure, stationary dislocations are used.

A plasticity problem will now be considered from the continuum viewpoint.

The material is assumed to have an elastic-perfectly plastic stress-strain curve,

without work hardening and with a stress concentration in the component pro-

duced from this material. An increase in the load is made until reaching the

elastic limit, when yielding first occurs, and then the load is increased more by

a small amount. After the load exceeds the elastic limit, an elasticity solution

can be applied approximately, and a small plastic zone is predicted at the stress

concentration. By determining the stress contours where the yield condition has

been exceeded, the extent of the plastic zone can be calculated. Dislocations are

distributed in the plastic zone, at the positions where the yield condition has been

exceeded, in order to bring back the stress state onto the yield surface. To calcu-

late the strength and direction of Burgers vector for each inserted dislocation, two

requirements should be met. The first is that the net stress state should lay on the
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yield surface; and the second is that the flow direction must obey the associated

flow rule, i.e. the normality condition on the yield surface. The distribution of

such dislocations is made to form a perturbation on the elasticity solution to the

problem to be studied. Thus, the stress raising feature is implicitly taken into

account, and efficiency of the procedure is improved.

A small overall change in the stress state will be produced due to the distri-

bution of dislocations, which is shown macroscopically as the redistribution of

stress that occurs along with plasticity. As stress redistribution occurs, a shift

in the trajectories of the maximum shear stress and accordingly in the preferred

slip direction may occur, and the directions of Burgers vectors must be modified;

because in accordance with the flow rule, they must always be aligned with the

direction of the instantaneous maximum shear stress. Therefore, we need to take

into consideration this redistribution of stress to get an accurate solution.

A small increase in the applied load will be made, and consequently a small

increase in the plastic zone, where the yield condition is exceeded, will occur.

This increment of plastic flow requires an additional distribution of dislocation

to represent it, where the two criteria mentioned before should be satisfied, in

addition to inserting dislocations at the positions from the previous load step.

To calculate the instantaneous resultant total stress, we must take into account

the current elastic solution in addition to the linear combination of all the ac-

tive dislocations inserted in all previous load steps, which must satisfy the yield

criterion. This procedure should be repeated each load step until convergence

happens. The contributions of the inserted dislocations at each load step to the

total Burgers vectors at each dislocation insertion point is stored, and therefore
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there is be no need to use moving dislocations.

The degree of the loading non-proportionality determines the load increment

size. Small load step are needed in case that the stress vectors in terms of stress-

space is moving around the yield surface by large amounts; because the direction

of the shear stress is assumed to remain constant during each load step and thus

divergence will occur as a result of a very large load step. However, very large

load steps can be used in the case of a nearly proportional loading.
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2.3 Problem formulation

Because of symmetry, only the first quadrant is considered in modelling the plas-

ticity. An array of probable dislocation sites was set up in the vicinity of the ex-

pected plastic zone as shown in Figure 2.4. A set of pseudo squares was formed

by forming the array from a set of radial lines at w angular spacing, and a set of

circular arcs arranged at rw radial spacing, where r is normalized to the radius

of the hole, a, while maintaining an aspect ratio equal to 1 : 1 for the array. The

strengths of the dislocations are found by collocating at the positions between the

dislocations insertion points, as these collocation points cannot coincide with the

dislocations insertion points because of the singular stresses at the dislocations

insertion points.

 

 Collocation points 

 Active collocation points 

 Active dislocation insertion points 

 Image dislocations insertion points 

 

  

  

Figure 2.4: Discretization of the plastic zone.

The elastic stress state induced in an infinite plate containing a circular hole
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under uniaxial remote tension, σ0, in the polar coordinate system shown in Figure

2.5, is given by Timoshenko and Goodier [11] and is of the form:

σ elasticrr =
σ0

2

(
1− 1

r2

)
− σ0

2

(
1 +

3
r4 −

4
r2

)
cos2θ (2.2)

σ elasticθθ =
σ0

2

(
1 +

1
r2

)
+
σ0

2

(
1 +

3
r4

)
cos2θ (2.3)

σ elasticrθ =
σ0

2

(
1− 3

r4 +
2
r2

)
sin2θ (2.4)

Where the radial coordinate has been normalized by the hole radius, a.

 

 

 

 

 

 

 

 

 

 

 

 
     

  

  

    

    

   

  

    

  

   

   

   

   

   

   

Figure 2.5: Infinite plate containing a circular hole and subject to remote tension
σ0.
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The stress state induced in an infinite plate containing a circular hole at a field

point, i, with position (ri ,θi) due to a single dislocation at a source point, j, with

position (rj ,θj) whose Burgers vector components are bx and by , calculated in its

local coordinate system is given by Dundurs and Mura [12] and can be written

as:

σdxx =
µ

π (κ+ 1)

[
Sxxx

(
ri ,θi , rj ,θj

)
bx + Syxx

(
ri ,θi , rj ,θj

)
by

]
(2.5)

σdyy =
µ

π (κ+ 1)

[
Sxyy

(
ri ,θi , rj ,θj

)
bx + Syyy

(
ri ,θi , rj ,θj

)
by

]
(2.6)

σdxy =
µ

π (κ+ 1)

[
Sxxy

(
ri ,θi , rj ,θj

)
bx + Syxy

(
ri ,θi , rj ,θj

)
by

]
(2.7)

Where µ is the modulus of rigidity, κ is Kolosov’s constant, and it is equal to

3−4ν in plane strain, where ν is Poisson’s ratio. The stress kernels Slkh(ri ,θi , rj ,θj)

can be derived from the Airy stress functions for a dislocation near a circular

hole. Theses kernels are given explicitly in [3] as shown in appendix A, equations

(A.1)-(A.6). These stress kernel have three subscripts, the first subscript indicates

the component of the dislocation Burgers vector, while the two other subscripts

indicate the component of stress produced in the field point.

In a polar coordinate system, the stress state induced in an infinite plate con-

taining a circular hole at a field point, i, due to a single dislocation at a source

point, j, with strength |b|j and direction φj , hence with radial and tangential

components |b|j cosφj and |b|j sinφj , respectively (Figure 2.5), as was found by

Dundurs and Mura [12], can be written as:

σdrr =
µ

π (κ+ 1)

[
Grrr

(
ri ,θi , rj ,θj

)
cosφj +Gθrr

(
ri ,θi , rj ,θj

)
sinφj

]
|b|j (2.8)
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σdθθ =
µ

π (κ+ 1)

[
Grθθ

(
ri ,θi , rj ,θj

)
cosφj +Gθθθ

(
ri ,θi , rj ,θj

)
sinφj

]
|b|j (2.9)

σdrθ =
µ

π (κ+ 1)

[
Grrθ

(
ri ,θi , rj ,θj

)
cosφj +Gθrθ

(
ri ,θi , rj ,θj

)
sinφj

]
|b|j (2.10)

By rotating the stress kernels Slkh(ri ,θi , rj ,θj) for the dislocation in all four

quadrant to the polar coordinates of the point at position (ri ,θi) at which the

stress is calculated using the technique of elementary Mohr’s circle, the six in-

fluence coefficients Glkh(ri ,θi , rj ,θj) can be obtained. They are straight forward

but lengthy, and they implicitly take into account the three other dislocations lo-

cated symmetrically in the three other quadrants. Theses coefficients are given

explicitly in [13] as shown in appendix A, equations (A.8)-(A.13). They are calcu-

lated and stored for each possible field point, i, with respect to each dislocation

insertion point, j.

The components of the accumulated stress σ̃kh, at any load step, are calculated

as the sum of the stress due to all the dislocations inserted in previous load steps,

in addition to the components of the elastic stress. For the first load step at the

elastic limit, the stresses σ̃kh are only due to the elastic stress, as no dislocations

have been added yet. They are calculated at the beginning of each load step at

the grid points in the following way:

σ̃rr = σ elasticrr + σdrr (2.11)

σ̃θθ = σ elasticθθ + σdθθ (2.12)

σ̃rθ = σ elasticrθ + σdrθ (2.13)

As the plastic flow direction is related to the instantaneous local stress state
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through the chosen flow rule, the problem is an incremental one. By increasing

the applied load, the elastic limit is attained when the yield criterion is first ex-

ceeded. This yielding happens at two points on the surface of the hole, on the

axis perpendicular to the direction of loading. Under plane strain conditions, the

yield condition can be written as a function of the yield strength of the material

in shear, k, and the maximum shear stress τmax. The yield strength in shear, k, is

equal to σY /2 in Tresca’s yield criterion, and σY /
√

3 in von Mises yield criterion,

where σY is the yield stress of the material in tension. Therefore, anywhere in the

material, the yield condition is exceeded if:

τmax > k (2.14)

For a Tresca material, the yield criterion is exact, while for a von Mises ma-

terial, it is an approximation if ν , 0.5, where a deviation in the in-plane slip

direction occurs due to yielding caused by the out of plane principal stress, σ2 =

ν(σ1 −σ3). This deviation is small for a material with ν = 0.3 and accurate results

can be obtained through equation (2.14).

The yield condition in equation (2.14) can be rewritten in terms of the accu-

mulated stress calculated in the instantaneous maximum shear stress direction

as follows:

σ̃
φi
x́ý > k (2.15)

Where the local coordinate set (x́, ý) is rotated anticlockwise through an angle

(θi+φi) from the globalX-axis and oriented in the instantaneous maximum shear

stress direction. The components of the accumulated stress in equations (2.11)-
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(2.13) are computed at the grid points in order to be used for the calculation of

the instantaneous maximum shear stress direction φi as follows:

φi =
1
2
tan−1

(
2σ̃rθ

σ̃rr − σ̃θθ

)
+
π
4

(2.16)

The accumulated stress in equation (2.15), σ̃x́ý , at any load increment, is ob-

tained by transforming the accumulated stress components in equations (2.11)-

(2.13) through the angle φi as shown in the following equation.

σ̃
φi
x́ý = −1

2
(σ̃rr − σ̃θθ)sin2φi + σ̃rθ cos2φi (2.17)

After reaching the elastic limit, the load is increased by some amount above

the elastic limit. This results in a small zone Ω where the yield condition is ex-

ceeded. The yield condition in equation (2.15) is now checked at the grid points.

The n points where the yield condition is exceeded are called active collocation

points. n dislocations are now evenly inserted in the positions between the collo-

cation points to satisfy the yield criterion again. At each active collocation point,

the initial maximum shear stress direction is calculated using equation (2.16) in

order to obtain n values for φi . The n values of the initial maximum shear stress

directions at the dislocations insertion points φj are calculated by interpolation

from the directions of the four surrounding collocation points φi .

Now everywhere within that plastic zone Ω,

σdx́ý + σ̃φix́ý = k (2.18)
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The total shear stress in the maximum direction is the sum of the accumulated

stress σ̃x́ý in addition to the current stress state due to the distribution of new set

of dislocations, σdx́ý . As the strength of a single dislocation at point j is |b|j and its

direction is φj , equation (2.18) can be rewritten, so that for any point within the

plastic zone Ω,

n∑
j=1

[
K
φi
rx́ý(ri ,θi , rj ,θj ,φi)cosφj +Kφiθx́ý(ri ,θi , rj ,θj ,φi)sinφj

]
|b|j

= k − σ̃φix́ý f or i = 1,n

(2.19)

Where the influence functions Kφirx́ý(ri ,θi , rj ,θj ,φi) and Kφiθx́ý(ri ,θi , rj ,θj ,φi) are

the shear stress at a field point i whose position is (ri ,θi) in the local coordinate

set (x́, ý), due a unit dislocation in the r- and θ-directions, respectively, at a non-

coincident point, j whose position is (rj ,θj). These functions are obtained by

transforming the kernels from equations (2.8)-(2.10) through an angle φi and

include the three image dislocations in the other three quadrants. They give the

shear stress in the local coordinate set (x́, ý) by being multiplied by the component

of the dislocation strength. They are listed in the following equations.

K
φi
rx́ý(ri ,θi , rj ,θj ,φi) =

µ

π(κ+ 1)
{−1

2
[Grrr(ri ,θi , rj ,θj)−Grθθ(ri ,θi , rj ,θj)]sin2φi

+Grrθ(ri ,θi , rj ,θj)cos2φi}

(2.20)
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K
φi
θx́ý(ri ,θi , rj ,θj ,φi) =

µ

π(κ+ 1)
{−1

2
[Gθrr(ri ,θi , rj ,θj)−Gθθθ(ri ,θi , rj ,θj)]sin2φi

+Gθrθ(ri ,θi , rj ,θj)cos2φi}

(2.21)

By satisfying equation (2.19) at each active collocation point, i, a set of n si-

multaneous solvable equations in the n unknown dislocation strengths, |b|j , can

be obtained, for given Burgers vector directions, φj . The n × n system of linear

equations in equation (2.19) can be solved using a standard LU factorization rou-

tine with partial pivoting and iterative refinement. The angle φj is calculated

initially as the maximum shear stress direction at each load increment as men-

tioned previously, and therefore |b|j can be calculated initially. The next step in

the calculation is to calculate the resultant stress state due to this distribution of

dislocations in addition to the current accumulated stress. If the yield criterion

is checked again, it will be observed that it is exceeded over a new larger region

Ω due to the redistribution of stresses. The flow condition can only be satisfied if

the local x́ axis, which is aligned with the angle φi , is in the direction of the max-

imum shear stress. Therefore, an iterative process is a must in order to improve

the solution and to satisfy the normality condition and the flow rule.

The six influence coefficients Glkh(ri ,θi , rj ,θj) related to each dislocation po-

sition are calculated and stored, in order to calculate the kernels for equation

(2.19), and also to calculate the resultant stress state as follows:

σrr = σ̃rr +
µ

π(κ+ 1)

n∑
j=1

[
Grrr(ri ,θi , rj ,θj)cosφj +Gθrr(ri ,θi , rj ,θj)sinφj

]
|b|j (2.22)
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σθθ = σ̃θθ +
µ

π(κ+ 1)

n∑
j=1

[
Grθθ(ri ,θi , rj ,θj)cosφj +Gθθθ(ri ,θi , rj ,θj)sinφj

]
|b|j

(2.23)

σrθ = σ̃rθ +
µ

π(κ+ 1)

n∑
j=1

[
Grrθ(ri ,θi , rj ,θj)cosφj +Gθrθ(ri ,θi , rj ,θj)sinφj

]
|b|j

(2.24)

We need to ensure that the maximum shear stress arises on the plane where

the plastic flow occurs, as the increment of plastic flow happens in the direction

of the dislocation Burgers vector φj . The problem is only satisfied exactly when

φj is the maximum shear stress direction, which is not known a priori. Hence

we will use an iterative solution technique. The angle φi is initially approxi-

mated using the values of the accumulated stress from the previous load step

using equation (2.16). The components of the resultant stress state are computed

after each iteration using equations (2.22)-(2.24) in order to calculate the new

maximum shear stress direction using the following expression:

φi =
1
2

tan−1
(

2σrθ
σrr − σθθ

)
+
π
4

(2.25)

Convergence of the iterative process occurs when the direction of the maxi-

mum shear stress calculated at the end of the load step is equal to the initially cal-

culated flow direction that was used to calculate the strengths of the distributed

dislocations.
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Numerical implementation

MATLAB has been used for the numerical modelling of plasticity of an infinite

plate containing a circular hole under remote tension, and under plane strain

conditions. The material studied here is structural steel with modulus of rigidity

µ = 77 GP a, young’s modulus E = 200 GP a, Poisson’s ratio ν = 0.3 and yield

strength in tension σY = 0.25 GP a. This material has an elastic-perfectly plastic

stress strain curve with no work hardening. Because of symmetry, only the first

quadrant is considered in modelling the plasticity. Yielding first occurs at two

points on the surface of the hole, on the axis perpendicular to the direction of

loading, that is, at a point with position (r = 1,θ = 0). At the elastic limit, the

elastic stress component σθθ must be equal to the yield strength in tension, hence:

σθθ(r = 1,θ = 0) =
σ0

2

(
1 +

1
1

)
+
σ0

2

(
1 +

3
1

)
cos0 = 3σ0 ≡ σY (3.1)

Tresca’s yield criterion was employed and the flow direction is the maximum

shear stress direction under plane strain conditions. According to Tresca’s yield

26
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criterion, k = σY /2. By substituting for σY in equation (3.1), the elastic limit can

be found and it is reached at σ0/k = 2/3.

A MATLAB function was set up for the calculation of the six influence coef-

ficients Glkh(ri ,θi , rj ,θj). This MATLAB function was being recalled in another

MATLAB function which was set up for the calculation of the polar components

of the elastic stresses σ elastickh for use in equations (2.2)-(2.4), the polar compo-

nents of the stresses due to dislocations σdkh for use in equations (2.8)-(2.10), and

the kernels Kφirx́ý(ri ,θi , rj ,θj ,φi) and Kφiθx́ý(ri ,θi , rj ,θj ,φi) for use in equation (2.19).

An array of probable dislocation sites was positioned in the vicinity of the ex-

pected plastic zone as shown in Figure 2.4. A set of pseudo squares was formed

by forming the array from a set of radial lines at w = 1◦ angular spacing, and a

set of circular arcs arranged at rw radial spacing, where r is normalized to the

radius of the hole, a, while maintaining an aspect ratio equal to 1 : 1 for the ar-

ray. At the beginning of each load step, the six coefficients Glkh(ri ,θi , rj ,θj) are

calculated and stored for each possible field point with respect to each active

dislocation insertion point. The polar components of the elastic stress, σ elastickh ,

and the stress due to dislocations from previous load steps, σdkh, are calculated at

each grid point using equations (2.2)-(2.4) and equations (2.8)-(2.10) respectively,

which are used for the calculation of the polar components of the accumulated

stress from previous load steps, σ̃kh, at each grid point using equations (2.11)-

(2.13). The calculated stresses σ̃kh are then used for the initial estimate of the

instantaneous maximum shear stress directions φi at each grid point using equa-

tion (2.16), for the subsequent calculation of the total accumulated stress from

previous load steps, σ̃φix́ý , at each grid point aligned with the (x́, ý) direction using
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equation (2.17).

Now, Tresca’s yield criteria can be checked at each grid point using equation

(2.15). Calculation of the positions of the active collocation points is achieved

by specifying the field points where this yield condition is exceeded. Once the

positions of the active collocation points are found, they are interpolated to the

positions of the active dislocations insertion points. An initial estimate of the in-

stantaneous maximum shear stress directions at the dislocations insertion points

φj are calculated by interpolation from the directions of the four surrounding

collocation points φi .

The following iterative procedure will now be adopted to take into account

the redistribution of stresses associated with plastic flow. The equation (2.19)

will be constructed for each active collocation point using the initial estimate of

the instantaneous maximum shear stress directions at the dislocations insertion

points φj , in order to calculate the strengths of the dislocations Burgers vector

(bj) at each dislocation insertion point. Then, the polar components of the re-

sultant stress state due to the current distribution of dislocations in addition to

the current accumulated stress are calculated at the active collocation points us-

ing equations (2.22)-(2.24). Finally at the end of the iterative procedure, a final

estimate of the instantaneous maximum shear stress directions φi at each active

collocation point is calculated using equation (2.25). As mentioned before, the

final estimates of the instantaneous maximum shear stress directions at the dis-

locations insertion points φj are calculated by interpolation from the directions

of the four surrounding collocation points φi . At the end of each iteration, the

error between the initial and final estimates of the instantaneous maximum shear
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stress directions at the dislocations insertion points φj is calculated. This itera-

tive procedure will be repeated until the error tends to zero.

The maximum applied load achievable without divergence of the iterative

solution procedure was found to be 2.2 times the elastic limit. At higher loads, the

signs of the dislocations Burgers vector strength |b|j oscillate as the Burgers vector

density function shows a non-conservative behavior. As the mesh is refined, the

oscillatory behavior happens at smaller load steps and divergence of the iterative

solution procedure occurs.

The plasticity has been studied up to a load of 2.2 times the elastic limit. The

load has been applied in increments of 0.1 times the elastic limit. In Figure 3.1,

the contour of the yielded zone as calculated by this procedure is shown for each

load step up to a load equivalent to 2.2 times the elastic limit. This load is the

maximum load that can be calculated using this procedure, because at any higher

load, convergence of the method cannot be achieved as yielding happens over a

too large zone.
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2.2 × EL 

EL 

2.2 × EL 

EL 

Figure 3.1: Extent of the yielded zone predicted by the distributed dislocations
method for each load step up to a load equivalent to 2.2 times the elastic limit in
increments of 0.1 times the elastic limit.
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Comparison with FEM calculations

The present problem has been solved numerically using the finite element method.

ANSYS Workbench v.15.0 was used for the analysis of a large square plate con-

taining a hole of radius a under remote tension, and under plane strain condi-

tions. The length of each side of the plate studied is equal to 40a. Only a quarter

of the plate is modelled because of symmetry. Tresca’s yield criterion is used as a

stress tool for the analysis of the yielded zone. Quadrilateral element mesh was

used for the meshing. The mesh has been refined around the hole for better mod-

elling of the yielded zone as shown in Figure 4.1. The analysis required only a

few minutes to solve the problem.

Tresca’s yield contours near the hole are shown in Figure 4.2 for an applied

load equal to 2 times the elastic limit. In Figures 4.3-4.15 the extent of the yielded

zone is shown for loads up to 2.2 times the elastic limit in increments of 0.1 times

the elastic limit, solved using the method implemented here, and using ANSYS

Workbench. The locations of the active dislocation insertion points calculated by

31
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Figure 4.1: FEM meshing of the plate.

the distributed dislocations method are indicated by an ×, while the extent of the

yielded zone predicted by the FEM is indicated by the red shaded area. The pro-

cedure proposed by Blomerus and Hills applied here shows very good agreement

with the FEM results. Their method proved its efficiency to model local plastic-

ity by taking into account the redistribution of stresses that accompanies plastic

flow.
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Figure 4.2: Tresca’s yield contours around the circular hole.
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Figure 4.3: Extent of the yielded zone for the FEM method (red area) and the
distributed dislocations method (×) for a value of σ0/EL equivalent to 1.
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Figure 4.4: Extent of the yielded zone for the FEM method (red area) and the
distributed dislocations method (×) for a value of σ0/EL equivalent to 1.1.
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Figure 4.5: Extent of the yielded zone for the FEM method (red area) and the
distributed dislocations method (×) for a value of σ0/EL equivalent to 1.2.
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Figure 4.6: Extent of the yielded zone for the FEM method (red area) and the
distributed dislocations method (×) for a value of σ0/EL equivalent to 1.3.
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Figure 4.7: Extent of the yielded zone for the FEM method (red area) and the
distributed dislocations method (×) for a value of σ0/EL equivalent to 1.4.
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Figure 4.8: Extent of the yielded zone for the FEM method (red area) and the
distributed dislocations method (×) for a value of σ0/EL equivalent to 1.5.
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Figure 4.9: Extent of the yielded zone for the FEM method (red area) and the
distributed dislocations method (×) for a value of σ0/EL equivalent to 1.6.
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Figure 4.10: Extent of the yielded zone for the FEM method (red area) and the
distributed dislocations method (×) for a value of σ0/EL equivalent to 1.7.
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Figure 4.11: Extent of the yielded zone for the FEM method (red area) and the
distributed dislocations method (×) for a value of σ0/EL equivalent to 1.8.
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Figure 4.12: Extent of the yielded zone for the FEM method (red area) and the
distributed dislocations method (×) for a value of σ0/EL equivalent to 1.9.
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Figure 4.13: Extent of the yielded zone for the FEM method (red area) and the
distributed dislocations method (×) for a value of σ0/EL equivalent to 2.
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Figure 4.14: Extent of the yielded zone for the FEM method (red area) and the
distributed dislocations method (×) for a value of σ0/EL equivalent to 2.1.
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Figure 4.15: Extent of the yielded zone for the FEM method (red area) and the
distributed dislocations method (×) for a value of σ0/EL equivalent to 2.2.



Chapter 5

Conclusion

In this thesis, a procedure proposed by Blomerus and Hills [3] for modelling local

plasticity at stress raising features using the distributed dislocations method has

been applied for the analysis of an infinite plate containing a circular hole and

subject to remote tension under plane strain conditions. This method employs an

underlying elasticity solution that takes into account the hole itself. Stationary

edge dislocations have been used in order to model yielding at the neighbourhood

of the hole where the yield criteria has been exceeded. An iterative technique is

adopted in order to align the dislocations Burgers vector with the instantaneous

maximum shear stress direction for the flow rule to be met. Their method proved

its efficiency to model local plasticity by taking into account the redistribution of

stresses in the material that accompanies plastic flow. Their method has shown

very good agreement in modeling the local yielding with the results from the

finite element analysis. Hence it has proved to combine the advantage of the

accuracy of the finite element method as well as the speed of the method of Neu-
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ber/Glinka.



Chapter 6

Future work

The present work can be continued in different aspects. On the experimental side,

we plan to test a number of specimens of different materials and sizes to actually

try to measure the extent of the plastic zones produced. This needs previous

characterization of the materials under testing and we need to find out how to

ascertain which regions have actually yielded.

On the numerical side, we plan to undertake the formulation for the same

geometry but with different loadings such as pure torsion or biaxial combinations

of tension and torsion, both applied in-phase and out-of-phase. It may happen

that the agreement between the results of the dislocations’ formulation and the

FEM solutions is not as good for these loading as it is for pure and simple tension.

The results are expected to be fine for the in-phase loadings. The out-of-phase

loading case seems quite intriguing.

Finally, it would be interesting to make the formulation for other geometries.

Elliptical notches and V-notches would be very interesting. Of course, the dif-

49



50 6. Future work

ficulty here resides in that we do not have the ”fundamental” solution of the

dislocation field in the presence of notches of such geometries, we do not have

the Dundurs and Mura solution. The elliptical case may be achievable from the

circular case using conformal mapping techniques. The V-notch would certainly

be more difficult. It might be possible to derive numerical solutions and employ

them in the further numerical formulations needed for the plastic zone determi-

nation.
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Appendix A

Stress due to a dislocation near a

circular hole

The six stress kernels Slkh(ri ,θi , rj ,θj) can be derived from the Airy stress func-

tions for a dislocation near a circular hole and listed below:
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Where, referring to Figure A.1:

x = r cosθ

y = r sinθ

x1 = x − rj

x2 = x − 1
rj

r1 =
√
x2

1 + y2

r2 =
√
x2

2 + y2

(A.7)
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Figure A.1: A dislocation near a circular hole.

The six influence coefficients Glkh(ri ,θi , rj ,θj) are listed below:

Grrr = {1
2

[Sxxx(ri ,θ, rj) + Sxyy(ri ,θ, rj)] +
1
2

[Sxxx(ri ,θ, rj)− Sxyy(ri ,θ, rj)]cos2θ

+ Sxxy(ri ,θ, rj)sin2θ} − {1
2

[Sxxx(ri ,θi +θj , rj) + Sxyy(ri ,θi +θj , rj)]

+
1
2

[Sxxx(ri ,θi +θj , rj)− Sxyy(ri ,θi +θj , rj)]cos2(θi +θj)

+ Sxxy(ri ,θi +θj , rj)sin2(θi +θj)}+ {
1
2

[Sxxx(ri ,π+θ,rj) + Sxyy(ri ,π+θ,rj)]

+
1
2

[Sxxx(ri ,π+θ,rj)− Sxyy(ri ,π+θ,rj)]cos2(π+θ) + Sxxy(ri ,π+θ,rj)sin2(π+θ)}

− {1
2

[Sxxx(ri ,π+θi +θj , rj) + Sxyy(ri ,π+θi +θj , rj)] +
1
2

[Sxxx(ri ,π+θi +θj , rj)

− Sxyy(ri ,π+θi +θj , rj)]cos2(π+θi +θj) + Sxxy(ri ,π+θi +θj , rj)sin2(π+θi +θj)},

(A.8)
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Grθθ = {1
2

[Sxxx(ri ,θ, rj) + Sxyy(ri ,θ, rj)]−
1
2

[Sxxx(ri ,θ, rj)− Sxyy(ri ,θ, rj)]cos2θ

− Sxxy(ri ,θ, rj)sin2θ} − {1
2

[Sxxx(ri ,θi +θj , rj) + Sxyy(ri ,θi +θj , rj)]

− 1
2

[Sxxx(ri ,θi +θj , rj)− Sxyy(ri ,θi +θj , rj)]cos2(θi +θj)

− Sxxy(ri ,θi +θj , rj)sin2(θi +θj)}+ {
1
2

[Sxxx(ri ,π+θ,rj) + Sxyy(ri ,π+θ,rj)]

− 1
2

[Sxxx(ri ,π+θ,rj)− Sxyy(ri ,π+θ,rj)]cos2(π+θ)− Sxxy(ri ,π+θ,rj)sin2(π+θ)}

− {1
2

[Sxxx(ri ,π+θi +θj , rj) + Sxyy(ri ,π+θi +θj , rj)]−
1
2

[Sxxx(ri ,π+θi +θj , rj)

− Sxyy(ri ,π+θi +θj , rj)]cos2(π+θi +θj)− Sxxy(ri ,π+θi +θj , rj)sin2(π+θi +θj)},

(A.9)

Grrθ = {−1
2

[Sxxx(ri ,θ, rj)− Sxyy(ri ,θ, rj)]sin2θ + Sxxy(ri ,θ, rj)cos2θ}

− {−1
2

[Sxxx(ri ,θi +θj , rj)− Sxyy(ri ,θi +θj , rj)]sin2(θi +θj)

+ Sxxy(ri ,θi +θj , rj)cos2(θi +θj)}+ {−
1
2

[Sxxx(ri ,π+θ,rj)

− Sxyy(ri ,π+θ,rj)]sin2(π+θ) + Sxxy(ri ,π+θ,rj)cos2(π+θ)}

− {−1
2

[Sxxx(ri ,π+θi +θj , rj)− Sxyy(ri ,π+θi +θj , rj)]sin2(π+θi +θj)

+ Sxxy(ri ,π+θi +θj , rj)cos2(π+θi +θj)},

(A.10)
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Gθrr = {1
2

[Syxx(ri ,θ, rj) + Syyy(ri ,θ, rj)] +
1
2

[Syxx(ri ,θ, rj)− Syyy(ri ,θ, rj)]cos2θ

+ Syxy(ri ,θ, rj)sin2θ}+ {1
2

[Syxx(ri ,θi +θj , rj) + Syyy(ri ,θi +θj , rj)]

+
1
2

[Syxx(ri ,θi +θj , rj)− Syyy(ri ,θi +θj , rj)]cos2(θi +θj)

+ Syxy(ri ,θi +θj , rj)sin2(θi +θj)}+ {
1
2

[Syxx(ri ,π+θ,rj) + Syyy(ri ,π+θ,rj)]

+
1
2

[Syxx(ri ,π+θ,rj)− Syyy(ri ,π+θ,rj)]cos2(π+θ) + Syxy(ri ,π+θ,rj)sin2(π+θ)}

+ {1
2

[Syxx(ri ,π+θi +θj , rj) + Syyy(ri ,π+θi +θj , rj)] +
1
2

[Syxx(ri ,π+θi +θj , rj)

− Syyy(ri ,π+θi +θj , rj)]cos2(π+θi +θj) + Syxy(ri ,π+θi +θj , rj)sin2(π+θi +θj)},

(A.11)

Gθθθ = {1
2

[Syxx(ri ,θ, rj) + Syyy(ri ,θ, rj)]−
1
2

[Syxx(ri ,θ, rj)− Syyy(ri ,θ, rj)]cos2θ

− Syxy(ri ,θ, rj)sin2θ}+ {1
2

[Syxx(ri ,θi +θj , rj) + Syyy(ri ,θi +θj , rj)]

− 1
2

[Syxx(ri ,θi +θj , rj)− Syyy(ri ,θi +θj , rj)]cos2(θi +θj)

− Syxy(ri ,θi +θj , rj)sin2(θi +θj)}+ {
1
2

[Syxx(ri ,π+θ,rj) + Syyy(ri ,π+θ,rj)]

− 1
2

[Syxx(ri ,π+θ,rj)− Syyy(ri ,π+θ,rj)]cos2(π+θ)− Syxy(ri ,π+θ,rj)sin2(π+θ)}

+ {1
2

[Syxx(ri ,π+θi +θj , rj) + Syyy(ri ,π+θi +θj , rj)]−
1
2

[Syxx(ri ,π+θi +θj , rj)

− Syyy(ri ,π+θi +θj , rj)]cos2(π+θi +θj)− Syxy(ri ,π+θi +θj , rj)sin2(π+θi +θj)},

(A.12)
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Gθrθ = {−1
2

[Syxx(ri ,θ, rj)− Syyy(ri ,θ, rj)]sin2θ + Syxy(ri ,θ, rj)cos2θ}

+ {−1
2

[Syxx(ri ,θi +θj , rj)− Syyy(ri ,θi +θj , rj)]sin2(θi +θj)

+ Syxy(ri ,θi +θj , rj)cos2(θi +θj)}+ {−
1
2

[Syxx(ri ,π+θ,rj)− Syyy]sin2(π+θ)

+ Syxy(ri ,π+θ,rj)cos2(π+θ)}+ {−1
2

[Syxx(ri ,π+θi +θj , rj)

− Syyy(ri ,π+θi +θj , rj)]sin2(π+θi +θj) + Syxy(ri ,π+θi +θj , rj)cos2(π+θi +θj)}

(A.13)
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