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Abstract. Cellular signalling pathways are fundamental to the control
and regulation of cell behavior. Understanding of biosignalling network
functions is crucial to the study of different diseases and to the design
of effective therapies. In this paper we present P systems as a feasible
computational modeling tool for cellular signalling pathways that takes
into consideration the discrete character of the components of the system
and the key role played by membranes in their functioning. We illustrate
these cellular models simulating the epidermal growth factor receptor
(EGFR) signalling cascade and the FAS–induced apoptosis using a de-
terministic strategy for the evolution of P systems.

1 Introduction

The complexity of biomolecular cell systems is currently the focus of intensive 
experimental research, nevertheless the enormous amount of data about the func-
tion, activity, and interactions of such systems makes necessary the development 
of models able to provide a better understanding of the dynamics and properties 
of the systems.

A model is an abstraction of the real-world onto a mathematical/computa-
tional domain that highlights some key features while ignoring others that are 
assumed to be not relevant. A good model should have four properties: relevance, 
computability, understandability, and extensibility, [22]. A model must be rel-
evant capturing the essential properties of the phenomenon investigated, and 
computable so it can allow the simulation of its dynamic behavior, as well as the 
qualitative and quantitative reasoning about its properties. An understandable 
model will correspond well to the informal concepts and ideas of molecular biol-
ogy. Finally, a good model should be extensible to higher levels of organizations, 
like tissues, organs, organisms, etc., in which molecular systems play a key role.

P systems are an unconventional model of computation inspired by the struc-
ture and functioning of living cells which takes into consideration the discrete 
character of the quantity of components of the system by using rewriting rules 
on multisets of objects, that represent chemical substances, and strings, that 
represent the organization of genes on the genome. The inherent randomness in



biological phenomena is captured by using stochastic strategies, [20]. We believe
that P systems satisfy the above properties required for a good model.

Cellular signalling pathways are fundamental to the control and regulation
of cell behavior. Understanding of biosignalling network functions is crucial to
the study of different diseases and to the design of effective therapies. The
characterization of properties about whole–cell functions requires mathemati-
cal/computational models that quantitatively describe the relationship between
different cellular components.

Ordinary differential equations (ODEs) have been successfully used to model
kinetics of conventional macroscopic chemical reactions. The approach followed
by ODEs is referred as macroscopic chemistry since they model the average
evolution of the concentration of chemical substances across the whole system.
In this approach the change of chemical concentration over time is described for
each chemical specie, implicitly assuming that the fluctuation around the average
value of concentration is small relatively to the concentration. This assumption
of homogeneity may be reasonable in some circumstances but not in many cases
due to the internal structure and low numbers and non–uniform distributions
of certain key molecules in the cell. While differential equations models may
produce useful results under certain conditions, they provide a rather incomplete
view of what is actually happening in the cell [2].

Due to the complexity of cellular signalling pathways, large number of linked
ODEs are often necessary for a reaction kinetics model and the many interde-
pendent differential equations can be very sensitive to their initial conditions
and constants. Time delays and spatial effects (that play an important role in
pathway behavior) are difficult to include in an ODE model [9], which are also
very difficult to change and extend, because changes of network topology may
require substantial changes in most of the basic equations [3].

Recently, different agent–based approaches are being used to model a wide
variety of biological systems ([10], [12], [26]) and biological processes, including
biochemical pathways [9].

The microscopic approach considers the molecular dynamics for each single
molecule involved in the system taking into account their positions, momenta of
atoms, etc. This approach is computationally intractable because of the number
of atoms involved, the time scale and the uncertainty of initial conditions.

Our approach is referred as mesoscopic chemistry [25]. Like in the microscopic
approach one considers individual molecules like proteins, DNA and mRNA, but
ignores many molecules such as water and non-regulated parts of the cellular
machinery. Besides, the position and momenta of the molecules are not modeled,
instead one deals with the statistics of which reactions occur and how often. This
approach is more tractable than microscopic chemistry but it provides a finer
and better understanding than the macroscopic chemistry.

This paper is organized as follows. In the next section we present P systems
as a framework for the specification of models of biosignalling cascades. A de-
terministic strategy for the evolution of P systems is described in Section 3. In
Sections 4 and 5 a study of epidermal growth factor receptor (EGFR) signalling



cascade and of FAS–induced apoptotic signalling pathway are given. Finally,
conclusions are presented in the last section.

2 P Systems: A Framework to Specify Biosignalling
Cascades

In this paper we work with a variant of P systems of the form

Π = (O, L, μ, M1, M2, . . . , Mn, R1, . . . , Rn),

where:

– O is a finite alphabet of symbols representing objects (proteins and com-
plexes of proteins);

– L is a finite alphabet of symbols representing labels for the compartments
(membranes);

– μ is a membrane structure containing n ≥ 1 membranes labeled with ele-
ments from L;

– Mi = (wi, li), 1 ≤ i ≤ n, are pairs which represent the initial configuration
of membrane i: li ∈ L is its label, and wi ∈ O∗ is the initial multiset.

– Ri, 1 ≤ i ≤ n, are finite sets of rules associated with the membrane i which
are of the form u [ v ]li → u′ [ v′ ]li , where u, v, u′, v′ ∈ O∗ are finite multisets
of objects and li is the label of membrane i.

Next, we discuss in more detail the rules that we will use in this paper, to model
protein–protein interactions taking place in the compartmentalized structure of
the living cell.

(a) Transformation, complex formation and dissociation rules:

[ a ]l → [ b ]l

[ a, b ]l → [ c ]l

[ a ]l → [ b, c ]l

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

where a, b, c ∈ O, and l ∈ L

These rules are used to specify chemical reactions taking place inside a com-
partment of type l ∈ L; more specifically, they represent the transformation
of a into b, the formation of a complex c from the interaction of a and b, and
the dissociation of a complex a into b and c respectively.

(b) Diffusing in and out:

[ a ]l → a [ ]l

a [ ]l → [ a ]l

⎫
⎬

⎭
where a ∈ O, and l ∈ L

We use these types of rules when chemical substances move or diffuse freely
from one compartment to another one.



(c) Binding and debinding rules:

a [ b ]l → [ c ]l

[ a ]l → b [ c ]l

⎫
⎬

⎭
where a, b, c ∈ O, and l ∈ L

Using rules of the first type we can specify reactions consisting in the bind-
ing of a ligand swimming in one compartment to a receptor placed on the
membrane surface of another compartment. The reverse reaction, debinding
of substance from a receptor, can be described as well using the second rule.

(d) Recruitment and releasing rules:

a [ b ]l → c [ ]l

c [ ]l → a [ b ]l

⎫
⎬

⎭
where a, b, c ∈ O, and l ∈ L

With these rules we represent the interaction between two chemicals in dif-
ferent compartments whereby one of them is recruited from its compartment
by a chemical on the other compartment, and then the new complex remains
in the latter compartment. In a releasing rule a complex, c, located in one
compartment can dissociate into a and b, with remaining a in the same
compartment as c, and b being released into the other compartment.

3 P Systems Using Deterministic Waiting Times
Algorithm

In biological systems with a large number of molecules deterministic approaches
are valid since the interactions between them follows the

√
n law of physics, which

states that randomness or fluctuation level in a system are inversely proportional
to the square root of the number of particles.

Next, we present an exact deterministic strategy providing a semantic to the
P systems defined before, that we will refer to as deterministic waiting times
algorithm. It is based on the fact that in vivo chemical reactions take place in
parallel in an asynchronous manner, i.e., different chemical reactions proceed
at different reaction rates and the same reaction may also have different reac-
tion rates at different times depending on the concentrations of reactants in the
region.

In the deterministic waiting time strategy, the time necessary for a reaction
to take place, called waiting time, is calculated and the rule or rules (chemical
reaction) with the shortest waiting time is/are applied, changing the number of
molecules in the respective compartments. In each step when there is a change in
the number of a molecules in a compartment, the waiting time for the reactions
“using” the changed molecule species has to be recalculated in that compartment.

By an exact deterministic method we mean that infinitesimal intervals of time
are not approximated by Δt as it is the case in ODEs–based model, but we will



associate a waiting time, computed in a deterministic way, to each reaction and
will use it to determine the order in which the reactions take place.

In our models biochemical reactions are used to describe the molecular inter-
actions, and reversible complex formation reactions are frequent. In what follows
we discuss how to compute mesoscopic rate constants from the macroscopic ones
used in differential equations.

Our rules model reactions of the form:

A + B kd
�ka C

This reversible reaction converges to an equilibrium in which the number of
chemical species A, B and C remains constant. The equilibrium constant, Keq,
expresses the quantities of reactants A and B compared to complexes C once
the equilibrium is reached; that is,

Keq =
[C]

[A] · [B]
(1)

Keq can also be computed using the association ka and dissociation kd rate
constants:

Keq =
ka

kd
(2)

The association constant ka determines the speed of the association reaction.
It measures the number of chemicals A and B that form complexes C per mol
and second. For the case of regulatory proteins the association rate constant ka

can be determined experimentally. Keq can also be determined experimentally
using (1) and therefore kd can be computed using (2).

Alternatively, what it can be determined experimentally is Gibbs free energy
ΔG, a notion from thermodynamics which measures the effort necessary for
decomplexation. Gibbs free energy is related to the equilibrium constant Keq as
follows:

Keq = exp(
−ΔG

R · T
) (3)

where R = 1.9872 calmol−1 Kelvin−1 is the universal gas constant and T is the
absolute temperature at which the experiments are performed.

Therefore from (2) and (3) the dissociation constant can be determined.
The rate constants ka and kd we have dealt with up to now are macroscopic,

they do not depend on the actual number of molecules, but on concentration.
Gillespie’s algorithm and thus our approach uses mesoscopic rate constants re-
ferring to the actual number of molecules and they are determined from their
macroscopic counterparts as follows:

ca =
ka

A · V
, cd = kd

where A = 6.023 ·1023 is Avogadro’s number and V is the cell volume. Note that
we assume the cell volume to be constant while ignoring cell growth.



Given a P system, in this strategy each rule r (representing a chemical reac-
tion) in each membrane m has associated a velocity, vr, obtained by multiplying
the mesoscopic rate constant cr by the multiplicities of the reactants according
to the mass action law. Then we compute the waiting time for the first execution
of the rule r as τr = 1

vr
and return the triple (τr , r, m).

Next, we give a detailed description of the deterministic waiting times algo-
rithm providing the semantic of our P systems–based model:

• Initialization
� set time of the simulation t = 0;
� for every rule r associated with a membrane m in μ compute the triple

(τr, r, m) by using the procedure described before; construct a list con-
taining all such triples;

� sort the list of triple (τr, r, m) according to τr (in an ascendent order);
• Iteration

� extract the first triple, (τr , r, m) from the list (if there are several rules
with the minimum waiting times, then we select all these rules);

� set time of the simulation t = t + τr;
� update the waiting time for the rest of the triples in the list by subtract-

ing τr;
� apply the rule(s) r only once updating the multiplicities of objects in the

membranes affected by the application of the rule;
� for each membrane m′ affected by the application of the rule(s) r, re-

calculate the waiting times of the rules which are in m′;
� for each such rule, compare the new waiting times with the existing ones,

and keep the smallest one among the two;
� sort the list of the new triples according to the waiting time;
� iterate the process.

• Termination
� Repeat the process until the time of the simulation t reaches or exceeds

a preset maximal time of simulation.

Note that in this algorithm every rule in each membrane has a waiting time
computed in a deterministic way that is used to determine the order in which
the rules are executed. It is also worth mentioning that in this method the time
step varies across the evolution of the system and it is computed in each step
depending on the current state of the system.

This strategy has been implemented using Scilab, a scientific software package
for numerical computations providing a powerful open computing environment
for engineering and scientific applications [31]. This tool is available from [32].

4 Modeling EGFR Signalling

The epidermal growth factor receptor (EGFR) is provably the best understood
receptor system, and computational models have played an important role in its
elucidation. It seems clear that cells process the information before passing it to



the nucleus. The many different control points in the EGFR signalling pathway
make it an excellent system for investigating how cells process contextual in-
formation. Computational models can play a crucial role for understanding this
process [29].

In this section we study the EGFR signalling cascade where the deterministic
waiting times algorithm is suitable for describing its evolution.

The epidermal growth factor receptor (EGFR) was the first found to have
tyrosine–kinase activity and has been used in pioneering studies of biological
processes such as receptor–mediated endocytosis, oncogenesis, mitogen–activat-
ed–protein–kinase (MAPK) signalling pathways, etc. [29].

Binding of the epidermal growth factor (EGF) to the extracellular domain of
EGFR induces receptor dimerization and autophosphorylation of intracellular
domains. Then a multitude of proteins are recruited starting a complex signalling
cascade and the receptor follows a process of internalization, ubiquitination, and
degradation in endosomals.

In our model we consider two marginal pathways and two principal pathways
starting from the phosphorylated receptor.

In the first marginal pathway phospholipase C-γ (PLCγ) binds to the phos-
pholyrated receptor, then it is phosphorylated (PLC∗

γ) and released into the cy-
toplasm where it can be translocated to the cell membrane or desphosphorylated.
In the second marginal pathway the protein PI3K binds to the phospholyrated
receptor, then it is phosphorylated (PI3K∗) and released into the cytoplasm
where it regulates several proteins that we do not include in our model.

Both principal pathways lead to activation of Ras-GTP. The first pathway
does not depend on the concentration of the Src homology and collagen domain
protein (Shc). This pathway consists of a cycle where the proteins growth factor
receptor-binding protein 2 (Grb2) and Son of Sevenless homolog protein (SOS)
bind to the phosphorylated receptor. Later the complex Grb2-SOS is released in
the cytoplasm where it dissociates into Grb2 and SOS.

In the other main pathway Shc plays a key role, it binds to the receptor
and it is phosphorylated. Then either Shc∗ is released in the cytoplasm or the
proteins Grb2 and SOS binds to the receptor yielding a four protein complex
(EGFR-EGF2*-Shc*-Grb2-SOS). Subsequently, this complex dissociates into the
complexes Shc∗-Grb2-SOS, Shc∗-Grb2 and Grb2-SOS which in turn can also
dissociate to produce the proteins Shc∗, Grb2 and SOS.

Finally, Ras-GTP is activated by these two pathways and in turn it stimu-
lates the Mitogen Activated Protein (MAP) kinase cascade by phosphorylating
the proteins Raf, MEK and ERK. Subsequently, phosphorylated ERK regulates
several cellular proteins and nuclear transcription factors that we do not include
in our model.

There exist cross-talks between different parts and cycles of the signalling
cascade which suggests a strong robustness of the system.

In Figure 1 it is shown a detailed graphical representation of the signalling
pathway that we model in this paper.



Next, we present a P system–based model of the biosignalling cascade de-
scribed above.

Our model consists of more that 60 proteins and complexes of proteins and
160 chemical reactions. We will not give all the details of the model. A complete
description of ΠEGF with some supplementary information is available from the
web page [32]. In what follows we give an outline of our model.

Let us consider the P system

ΠEGF = (O, {e, s, c}, μ, (w1, e), (w2, s), (w3, c), Re, Rs, Rc),

where:

• Alphabet: In the alphabet O we represent all the proteins and complexes of
proteins that take part in the signalling cascade simulated. Some of the objects
from the alphabet and the chemical compounds that they represent are listed
below.

Object Protein or Complex
EGF Epidermal Growth Factor

EGFR Epidermal Growth Factor Receptor
EGFR-EGF2 Dimerisated Receptor

EGFR-EGF∗
2-Shc EGFR-EGF∗

2 and Shc complex
...

...
MEK Mitogenic External Regulated Kinase
ERK External Regulated Kinase

• Membrane Structure: In the EGFR signalling cascade there are three rel-
evant regions, namely the environment, the cell surface and the cytoplasm. We
represent them in the membrane structure as the membranes labeled with e for
the environment, s for the cell surface, and c for the cytoplasm. The skin of the
structure is the environment, the cell surface is the son of the environment and
the father of the cytoplasm.
• Initial Multisets: In the initial multisets we represent the initial number of
molecules of the chemical substances in the environment, the cell surface, and
the cytoplasm. These estimations has been obtained from [13,24].

we = {EGF 20000}
ws = {EGFR25000, Ras-GDP 20000}
wc = {Shc25000, PLC15000

γ , P I3K5000, SOS4000, Grb28000, TP 10000
1 , TP 45000

2 ,
TP 45000

3 , TP 12500
4 , Raf8000, MEK40000, ERK40000, P 8000

1 , P 8000
2 , P 30000

3 }

• Rules: Using rules we model the 160 chemical reactions which form the sig-
nalling cascade.

As it can be seen in the initial multisets specified before, in the system of
the EGFR signalling cascade the number of molecules is quite large, hence as a
consequence of the

√
n law important fluctuations and stochastic behavior are



Fig. 1. EGFR Signalling Cascade



not expected in the evolution of the system. Because of this we have chosen the
deterministic waiting times algorithm as the strategy for the evolution of the P
system ΠEGF .

Next, we show two examples of rules of the system.
The set of rules associated with the environment, Re, consists only of one rule

r which models the binding of the signal, EGF , to the receptor EGFR.

EGF [ EGFR ]s → [ EGF -EGFR ]s , cr

The meaning of the previous rule is the following: the object EGF in the mem-
brane containing the membrane with label s (the environment), and the object
EGFR inside the membrane with label s (the cell surface) are replaced with the
object EGFR-EGF in the membrane with label s; this object represents the
complex receptor-signal on the cell surface. We associate the mesoscopic rate
constant cr, which measures the affinity between the signal and the receptor.

The deterministic waiting times algorithm is used in the evolution of the
system and the waiting time associated to this rule will be computed using the
next formula:

τr =
1

cr · |EGF | · |EGFR|
One example from the set of rules Rs associated with the cell surface is the
rule r′ concerning to the dimerisation of the receptor, that is the formation of a
complex consisting of two receptors:

[ EGFR, EGFR ]s → [ EGFR2 ]s , cr′

When this rule r′ is executed two objects EGFR representing receptors are
replaced with one object EGFR2, representing a complex formed with two re-
ceptors, in the membrane with label s, the cell surface. The mesoscopic rate
constant cr′ is used to computed the waiting time:

τr′ =
1

cr′ · |EGFR|2

4.1 Results and Discussions

Using Scilab we ran some experiments; in what follows we present some of the
results obtained.

In Figure 2 it is depicted the evolution of the number of autophosphorylated
receptors and in Figure 3 the number of doubly phosphorylated MEK (Mito-
gen External Kinase), one of the target proteins of the signalling cascade that
regulates some nuclear transcription factors involved in the cell division.

Note that the activation of the receptor is very fast reaching its maximum
within the first 5 seconds and then it decays fast to very low levels; on the other
hand the number of doubly phosphorylated MEK is more sustained around 3
nM. These results agree well with empirical observations, see [13,24].
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Fig. 2. Autophosphorylated EGFR evolution
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Fig. 3. Doubly phosphorylated MEK evolution

In tumors it has been reported an over expression of EGF signals in the
environment and of EGFR receptors on the cell surface of cancerous cells. Here
we investigate the effect of different EGF concentrations and number of receptors
on the signalling cascade.

First, we study the effect on the evolution of the number of autophospho-
rylated receptors and doubly phosphorylated MEK of a range of signals, EGF,
from 100 nM to 2000 nM.

In Figure 4, it can be seen that the receptor autophosphorylation is clearly
concentration dependent showing different peaks for different number of signals
in the environment. According to the variance in the receptor activation it is
intuitive to expect different cell responses to different EGF concentrations. Here
we will see that this is not the case.
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Fig. 4. Receptor autophosphorylation for different environmental EGF concentrations
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Fig. 5. MEK phosphorylation for different environmental EGF concentrations

From Figure 5 we can observe that the number of doubly phosphorylated
MEK does not depend on the number of signals in the environment. That is, the
perturbation of EGF level in the environment has no impact on MEK activation.
So, the system is not sensitive to increases in EGF level in the environment (Sen-
sitivity analysis is a mathematical technique term associated with the use of a
computational model to predict the effects of the variation of a single component
in the model).

This shows the surprising robustness of the signalling cascade with regard to
the number of signals from outside due to EGF concentration. The signal is either
attenuated or amplified to get the same concentration of one of the most relevant
kinases in the signalling cascade, MEK. Note that after 100 seconds, when the



response gets sustained, the lines representing the response to different external
EGF concentrations are identical.

Now we analyze the effect on the dynamics of the signalling cascade of different
numbers of receptors on the cell surface.

In Figure 6, it is shown the evolution of the number of doubly phosphorylated
MEK when there is 100 nM and 1000 nM of receptors on the cell surface. Note
that now the response is considerably different; the number of activated MEK
is greater when there is an over expression of receptors on the cell surface. As
a consequence of this high number of activated MEK the cells will undergo an
uncontrolled process of proliferation. Thus, Figure 6 shows the sensitivity of
MEK activation to increases in EGFR level on the cell surface.
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Fig. 6. MEK phosphorylation for different number of receptors

The key role played by the over expression of EGFR on the uncontrolled
growth of tumors has been reported before, and, as a consequence of this, EGFR
is one of the main biological targets for the development of novel and successful
therapies against cancer and continue to be a source of discoveries about the cell
signalling mechanisms involved in development, tissue homeostasis, and disease
[28,14].

There are different strategies to inhibit the over expression of EGFR on the cell
surface but the most developed ones are the monoclonal antibodies (that bind
the external domain of the receptor competing against their natural ligands),
and the molecules with low molecular weight (that inhibit the tyrosine–kinase
activity of the receptor at the intracellular level).

Finally, we stress that for this system we have used a deterministic approach
obtaining results that agree well with experimental data. This is not always
the case, for instance in [20] a system is shown (the Quorum Sensing system in
Vibrio Fischeri) where a stochastic approach is necessary to describe properly
its behavior.



5 Modelling FAS–Apoptosis

There are basically two mechanisms of cell death, necrosis and apoptosis. Necro-
sis is a form of cell death that usually occurs when cells are damaged by injury.
A disruption of the cell membrane is produced and intracellular materials are
released. In contrast to necrosis, apoptosis is carried out in an ordered sequence
of events that culminates in the suicide of the cell, and without releasing intra-
cellular materials from the dying cells.

The term apoptosis (also known as programmed cell death) was coined by Kerr,
Wyllie and Currie [8] as a means of distinguishing a morphologically distinctive
form of cell death which was associated with normal physiology.

Apoptosis occurs during organ development, it plays an important role in cel-
lular homeostasis [11], and it is a cellular response to a cellular insult that starts a
cascade of apoptotic signals, both intracellular and extracellular, which converge
on the activation of a group of apoptotic–specific proteases called caspases. The
apoptotic mechanism include condensation of cell contents, DNA fragmentation
into nucleosomal fragments, nuclear membrane breakdown, and the formation
of apoptotic bodies that are small membrane–bound vesicles phagocytosed by
neighboring cells [15]. Apoptosis protects the rest of the organism from a poten-
tially harmful agent and disregulation of apoptosis can contribute to the devel-
opment of autoimmune diseases and cancers. Apoptosis can also be induced by
anticancer drugs, group factor deprivation, and irradiation.

The family of proteases that mediates apoptosis is divided into two subgroups.
The first group consists of caspase 8, caspase 9, and caspase 10, and they func-
tion as initiators of the cell death process. The second group contains caspase 3,
caspase 6, and caspase 7, and they work as effectors. The other effector molecule
in apoptosis is Apaf-1, which, together with cytochrome c, stimulates the pro-
cessing of pro-caspase 9 to the mature enzyme.

The other regulators of apoptosis are the Bcl2 family members, divided into
three subgroups based on their structure. Members of the first subgroup, rep-
resented by Bcl2 and Bcl-xL, have an anti-apoptotic function. The second sub-
group, represented by Bax and Bak, and the third subgroup, represented by Bid
and Bad, are pro-apoptotic molecules.

Apoptotic death can be triggered by a wide variety of stimuli. Among the
more studied death stimuli are DNA damage which in many cells leads to apop-
totic death via a pathway dependent on p53, and the signalling pathways for
FAS-induced apoptosis that was shown to be one of the most relevant processes
for understanding and combating many forms of human diseases such as can-
cer, neurodegenerative diseases (Parkinson’s disease, Alzheimer, etc.), AIDS and
ischemic stroke.

Fas (also called CD95 or APO–1) is a cell surface receptor protein with an
extracellular region, one transmembrane domain, and an intracellular region. Fas
belongs to the tumor necrosis factor/nerve growth factor (TNT/NGF) cytokine
receptor family. Activation of Fas through binding to its ligands, induces apop-
tosis in the Fas bearing cell. Fas induced–apoptosis starts from the Fas ligand



Fig. 7. FAS signalling pathways, from [1]

binding to Fas receptors and ends in the fragmentation of genomic DNA, which
is used as a hallmark of apoptosis.

Fas ligands usually exist as trimers and bind and activate their receptors by
inducing receptor trimerisation. This creates a clustering of Fas that is necessary
for signalling. In its intracellular region, Fas contains a conserved sequence called
a death domain. Activated receptors recruit adaptor molecules (such as FADD,
Fas–associating protein with death domain) which interacts with the death do-
main on the Fas receptor and recruit procaspase 8 to the receptor complex,
where it undergoes autocatalytic activation cleaving and releasing active caspase
8 molecules intracellularly. Activated caspase 8 can activate caspase 3 through
two different pathways that have been identified by Scaffidi et al. [23], and are re-
ferred to as type I (death receptor pathway) and type II (mitochondrial pathway),
where caspases play a crucial role for both the initiation and execution apoptosis.

The pathways diverge after activation of initiator caspases and converge at the
end by activating executor caspases. In the type I pathway, initiator caspase (cas-
pase 8) cleaves procaspase 3 directly and activates executor caspase (caspase 3).

In the type II pathway, a more complicated cascade is activated involving the
disruption of mitochondrial membrane potential and it is mediated by Bcl2 fam-
ily proteins that regulate the passage of small molecules which activate caspase
cascades through the mitochondrial transition pore. More specifically (see Fig-
ure 8), caspase 8 cleaves Bid (Bcl2 interacting protein) and its COOH–terminal
part translocates to mitochondria where it triggers cytochrome c release. The
released cytochrome c bind to Apaf–1 (apoplectic protease activating factor)



Fig. 8. Details of FAS signalling pathways, from [15]

togegther with dATP and procaspase 9 and activate caspase 9. The caspase 9
cleaves procaspase 3 and activates caspase 3.

The executor caspase 3 cleaves DFF (DNA fragmentation factor) in a het-
erodimeric factor of DFF40 and DFF45. Cleaved DFF45 dissociates from DFF40,



inducing oligomerisation of DFF40. The active DFF40 oligomer causes the in-
ternucleosomal DNA fragmentation.

Despite many molecular components of these apoptotic pathways have been
identified, a better understanding of how they work together into a consistent
network is necessary. A way to understand complex biological processes, in gen-
eral, and the complex signalling behaviour of these pathways, in particular, is by
modelling them in a computational framework and simulating them in electronic
computers.

In [6] the two pathways activated by FAS starting with the stimulation of
FASL (FAS ligand) until the activation of the effector caspase 3, have been
modelled using ordinary differential equations in which biochemical reactions
where used to describe molecular interactions.

In this section we present a P system using a deterministic waiting times algo-
rithm for modelling FAS induced apoptosis, implementing all the rules described
in [6] for both pathways.

Our model consists of 53 proteins and complexes of proteins and 99 chemical
reactions. We will not give all the details of the model. A complete description
of ΠFAS with some supplementary information can be found in the web page
[32]. In what follows we give an outline of our model.

Let us consider the P system

ΠFAS = (O, {e, s, c, m}, μ, (w1, e), (w2, s), (w3, c), (w4, m), Re, Rs, Rc, Rm)

where:
• Alphabet: In the alphabet O we represent all the proteins and complexes of
proteins that take part in the signalling cascade simulated. Some of the objects
from the alphabet and the chemical compounds that they represent are listed
below.

Object Protein or Complex
FAS Fas protein
FASL Fas Ligand
FADD Fas–associating protein with death domain

...
...

Apaf Apoptotic protease activating factor
Smac Second mitochondria–derived activator of caspase
XIAP X–linked inhibitor of apoptosis protein

• Membrane Structure: In the FAS signalling pathways there are four rele-
vant regions, namely the environment, the cell surface, the cytoplasm and the
mitochondria. We represent them in the membrane structure as the membranes
labeled with: e for the environment, s for the cell surface, c for the cytoplasm,
and m for the mitochondria. The skin of the structure is the environment, the
cell surface is the son of the environment, the father of the cytoplasm, and the
grandfather of the mitochondria.



• Initial Multisets: In the initial multisets we represent the initial number of
molecules of the chemical substances in the environment, the cell surface, the
cytoplasm, the mitochondria. These estimations has been obtained from [6].

we = {FASL12500}
ws = {FAS6023}
wc = {FADD10040, CASP820074, FLIP 48786, CASP3120460, Bid15057,

Bax50189, XIAP 18069, Apaf60230, CASP912046}
wm = {Smac60230, Cyto.c60230, Bcl245172}

• Rules: Through the rules we model the 99 chemical reactions which form the
signalling pathways. The rules can be found in [5] and they are described in our
model as in the case of the system ΠEGFR (with different rules in the alternative
cases of type II pathway in next subsection).

The set of rules associated with the environment, Re, consists only of one rule
r1 which models the binding of the FAS ligand to the receptor FAS.

FASL [ FAS ]s → [ FASC ]s , cr1

The meaning of the previous rule is the following: the object FASL in the
membrane containing the membrane with label s (the environment), and the
object FAS inside the membrane with label s (the cell surface) are replaced
with the object FASC in the membrane with label s; this object represents the
complex receptor-signal on the cell surface. We associate the kinetic constant k1,
which measures the affinity between the signal and the receptor.

The deterministic waiting times algorithm is used in the evolution of the
system and the waiting time associated to this rule will be computed using the
next formula:

τr1 =
1

cr1 · |EGF | · |EGFR|

5.1 Results and Discussions

We implemented in Java a preliminary simulator for the P system. It accepts as
input an SBML (Systems Biology Markup Language) file containing the rules
to be simulated and initial concentrations for the molecules in the system.

We compared our results with both the experimental data and with the ODEs
simulation data reported in [6].

One of the major proteins in the pathway, caspase 3 was compared to the
experimental data. In the ODEs simulation, caspase 3 was activated at 4 hours,
and it was considered close to the experimental results where it was obtained
that it activated at 6 hours (see Figure 9).

The same pathway is modeled in the membrane computing framework using
the same reactions and initial conditions. The caspase 3 activation dynamics is
studied when Bcl2 is at baseline value. Caspase 3 is activated in our simulator



Fig. 9. Comparison between experimental data (top left, from [6]), previous ODE sim-
ulation data (top right, [6]) and the P system simulation data (down)

after about 7 hours which is a very good approximation of the experimental data
and it improves the results obtained in the ODEs simulation [6].

There are cells (as thymocytes and fibroblasts) which are not sensitive to Bcl2
over expression as described in [23]. In these cells caspase 8 directly activates
caspase 3.

Scaffidi et al. has suggested in [23] that the type of pathway activated by
Fas is chosen based on the concentration of caspase 8 generated in active form
following FASL binding. If the concentration of activated caspase 8 is high, then
the caspase 3 is activated directly, on the other hand, if the concentration of
activated caspase 8 is low, the type II pathway is chosen so that the system is
amplifying the death signal through the mitochondria to be able to induce the
cell death.

To check this hypothesis, the active caspase 8 formation is increased by hav-
ing the initial concentration of caspase 8 set to a value 20 times greater than its
baseline value while everything else was kept the same in the system. We per-
formed the same simulation with the increase in caspase 8 initial concentration,
and this resulted in faster caspase 3 activation also in our simulation; this agrees
well with the results obtained in [23].



Fig. 10. Left – the P system simulation, right – the ODE simulation, from [6], for the
change in caspase 8 initial concentration

The Bcl2 concentration is also increased 100 times to test the sensitivity of
caspase 3 activation to Bcl2. Figure 10 shows that the caspase 3 activation is not
sensitive to increases in Bcl2 concentration, when pathway of type I is chosen.

Bcl2 is known to block the mitochondrial pathway; however, it is not clear
the mechanism through which Bcl2 can block the pathway of type II. Next, we
analyze the caspase 3 activation kinetics in this type of pathway by considering
different mechanisms to block the mitochondrial pathway suggested in [4], [16]
and [27]: Bcl2 might bind with (a) Bax, (b) Bid, (c) tBid, or (d) bind to both
Bax and tBid.

We design four different P systems having the rules:

– r1, . . . , r95, r96, r97 for modeling the case (a).
– r1, . . . , r95, r

′
96, r

′
97 for modeling the case (b).

– r1, . . . , r95, r
′′
96, r

′′
97 for modeling the case (c).

– r1, . . . , r97, r98, r99 for modeling the case (d).

All the other rules remain the same for all the cases (see [5] for details).
Let us note that this example shows the modularity of P systems–based model:

small behavioral changes in the biosignalling cascade causes small changes in the
designs of the P systems.

The dynamics of caspase 3 activation is studied by varying the Bcl2 concen-
tration 10 times or 100 times the baseline value. It was concluded that Bcl2
binding to both Bax and tBid is the most efficient mechanism for the pathway
in comparison with the results obtained for the cases (a), (b) or (c). The same
conclusions were obtained also after using our simulator for all the previous
changes in the pathway.

Figure 11 shows only the case (d) as a comparison between the ODE simulator
and the P system simulator. It can seen the sensitivity of the caspase 3 activation
to increases in Bcl2 level, when Bcl2 is able to bind to both Bax and tBid, and
when mitochondrial pathway is selected.

Next table presents a summary about the sensitivity analysis of caspase 3
activation to over expression of Bcl2 in function of the pathway selected.



Fig. 11. Left – the P system simulation, right – the ODE simulation, from [6]

Activation Caspase 3
(with over expression of Bcl2)

Type I (death receptor pathway) Insensitivity
Type II (mitochondrial pathway) Sensitivity

6 Conclusions

In this paper we have presented P systems as a new computational modeling
tool to study the dynamic behavior of integrated signalling systems through a
mesoscopic chemistry approach.

P systems are also a general specification of the biological phenomena that can
be evolved using different strategies/algorithms. A deterministic waiting times
algorithm has been introduced, and it is based on the fact that in vivo chemical
reactions take place in parallel and in an asynchronous manner.

That strategy has been illustrated with the simulation of two relevant biolog-
ical phenomena: the EGFR signalling cascade and the signalling pathways for
FAS–induced apoptosis. In the line of [29] we think that the success of using
P systems–based model for simulating biosignalling cascades can be a guide to
combining models and experiments to understand complex biological processes
as integrated systems.

Our results show a good correlation with the experimental data reported in the
literature and with simulators based on ODEs. So, they support the reliability of
P systems as computational modeling tools to produce postdiction, and perhaps
they will be able to produce plausible predictions.
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References

1. Alimonti, J.B., Ball, T.B., Fowke, K.R. Mechanisms of CD4+ T lymphocyte cell
death in human immunodeficiency virus infection and AIDS. Journal of General
Virology, 84 (2003), 1649–1661.

2. Bhalla, U.S., Iyengar, R., Emergent properties of networks of biological signaling
pathways. Science, 283 (1999), 381–387.

3. Blossey, R., Cardelli, L., Phillips, A. A compositional approach to the stochastic
dynamics of gene networks. Transactions on Computational Systems Biology, IV,
Lecture Notes in Computer Science, 3939 (2006), 99–122.

4. Cheng, E.H., Wei, M.C., Weiler, S., Flavell, R.A., Mak, T.W., Lindsten, T., Ko-
rsmeyer, S.J. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing
BAX- and BAK-mediated mitochondrial apoptosis. Molecular Cell, 8 (2001), 705–
711.

5. Cheruku, S., A. Păun, F.J. Romero, M.J. Pérez–Jiménez, O.H. Ibarra. Simulating
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18. Gh. Păun, Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
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