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In this work we study the existence and uniqueness of mild solutions for stochastic partial integrodifferential equations

under local non-Lipschitz conditions on the coefficients. Our analysis makes use of the theory of resolvent operators as

developed by R. Grimmer [3] as well as a stopping time technique. Our results complement and improve several earlier

related works. An example is provided to illustrate the theoretical results. Copyright c© 2009 John Wiley & Sons, Ltd.
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1. Introduction

In this work, we study the existence and uniqueness of mild solutions to the following partial stochastic integrodifferential

equation: (
dX(t) =

h
AX(t) +

R t
0
B(t − s)X(s)ds + f (t, X(t))

i
dt + g(t, X(t))dW (t)

X(0) = x0 ∈ H
(1)

where A : D(A) ⊂ H→ H is a closed linear operator, for all t ≥ 0, B(t) is a closed linear operator with domain D(B(t)) ⊃ D(A).

the mappings f : [0,+∞)×H→ H, g : [0,+∞)×H→ L0
2(K,H) are appropriate functions.

Stochastic evolution equations (SEEs) have attracted much attention over the last decades because of their practical

applications in many areas such as physics, population dynamics, electrical engineering, medicine, biology, ecology and other

areas of science and engineering. Especially, several researchers pay much attention to the existence and uniqueness to SEEs

under some kind of weak sufficient conditions [7, 1]. The so-called non-Lipschitz condition can be considered indeed as such a

weaker sufficient condition and it also has a wider range of potential applications. This condition has been investigated in several

papers. Yamada [11] and Xu [12] studied the solutions to stochastic differential equations (SDEs) under Yamada type non-

Lipschitz condition. Taniguchi[9] generalized the Yamada type non-Lipschitz condition and studied the existence and uniqueness

of solutions to SDEs under Taniguchi type non-Lipschitz condition which includes the special result of [11]. Pardoux[7] has

studied the energy solutions which satisfy the energy equality to the non-Lipschitz SEEs. Cao et al. [1] considered the existence

and uniqueness of solutions to non-Lipschitz SEEs driven by Poisson jumps. Similar to study the case of local Lipshitz condition,

the SEEs only with local non-Lipshitz condition proposed by Taniguchi[9] has recently attracted considerable attention. Taniguchi

[10] discussed the existence and uniqueness of solutions to local non-Lipshitz SEEs driven by Wiener process. Ren [8] considered

the mild solutions of neutral semilinear stochastic functional dynamical systems with local non-Lipschitz coefficients driven by

Wiener process. Motivated by the previously mentioned works, our aim is to exploit the properties of the resolvent operators

theory introduced in [3] jointly with a stopping time technique to prove the existence and uniqueness of mild solutions to Eq.(1).

In this way, we can improve the results obtained in [2] for a neutral functional model which contains our model in the sense that

we need to impose less assumptions to obtain the results (see Remark 3 for more details).
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The outline of this work is as follows. In Section 2, we introduce the necessary notation and spaces, and review some basic

definitions and results for partial integrodifferential equations. In Section 3, the existence and uniqueness of local mild solutions

to our model are discussed and, finally, in Section 4, we provide an example to illustrate the basic results of this work.

2. Preliminaries

2.1. Wiener process

Let H be separable Hilbert space with the norm |.| and ‖.‖, respectively. We denote by (., .) the inner product in H.

Let K be another separable Hilbert space with the inner product (., .)K, L(K,H) the space of all bounded linear operators

from K to H, and let Q ∈ L(K,K) be a nonnegative self-adjoint operator. Furthermore, let L0
2(K,H) denote the space of all

ξ ∈ L(K,H) such that ξ
√
Q is a Hilbert-Schmidt operator and so tr(ξQξ∗) <∞. The norm is given by

‖ξ‖2
L0

2
:= ‖ξ

p
Q‖2

HS = tr(ξQξ∗).

Then ξ is called a Q-Hilbert-Schmidt operator from K to H. We note that if Q = I, then L0
2(K,H) implies L2(K,H).

Let (Ω, P,F) be a complete probability space on which an increasing and right continuous family (Ft)t∈[0,∞] of complete

sub-σ-algebra of F is defined. F0 contains all the null subsets of F . Let βn(t)(n = 1, 2, 3, ...) be a sequence of real valued

one-dimensional standard Brownian motions mutually independent on (Ω, P,F). When one considers the following series

∞X
n=1

βn(t)en, t ≥ 0,

where {en} (n=1,2,3,...) is a complete orthonormal basis in K, this series does not necessarily converge in the space K.

Thus we consider a K-valued stochastic process W (t) given formally by the following series :

W (t) :=

∞X
n=1

βn(t)
p
Qen, t ≥ 0, Q ∈ L(K,K).

If Q = I, we have to assume that there exists a Hilbert space K1 ⊃ K such that it converges in K1, being the inclusion K1 ⊃ K
a Hilbert-Schmidt embedding. However in this paper, and from now, we suppose that operator Q ∈ L(K,K) is a nonnegative

self-adjoint trace-class operator. Thus, the series converges in the space K, that is, it holds that W (t) ∈ L2(Ω;K). Let v ∈ K.

The inner product (W (t), v)K given by the above K-valued stochastic process W (t) satisfies the conditions of a cylindrical

Wiener process since

(W (t), v)K =

 
∞X
n=1

βn(t)
p
Qen, v

!
K

, v ∈ K, t ≥ 0.

Therefore, when the operator Q ∈ L(K,K) is a nonnegative self-adjoint trace-class operator, we usually call the above W (t) the

K-valued Q-cylindrical Wiener process with a covariance operator Q. Next, let φ(s) be an L0
2(K,H) valued Ft-adapted stochastic

process with E[
R t

0
‖φ(s)‖2

L0
2
ds] <∞. Then we define the stochastic integral

Z t

0

φ(s)dW (s) ∈ H, t ≥ 0,

of φ with respect to the K-valued Q-cylindrical Wiener process W (t) by„Z t

0

φ(s)dW (s), v

«
:=

∞X
n=1

Z t

0

(φ(s)
p
Qen, v)dβn(s)

for any v ∈ H using the Ito integral with respect to βn(s).

2.2. Partial integrodifferential equation in Banach space

In the present section, we recall some definitions, notations and properties needed in the sequel.

In what follows, H will denote a Banach space, A and B(t) are closed linear operators on H. Y represents the Banach

space D(A), the domain of operator A, equipped with the graph norm

‖y‖Y := ‖Ay‖+ ‖y‖ for y ∈ Y.

2 Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1–8
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The notation C([0,+∞); Y ) stands for the space of all continuous function from [0,+∞) into Y. We then consider

the following Cauchy problem (
v ′(t) =Av(t) +

R t
0
B(t − s)v(s)ds for t ≥ 0,

v(0) = v0 ∈ H.
(2)

Definition 1 ([3]) A resolvent operator of Eq. (2) is a bounded linear operator valued function R(t) ∈ L(H) for t ≥ 0, satisfying

the following properties:

1. R(0) = I and ‖R(t)‖ ≤ Neβt for some constant N and β.

2. For each x ∈ H, R(t)x is strongly continuous for t ≥ 0.

3. For x ∈ Y , R(.)x ∈ C1([0,+∞);H) ∩ C([0,+∞); Y ) and

R′(t)x = AR(t)x +

Z t

0

B(t − s)xds

= R(t)Ax +

Z t

0

R(t − s)xds for t ≥ 0.

For additional details on resolvent operators, we refer the reader to [3, 4]. The resolvent operator plays an important role to

study the existence of solutions and to establish a variation of constants formula for non-linear systems. For this reason, we

need to know when the linear system (2) possesses a resolvent operator. Theorem 1 below provides a satisfactory answer to this

problem.

Firstly, we impose the following assumptions on the operators A and B:

(H1) A is the infinitesimal generator of a C0− semigroup (T (t))t≥0 on H
(H2) For all t ≥ 0, B(t) is a continuous linear operator from (Y, ‖.‖Y ) into (H, ‖.‖H).

Moreover, there exists an integrable function c : [0,+∞)→ R+ such that for any y ∈ Y, t 7→ B(t)y belongs to W 1,1([0,+∞),H)

and ‚‚‚‚ ddt B(t)y

‚‚‚‚
H
≤ c(t)‖y‖Y for y ∈ Y and t ≥ 0.

We recall that W k,p(Ω) = {ω̃ ∈ Lp(Ω) : Dαω̃ ∈ Lp(Ω),∀|α| ≤ k}, where Dαω̃ is the weak α-th partial derivative of ω̃.

Theorem 1 ([3]) Assume that hypotheses (H1) and (H2) hold. Then Eq. (2) admits a resolvent operator (R(t))t≥0.

Theorem 2 ([5]) Assume that hypotheses (H1) and (H2) hold. Let T(t) be a compact operator for t > 0. Then, the

corresponding resolvent operator R(t) of Eq. (2) is continuous for t > 0 in the operator norm, namely, for t0 > 0, it holds

that limh→0 ‖R(t0 + h)− R(t0)‖ = 0.

In the sequel, we recall some results on the existence of solutions for the following integro-differential equation(
v ′(t) =Av(t) +

R t
0
B(t − s)v(s)ds + q(t)f or t ≥ 0,

v(0) = v0 ∈ H.
(3)

where q : [0,+∞[→ H is continuous function.

Definition 2 A continuous function v : [0,+∞)→ H is said to be a strict solution of Eq. (3) if

1. v ∈ C1([0,+∞);H) ∩ C([0,+∞); Y ),

2. v satisfies Eq. (3) for t ≥ 0.

Remark 1 From this definition we deduce that v(t) ∈ D(A), and the function B(t − s)v(s) is integrable, for all t > 0 and

s ∈ [0,+∞).

Theorem 3 ([3]) Assume that hypotheses (H1) and (H2) hold. If v is a strict solution of Eq. (3), then the following variation

of constant formula holds

v(t) = R(t)v0 +

Z t

0

R(t − s)q(s)ds for t ≥ 0. (4)

Accordingly, we can establish the following definition.

Math. Meth. Appl. Sci. 2009, 00 1–8 Copyright c© 2009 John Wiley & Sons, Ltd. 3
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Definition 3 A function v : [0,+∞)→ H is called mild solution of Eq. (3), for v0 ∈ H, if v satisfies the variation of constants

formula (4).

The next theorem provides sufficient conditions ensuring the regularity of solutions of the Eq.(3).

Theorem 4 Let q ∈ C1([0,+∞);H) and v be defined by (4). If v0 ∈ D(A), then v is a strict solution of Eq. (3).

3. Existence and uniqueness of mild solution

In this section, we prove that there is a unique local mild solution for Eq. (1) under a minimal set of assumptions. We begin by

introducing the following concept of mild solution.

Definition 4 A process {X(t), t ∈ [0, T ]}, 0 ≤ T < +∞, is called a mild solution of (1) if :

(i) X(t) is Ft-adapted, t ≥ 0 with
R T

0
|X(u)|2Hdu <∞ a.s ;

(ii) X(t) ∈ H has continuous paths on t ∈ [0, T ] a.s., and, for each t ∈ [0, T ], X(t) satisfies the integral equation

X(t) = R(t)x0 +

Z t

0

R(t − s)f (s, X(s))ds +

Z t

0

R(t − s)g(s, X(s))dW (s), (5)

for any X(0) = x0 ∈ H.

Now we can list the following assumptions, some of them were used in the paper [2] where a stochastic neutral functional

integrodifferential equation with delay is analyzed. It is worth emphasizing that the equation in [2] contains our model (1), as a

particular case, by simply making the delay equal zero as well as the neutral term:

(H3) (1) (the growth condition) There exists a function H(t, r) : R+ × R+ → R+ such that H(t, r) is locally integrable in

t ≥ 0 for any fixed r ≥ 0 and is continuous, monotone nondecreasing and concave in r for any fixed t ∈ [0, T ].

Furthemore, for any fixed t ∈ [0, T ] and u ∈ H, the following inequality is satisfied:

|f (t, u)|2 + |g(t, u)|2L0
2
≤ H(t, |u|2), t ∈ [0, T ], (6)

(2) for any constant γ > 0, the differential equation

dθ

dt
= γH(t, θ), t ∈ [0, T ],

has a solution θ(t) = θ(t; 0, θ0) on [0, T ] for any initial value θ0.

(H4) (1) (the local condition) For any integer N > 0 there exists a function GN : R+ × R+ → R+ such that GN(t, r) is locally

integrable in t ∈ [0, T ] for any fixed r ≥ 0 and is continuous, monotone nondecreasing and concave in r for any fixed

t ∈ [0, T ] with GN(t, 0) = 0, Futhermore, the following inequality is satisfied: for any u, v ∈ H with |u|, |v | ≤ N,

|f (t, u)− f (t, v)|2 + |g(t, u)− g(t, v)|2L0
2
≤ GN(t, |u − v |2), t ∈ [0, T ], (7)

(2) For any constant γ > 0, if a nonnegative function z(t) satisfies that

z(t) ≤ γ
Z t

0

GN(s, z(s))ds,

for all t ∈ [0, T ], then z(t) ≡ 0 holds for any t ∈ [0, T ].

(H5) (1) (the global condition) There exists a function G(t, r) : R+ × R+ → R+ such that G(t, r) is locally integrable in

t ∈ [0, T ] for any fixed r ≥ 0 and is continuous, monotone nondecreasing and concave in r for any fixed t ∈ [0, T ].

Furthermore, the following inequality is satisfied: for any u, v ∈ H,

|f (t, u)− f (t, v)|2 + |g(t, u)− g(t, v)|2L0
2
≤ G(t, |u − v |2), t ∈ [0, T ], (8)

(2) for any constant γ > 0, if a nonnegative function z(t) satisfies that

z(t) ≤ γ
Z t

0

G(s, z(s))ds,

for all t ∈ [0, T ], then z(t) ≡ 0 holds for any t ∈ [0, T ].

Remark 2 Observe that the first condition in (H4) is a generalization of the following Lipschitz condition:

4 Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1–8
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(1) (the locally Lipschitz condition) for any fixed integer N > 0, there exists an LN > 0 such that for any u, v ∈ H with |u| ≤ N
and |v | ≤ N,

|f (t, u)− f (t, v)|2 + |g(t, u)− g(t, v)|2L0
2
≤ LN |u − v |2, t ∈ [0, T ]. (9)

In what follows, c > 0 will denote a suitable positive real number which may be different from line to line and even in the

same line.

Remark 3 As we have already mentioned, our model is a particular case of the equation analyzed by Diop et al. [2]. For this

reason, using the technique in [2] (namely a Picard iteration method) we can prove in a straightforward way the following theorem

for (1), under the assumptions of global non-Lipschitz and growth conditions on the coefficients f and g.

Theorem 5 (see [2]) Assume that (H1), (H2), (H3) and (H5) are satisfied. Then there exists a unique mild solution solution

X(t) to (1).

However, using a different technique, we will be able to improve the result provided by Theorem 5. Indeed, we will prove that

the existence and uniqueness of mild solution to (1) holds true by assuming (H4) instead of (H3) and (H5). The proof is based

in the theory of resolvent semigroups as well as a stopping time technique. We are therefore on position to prove the main

theorem in this paper.

Theorem 6 Assume that (H1),(H2) and (H4) are satisfied. Then there exists a unique mild solution X(t) to (1).

Proof. Let N be a natural integer and let T0 ∈ (0, T ). We define the sequence of functions {fN(t, u)} and {gN(t, u)} for

(t, u) ∈ [0, T0]×H as follows:

fN(t, u) =


f (t, u) if |u| ≤ N,
f (t, Nu|u| ) if u > N,

gN(t, u) =


g(t, u) if |u| ≤ N,
g(t, Nu|u| ) if u > N,

then, the functions {fN} and {gN} satisfy (H3) and the following inequality

|fN(t, u)− fN(t, v)|2 + |gN(t, u)− gN(t, v)|2L0
2
≤ GN(t, |u − v |2), u, v ∈ H, t ∈ [0, T0].

Thus, by Theorem 5, there exist the unique mild solutions XN(t) and XN(t), respectively to the following stochastic evolution

equations:

XN(t) = R(t)x0 +

Z t

0

R(t − s)fN(s, XN(s))ds +

Z t

0

gN(s, XN(s))dW (s)

XN+1(t) = R(t)x0 +

Z t

0

R(t − s)fN+1(s, XN+1(s))ds +

Z t

0

gN+1(s, XN+1(s))dW (s)

Define the stopping times

σN := T0 ∧ inf{t ∈ [0, T ] : |XN(t)| ≥ N},
σN+1 := T0 ∧ inf{t ∈ [0, T ] : |XN+1(t)| ≥ N + 1},
τN := σN ∧ σN+1.

XN+1(t)−XN(t) =

Z t

0

R(t − s)fN+1(s, XN+1(s))ds −
Z t

0

R(t − s)fN(s, XN(s))ds

+

Z t

0

R(t − s)gN+1(s, XN+1(s))dW (s)−
Z t

0

R(t − s)gN(s, XN(s))dW (s)

=

Z t

0

R(t − s)[fN+1(s, XN+1(s))− fN(s, XN(s))]ds

+

Z t

0

R(t − s)[gN+1(s, XN+1(s))− gN(s, XN(s))]dW (s).

Recall that, for a, b ∈ H, |a + b|2 ≤ 2(|a|2 + |b|2). Hence,

E sup
0≤s≤t∧τN

|XN+1(s)− XN(s)|2 = E sup
0≤s≤t∧τN

|
Z s

0

R(s − r)[fN+1(r, XN+1(r))− fN(r, XN(r))]dr

+

Z s

0

R(s − r)[gN+1(r, XN+1(r))− gN(r, XN(r))]dW (r)|2

Math. Meth. Appl. Sci. 2009, 00 1–8 Copyright c© 2009 John Wiley & Sons, Ltd. 5
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E sup
0≤s≤t∧τN

|XN+1(s)− XN(s)|2 ≤ 2E sup
0≤s≤t∧τN

|
Z s

0

R(s − r)[fN+1(r, XN+1(r))− fN(r, XN(r))]dr |2H

+2E sup
0≤s≤t∧τN

|
Z s

0

R(s − r)[gN+1(s, XN+1(s))− gN(r, XN(r))]dW (r)|2

≤ I1 + I2.

For 0 ≤ s ≤ τN , we see that fN+1(s, XN(s)) = fN(s, xN(s)) = f (s, xN(s)), and

gN+1(s, XN(s)) = gN(s, xN(s)) = g(s, xN(s)) Thus, by (H4) and the Jensen inequality, we obtain

I1 = 2E sup
0≤s≤t∧τN

|
Z s

0

R(s − r)[fN+1(r, XN+1(r))− fN(r, XN(r))]dr |2

≤ ME sup
0≤s≤t∧τN

Z s

0

|fN+1(r, XN+1(r))− fN(r, XN(r))|2dr

≤ ME
Z t∧τN

0

sup
0≤u≤r

GN+1

`
r, |XN+1(u))− XN(u)|2

´
dr

≤ M

Z t∧τN

0

GN+1

„
r,E

„
sup

0≤u≤r
|XN+1(u))−XN(u)|2

««
dr (10)

By (H4), Liu [[6], Theorem 1.2.6, page 14] and the Jensen inequality, there exists a positive constant M1 such that

I2 = 2E sup
0≤s≤t∧τN

|
Z s

0

R(s − r)[gN+1(r, XN+1(r))− gN(r, XN(r))]dW (r)|2

≤ M1

Z t∧τN

0

GN+1

„
r,E

„
sup

0≤u≤r
|XN+1(u))−XN(u)|2

««
dr (11)

From (10)-(11), we have

E sup
0≤s≤t

|XN+1(s ∧ τN)−XN(s ∧ τN)|2H ≤ (M +M1)

Z t

0

GN+1

„
r,E

„
sup

0≤u≤r
|XN+1(u ∧ τN))− xN(u ∧ τN)|2H

««
dr

By (H4-2), we have

E
„

sup
0≤s≤t∧τN

|XN+1(s)− XN(s)|2
«

= 0,

which means thats for 0 ≤ t ≤ T0 ∧ τN , we obtain

XN+1(t) = XN(t) a.e. (12)

From Chebyschev’s inequality and the fact that E(sup0≤t≤T0
||XN(t)||2) ≤ K1, it follows that

P (τN ≤ T0) ≤ P ( sup
0≤t≤T0

||XN(t)||2) > N)

≤
E(sup0≤t≤T0

||XN(t)||2)

N2

≤ K1

N2
→ 0 as N → +∞.

Note that this states slightly more than convergence in probability of τN → T0. One can find, for almost every ω ∈ Ω, an N0(ω)

such that 0 < T0 < τN0 .

Define X(t) by X(t) = XN0 (t), t ∈ [0, T ]. Since X(t ∧ τN) = XN(t ∧ τN), then we have

X(t ∧ τN) = R(t)x0 +

Z t∧τN

0

R(t − s)fN(s, X(s))ds +

Z t∧τN

0

R(t − s)gN(s, X(s))dW (s)

= R(t)x0 +

Z t∧τN

0

R(t − s)f (s, X(s))ds +

Z t∧τN

0

R(t − s)g(s, X(s))dW (s).

Letting N →∞,

X(t) = R(t)x0 +

Z t

0

R(t − s)f (s, X(s))ds +

Z t

0

R(t − s)g(s, X(s))dW (s).

Hence we have that X(t) is a mild solution to (1). The proof is complete. �
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4. Example

In this section, we provide an example to illustrate our main results. We consider the following stochastic partial functional

integrodifferential equation: 8>>>>>>>>>>>><>>>>>>>>>>>>:

∂

∂t
β(t, ξ) =

∂2

∂ξ2
β(t, ξ) +

Z t

0

b(t − s)
∂2

∂ξ2
β(s, ξ)ds

+λ(t)f1 (β(t, ξ))β(t, ξ)dt + γ1β(t, ξ)dW (t)

β(t, 0) = β(t, π) = 0, t ≥ 0,

β(0, ξ) = β0(ξ), ξ ∈ [0, π],

(13)

whereW (t) denotes a R-valued Brownian motion, λ2(t) > 0 is a locally integrable function, f1 : R+ → R is a bounded continuous

functions, b ∈ C1(R+,R) and β0 : [0, π]→ R is a given function such that β0(·) ∈ L2(0, π), is F0-measurable and satisfies

E ‖β0‖2
<∞.

Let H = L2(0, π) with the norm ‖ · ‖ and en :=
q

2
π

sin(nx), (n = 1, 2, 3, · · · ) denote a complete orthonormal basis in H. We

assume that there exists the product uv ∈ H for u, v ∈ H. We note that there exists an M ≥ 1 such that |uv | ≤ M ‖u‖ ‖v‖.
Let W (t) :=

P∞
n=1

√
λnδn(t)en (λn > 0), where δn(t) are one dimensional standard Brownian motion mutually independent of

an usual complete probability space (Ω,F , {Ft}t≥0,P).

Define A : D(A) ⊂ H→ H by A = ∂2

∂z2 , with domain D(A) = H2(0, π) ∩H1
0(0, π). Then

Aĥ = −
∞X
n=1

n2 < ĥ, en > en, ĥ ∈ D(A),

where en, n = 1, 2, 3, · · · , is also the orthonormal set of eigenvectors of A. It is well-known that A is the infinitesimal generator

of a strongly continuous semigroup T (t) on H, given by

T (t)ĥ =

∞X
n=1

e−n
2t < ĥ, en > en for ĥ ∈ H,

which is compact.

Let B : D(A) ⊂ H→ H be the operator defined by

B(t)(z̃) = b(t)Az̃ for t ≥ 0 and z̃ ∈ D(A).

Let φ be as follows :

φ(x) =

8><>:
0, x = 0,

cx
`

log 1
x

´
, 0 < x ≤ δ,

cδ
`

log 1
δ

´
, x > δ

or

φ(x) =

8>><>>:
0, x = 0,

cx
`

log 1
x

´ 1
3 log log 1

x
, 0 < x ≤ δ

cδ
`

log 1
δ

´ 1
3 log log 1

δ
, x > δ

with c > 0 and 0 < δ < 1 is sufficiently small. Assume that the following inequality is satisfied :

|f1(u)− f1(v)|2 ≤ φ
`
|u − v |2

´
, u, v ∈ R. (14)

For t ≥ 0, ξ ∈ [0, π] and ψ a H-valued function, define the operators f , g : R+ ×H→ H by

f (t, ψ)(ξ) = λ(t)f1(ψ)(ξ)ψ(ξ),

g(t, ψ)(ξ) = γ1ψ(ξ).

If we put
X(t) = β(t, ξ) for t ≥ 0 and ξ ∈ [0, π]

X(0) = x0,

then equation (13) takes the following abstract form8<: dX(t) = [AX(t) +

Z t

0

B(t − s)X(s)ds]dt + f (t, X(t))dt + g(t, x(t))dW (t)

X(0) = x0 ∈ H.
(15)
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Since f1(u) is a bounded function, there exists B1 > 0 such that |f (v)| ≤ B1 for any v ∈ H. For any nonnegative real number

r ∈ R+ we set

ΦN(r) : = 2M2N2φ(r),

Ψ(r) : =
`

2M2B2
1 + γ2

1trace(Q)
´
r.

We define ρ(t) by

ρ(t) :=

(
1 if λ(t) ≤ 1,

λ2(t) if λ(t) > 1.

Then ρ(t) is a locally integrable function. And we have that

|λ(t)f1(u)u − λ(t)f1(v)v |2 + |γ1u − γ1v |2L0
2
≤ ρ(t)

`
ΦN

`
|u − v |2

´
+ Ψ

`
|u − v |2

´´
, u, v ∈ H.

On the other hand, set

a :=
`

2M2B2
1 + γ2

1trace(Q)
´
.

Since φ is a concave function, it follows that φ(r) ≥ φ(1)r for 0 ≤ r < 1. Thus it holds thatZ +∞

0+

1

ΦN(r) + Ψ(r)
dr =

Z +∞

0+

1

2M2N2φ(r) + ar
dr

≥ φ(1)

(a + 2M2N2φ(1))

Z +∞

0+

1

φ(r)
dr

= ∞.

Thus by the example of Lemma 3 [[9], p. 157] we have that (H4) holds. Therefore by Theorem 6 the proof of the example

is complete.
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