
Exploring Computation Trees
Associated with P Systems

Andrés Cordón-Franco, Miguel A. Gutiérrez-Naranjo,
Mario J. Pérez-Jiménez, and Agust́ın Riscos-Núñez

Research Group on Natural Computing,
Department of Computer Science and Artificial Intelligence,

University of Sevilla,
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

{acordon, magutier, marper, ariscosn}@us.es

Abstract. Usually, the evolution of a P system generates a computa-
tion tree too large to be efficiently handled with present–day computers;
moreover, different branches in this tree may differ significantly from a
computational complexity point of view, that is, for the amount of time
and storage necessary to reach a result. In this paper we propose a first
approach to outline a strategy for selecting a suitable branch, in some
sense, of the computation tree associated with a P system. To this end,
we introduce the key notion of the dependency graph of a P system.

1 Introduction

The evolution of a non-deterministic computational device usually gives rise to a
computation tree with several branches, potentially infinite. Moreover, even in
the case of finite computation trees, the amount of information is often too big to
be efficiently handled with present-day computers. This is why it is convenient to
look for good strategies for exploring such computation trees.

In this paper, we address one of these non-deterministic computational de-
vices: P systems (see [2, 3] or visit [4]). Our goal is to enrich the simulation of
the evolution of a P system with a new component, usually called strategy or
search plan, that controls the rules to be applied in each cellular step, in order
to select a branch of the computation tree with a low (if possible, minimal) cost.

The ideal situation would be to have a mapping h∗ assigning to each node n of
a computation tree a number h∗(n) which measures the minimum length of a path
from node n to a leaf (that is, to a halting configuration). Then, the strategy
would consist on selecting at each non-deterministic step of the computation a
node corresponding to the least value of h∗. However, the drawback is the high
computational cost of such a mapping.

In a more realistic situation, we look for a computable mapping being an
efficient estimation of h∗, that will be referred to as a heuristic function or
evaluation function.

The paper is organized as follows. In Section 2 we describe the P system
variant used in this paper. Section 3 introduces the key notion of the dependency

graph of a P system. Based upon this notion, in Section 4 we present a mapping
h, which helps us to search for a short branch in the computation tree of a P
system. We also prove that this mapping is, indeed, a heuristic function. Finally,
in Section 5 we develop an illustrative example and we finish with some final
remarks.

2 P Systems with a Fixed Number of Membranes

Let us now briefly introduce the P system variant we shall work with in this
paper. We shall only use evolution and communication rules and we shall avoid
division or dissolution rules; so, the number of membranes (indeed, the whole
membrane structure) remains unchanged during the evolution of the system.

P systems will be represented as tuples Π = (Γ, H, µ, w1, . . . , wq, R), where:

– Γ is a finite alphabet (the working alphabet) whose elements are called
objects.

– H is a finite set of labels for membranes.
– µ is a tree-like membrane structure of degree q, one-to-one labelled by the

set H.
– w1, . . . , wq are multisets over Γ describing the multisets of objects initially

placed in membranes from µ.
– R is a finite set of developmental rules of the following forms:

1. [a → v]l, where a ∈ Γ , v ∈ Γ ∗ (object evolution rules).
Internal rule: an object a can evolve to a multiset v inside a membrane
labelled by l.

2. [a]l → []l b, where a, b ∈ Γ (send-out communication rules).
An object a can get out of a membrane labelled by l, possibly trans-
formed in a new object b.

3. a[]l → [b]l, where a, b ∈ Γ (send-in communication rules).
An object a can get into a membrane labelled by l, possibly transformed
in a new object b.

Note that cooperation is not allowed, and priority or electrical charges are
not considered either. Besides, let us observe that the rules of the system are
associated with labels (e.g., the rule [a → v]l is associated with the label l ∈ H).

The rules are applied according to the following principles. Object evolution
rules are applied in a maximal parallel way (that is, all objects which can evolve
by such rules must do it), while communication rules are used sequentially, in
the sense that one membrane can be used by at most one rule of this type at
one step.

Concerning the interaction with the user, we shall consider that the results of
the computations are collected outside the system (note that objects can leave
the system during the evolution, provided that send-out rules are applied in the
skin membrane). In order to be able to handle this external output of the compu-
tations in a formal way, we add a new region to the membrane structure, called
environment. In this way, the information about the contents of the environment
can be included in the configurations of the system.

3 Dependency Graphs

Roughly speaking, transitions in P systems are performed by rules in which the
occurrence of an element a0 in a membrane m0 produces the apparition of the
element a1 in a membrane m1. In a certain sense, one can consider a dependency
between the pair (a0, m0) and the pair (a1, m1). This dependency is not based
on the initial configuration but on the set of rules of the P system.

More formally, the rules in the P system model presented above can be re-
formulated as follows:

(a0, m1) → (a1, m2)(a2, m2) . . . (an, m2)

The occurrence of the element a0 in membrane m1 triggers the rule and
produces the apparition of the multiset a1a2 . . . an into membrane m2.

Obviously, if m1 �= m2, then we have a communication rule. In this case, n
must be equal to 1 and both membranes must be adjacent (one membrane is
the father of the other one). If m1 is the father of m2, then we have a send-in
communication rule, and if the opposite holds, then we have a send-out com-
munication rule. On the other hand, if m1 = m2, then we have an evolution
rule.

The pair (a0, m1) stands for the left side of the rule and the multiset of pairs
(a1, m2)(a2, m2) . . . (an, m2) stands for the right side of the rule.

Next, we define the dependency graph of a P system based on this new rep-
resentation of the rules.

Definition 1. The dependency graph of a P system Π is a pair GΠ = (VΠ , EΠ)
such that VΠ is the set of all the pairs (z, m), where z is a symbol of the alphabet
of Π and m is a label of a membrane (or env for the environment), and EΠ is
the set of all ordered pairs (arcs) of elements of VΠ , ((z1, m1), (z2, m2)), such
that (z1, m1) is the left side of a rule and (z2, m2) belongs to the right side of
that rule.

The distance between two nodes of the dependency graph is defined as usual.

Definition 2. A path of length n from a vertex x to a vertex y in a directed
graph G = (V, E) is a finite sequence v0, v1, . . . , vn of vertices such that v0 = x,
vn = y, and (vi, vi+1) ∈ E for i = 0, . . . , n − 1. The sequence of vertices with a
single vertex is also considered a path. If there is a path γ from x to y, we say
that y is reachable from x (via γ). The distance between two vertices v1 and v2,
d(v1, v2), is the length of the shortest path from v1 to v2, or infinite, if v2 is not
reachable from v1.

We illustrate the definition of dependency graph with an example. Let us
consider the next toy P system, with alphabet Γ = {a, b, c, d, v, w, z, yes}, mem-
brane structure µ = [[]e]s and set of rules:

Rule 1: [a → zb]e Rule 6: [a]s → []s yes

Rule 2: [a]e → []e a Rule 7: [z]e → []e a
Rule 3: [b]e → []e c Rule 8: z []e → [d]e
Rule 4: [a → z2v]s Rule 9: [v → w]s
Rule 5: [z]s → []s z Rule 10: [w]s → []s yes

In order to construct the corresponding dependency graph, we have to con-
sider the set of regions that are determined by the membrane structure of the P
system. Since the elements can be sent out of the system (rules 5, 6 and 10), we
have to consider three regions: {e, s, env}. Then, with the new representation,
the rules can be rewritten as follows:

Rule 1: (a, e) → (z, e)(b, e) Rule 6: (a, s) → (yes, env)
Rule 2: (a, e) → (a, s) Rule 7: (z, e) → (a, s)
Rule 3: (b, e) → (c, s) Rule 8: (z, s) → (d, e)
Rule 4: (a, s) → (z, s)2(v, s) Rule 9: (v, s) → (w, s)
Rule 5: (z, s) → (z, env) Rule 10: (w, s) → (yes, env)

Therefore, the dependency graph of Π, GΠ = (VΠ , EΠ), is defined by the fol-
lowing sets:

VΠ =

⎧⎪⎪⎨
⎪⎪⎩

(a, e), (b, e), (c, e), (d, e), (v, e), (w, e), (z, e), (yes, e),
(a, s), (b, s), (c, s), (d, s), (v, s), (w, s), (z, s), (yes, s),
(a, env), (b, env), (c, env), (d, env),
(v, env), (w, env), (z, env), (yes, env)

⎫⎪⎪⎬
⎪⎪⎭

,

EΠ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

((a, e), (z, e)), ((a, e), (b, e)), ((a, e), (a, s)),
((a, s), (z, s)), ((a, s), (v, s)), ((a, s), (yes, env)),
((b, e), (c, s)),
((z, e), (a, s)), ((z, s), (z, env)), ((z, s), (d, e)),
((v, s), (w, s)),
((w, s), (yes, env))

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

(d,e)

(c,s)

(z,env)

(z,s)

(b,e)

(v,s)

(a,s)

(a,e)

(w,s)

(yes,env)

(z,e)

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

���

Fig. 1. The dependency graph

The set VΠ of vertices has 24 elements, but 13 of them are isolated: only 11
vertices occur in some arc. Figure 1 shows the connected vertices of the graph.
Note that the dependency graph only depends on the membrane structure and
on the set of rules of the P system, and not on the elements of the membranes
at the initial configuration. This example will be further studied in Section 5.

4 Heuristics

The simulation of a P system with current computers is a quite complex task. P
systems are intrinsically non-deterministic computational devices and therefore
their computation trees are difficult to store and handle with one-processor (or
a bounded number of processors) computers. A possible way to overtake this
shortcoming is to follow only one branch of the associated computation tree in
each run of the simulator. Choosing which branch must be explored is not an
easy decision, as different branches may differ significantly from a computational
complexity point of view.

In order to select the best branch of the computation tree, the ideal situation
would be to have a mapping h∗ assigning to every node a number which indicates
the minimum length of a path from this node to a leaf. Unfortunately, such a
mapping usually has a high computational cost.

In a more realistic situation, we look for a mapping h being an efficient
estimation of h∗, in the following sense:

– h assigns to each node n of a computation tree a number h(n) verifying
h(n) ≤ h∗(n); and

– the value h(n) can be calculated with a low computational cost.

Then, h(n) is a real-valued function over the nodes that, in some cases, provides
a lower bound of the number of cellular steps needed to reach a halting configu-
ration from node n. Such a mapping h will be referred to as a heuristic function
or evaluation function. The aim of this section is to present a heuristic function
h based on the notion of dependency graph of a P system.

In general, given a configuration of a non-deterministic P system, there exist
several essentially different halting configurations which can be reached. How-
ever, in this first approach to the use of heuristics, we shall only consider a
family of P system that behaves well in the following sense. Despite of the non-
determinism, every computation of a P system in the family halts (i.e., there are
no infinite branches in the computation tree) and, starting from a given initial
configuration, all computations send out to the environment the same answer,
just at the last step.

Consequently, when simulating such a P system, no matter which branch of
the associated computation tree we follow, we will get the same answer, but the
computational cost measured as the number of steps in the computation may
vary widely. Hence, it is interesting to define a heuristic function measuring, in
some sense, how far a given configuration is from a halting configuration in the
computation tree.

In order to define such a heuristic mapping, we introduce the concept of
L-configuration of a P system. As above, we codify the information as ordered
pairs (element, membrane).

Definition 3. An L-configuration, LC, associated with a given configuration,
C, is a multiset of pairs (z, m) such that, for every object z of the alphabet and
for every membrane m, the multiplicity of z in m in the configuration C is equal
to the multiplicity of the pair (z, m) in LC.

Next we define a mapping h which helps to select a good branch in each
choice point of the computation tree associated with a P system.

Definition 4. Let Π be a P system. Let LC be an L-configuration of Π, and
z the object sent out to the environment at the end of the computation. The
heuristic function h is defined as

h(LC) = min{ d(v, (z, env)) | v ∈ LC}

where d is the distance in the dependency graph.

We finish this section with a theorem which states that the mapping h verifies
the required property.

Theorem 1. Let h∗ be a function mapping a configuration C onto the number
of steps of the shortest path in the computation tree from C to a halting con-
figuration. For each configuration C, we have h(LC) ≤ h∗(C), where LC is the
L-configuration associated with C.

Proof. The basic idea of the proof is that the transition between two adjacent
vertices in the dependency graph needs at least one evolution step of the P
system. Keeping this in mind, the proof is quite natural.

We will reason by reductio ad absurdum. Suppose that there exists a config-
uration C0 such that h∗(C0) < h(LC0) and let C∗ be a halting configuration
such that from C0 to C∗ there are h∗(C0) evolution steps. Let z be the element
sent out in the last step of the computation. Since C∗ is a halting configuration,
(z, env) belongs to the L-configuration LC∗ and

h∗(C0) < h(LC0) = min{ d(v, (z, env)) | v ∈ LC0}

In particular, for all v ∈ LC0 such that (z, env) is reachable from v, h∗(C0)
is less than the length of the shortest path from v to (z, env) in the dependency
graph. That is, the distance from any element of the L-configuration LC0 to
(z, env) is larger than the number of computation steps of the P system from
C0 to a halting configuration.

But this is impossible since, as remarked above, the transition between two
adjacent vertices in the dependency graph needs at least one computation step
of the P system. ��

5 Example

To illustrate the definition of the heuristic function h, we consider again the
example described in Section 3. Figure 2 shows the computation tree associated
with the evolution of this P system. In the first step of the computation two new
configurations are possible. We use the function h to select one of them in order
to reach a halting configuration in the minimum number of steps.

seb ac

se ac2

se
z2vc2

se c2

yes

se c2

yes

se
c2z2v

sed c2w z

sed c2 z

yes

sed c z

yes

sed cw z

se
c

yes
se

cz2v

seb a

sed c2w z

sed c2 z

yes

se
z c2

sezb c

seab

� �

� �

�

�

�

�

�

�

�

��������

��������

�

�

��

�

3

7

4

5,8 9

10

6

3,6

7

1,3

10

5,8 9

3,4

3,6

2

10

5,8 9

3,4

Fig. 2. The computation tree

The two possible configurations to proceed with are:

C1 ≡ [[zb]e c]s, by applying rules 1 and 3,
C2 ≡ [[b]e a]s, by applying rule 2.

The information of these configurations can be represented by their associated
L-configurations:

LC1 = {(z, e), (b, e), (c, s)},
LC2 = {(b, e), (a, s)}.

In this example, the halting configurations are characterized by sending the
object yes to the environment; that is, a configuration is a halting one if and only
if (yes, env) is an element of its associated L-configuration. In order to decide
which branch we must follow in the computation tree, we compute h(LCi), for
i = 1, 2:

h(LC1) = min{ d(v, (yes, env)) | v ∈ LC1}
= d((z, e), (yes, env))
= 2,

h(LC2) = min{ d(v, (yes, env)) | v ∈ LC2}
= d((a, s), (yes, env))
= 1.

We have h(LC2) < h(LC1), so, according to the heuristic h, we should follow
the computation from the configuration C2 to reach a halting configuration.
Figure 2 shows the whole computation tree and it can be checked that, in the
next evolution step, a halting configuration is reached from C2 and this is the
shortest path from the initial configuration to a halting one.

If we consider the subtree dominated by the configuration C1 ≡ [[zb]e c]s,
that is, if we consider C1 as initial configuration, the function h can help to
find the shortest computation. As Figure 2 shows, starting from C1 two new
configurations are possible:

C11 ≡ [[z]e c2]s, by applying rule 3,
C12 ≡ [[b]e ac]s, by applying rule 7.

Their associated L-configurations are:

LC11 = {(z, e), (c, s), (c, s))},
LC12 = {(b, e), (a, s), (c, s)}.

In order to decide which branch we must follow in the computation tree, we
compute h(LC1i) for i = 1, 2:

h(LC11) = min{ d(v, (yes, env)) | v ∈ LC11}
= d((z, e), (yes, env))
= 2,

h(LC12) = min{ d(v, (yes, env)) | v ∈ LC12}
= d((a, s), (yes, env))
= 1.

So, we should follow C12 to obtain the shortest computation. In fact, starting
from C12, a halting configuration is reached in the next step.

6 Conclusions and Further Research

In this paper we have presented a first approach towards an efficient strategy for
searching in the computation tree associated with the evolution of a P system.
Our aim is to select a branch with a low computational cost, measured as the
number of steps needed to reach a halting configuration.

We propose a heuristic function h being an estimation of this computational
cost, based on the notion of dependency graph of a P system.

We have illustrated the use of this heuristic function with an example be-
longing to a special family of P systems that, in a specific sense, “behaves well”.
Nonetheless, the search plan proposed here can be generalized, in a rather natu-
ral way, to other (less restrictive) variants of P system. In particular, extending
the notion of dependency graph to P systems where the number of membranes
can vary during the evolution (e.g., P systems with active membranes) seems to
be a very promising question.

Another interesting topic is to study the transformation of configurations as
a pre-computation phase, when the system itself is built. In this framework sev-
eral important topics appear, such as the edit-distance between configurations,
normal forms, reachability, etc.

Acknowledgement

The support for this research through the project TIC2002-04220-C03-01 of the
Ministerio de Ciencia y Tecnoloǵıa of Spain, cofinanced by FEDER funds, is
gratefully acknowledged.

References

1. A. Cordón-Franco, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez,
Weak metrics on configurations of a P system. In Gh. Păun, A. Riscos-Núñez,
A. Romero-Jiménez, and F. Sancho-Caparrini, (eds.), Proceedings of the Second
Brainstorming Week on Membrane Computing, Report RGNC 01/04, University of
Sevilla, 2004, 139–151.

2. Gh. Păun, Computing with membranes, Journal of Computer and System Sciences,
61, 1 (2000), 108–143.

3. Gh. Păun, Membrane Computing. An introduction. Springer-Verlag, 2002.
4. http://psystems.disco.unimib.it/

	Introduction
	P Systems with a Fixed Number of Membranes
	Dependency Graphs
	Heuristics
	Example
	Conclusions and Further Research

