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Abstract

In this work we present a multilayer shallow model to approximate the Navier-Stokes
equations with the µ(I)-rheology through an asymptotic analysis. The main advantages
of this approximation are (i) the low cost associated with the numerical treatment of the
free surface of the modelled flows, (ii) theexact conservation of mass and (iii) the ability to
compute 2D profiles of the velocities in the directions along and normal to the slope. The
derivation of the model follows Fernández-Nieto et al. (J. Comput. Phys., vol. 60, 2014, pp.
408-437) and introduces a dimensional analysis based on the shallow flow hypothesis. The
proposed first-order multilayer model fully satisfies a dissipative energy equation. A compar-
ison with steady uniform Bagnold flow – with and without the sidewall friction effect – and
laboratory experiments with a non-constant normal profile of the downslope velocity demon-
strates the accuracy of the numerical model. Finally, by comparing the numerical results
with experimental data on granular collapses, we show that the proposed multilayer model
with the µ(I)-rheology qualitatively reproduces the effect of the erodible bed on granular
flow dynamics and deposits, such as the increase of runout distance with increasing thickness
of the erodible bed. We show that the use of a constant friction coefficient in the multilayer
model leads to the opposite behaviour. This multilayer model captures the strong change in
shape of the velocity profile (from S-shaped to Bagnold-like) observed during the different
phases of the highly transient flow, including the presence of static and flowing zones within
the granular column.
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1 Introduction

Granular flows have been widely studied in recent years because of their importance in industrial
processes and geophysical flows such as avalanches, debris or rock avalanches, landslides, etc. In
particular, numerical modelling of geophysical granular flows provides a unique tool for hazard
assessment.

The behaviour of real geophysical flows is very complex due to topography effects, the het-
erogeneity of the material involved, the presence of fluid phases, fragmentation, etc. ([18]). One
of the major issues is to quantify erosion/deposition processes that play a key role in geophysical
flow dynamics but are very difficult to measure in the field (see e. g. [17, 29, 9]). Laboratory
experiments on granular flows are very useful to test flow models on simple configurations where
detailed measurements can be performed, even if some physical processes may differ between the
large and small scale. These experiments may help in defining appropriate rheological laws to
describe the behaviour of granular materials. Recent experiments by Mangenet et al. [38] and
Farin et al. [21] on granular column collapse have quantified how the dynamics and deposits of
dry granular flows change in the presence of an erodible bed. They showed a significant increase
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of the runout distance (i.e. maximum distance reached by the deposit) and flow duration with
increasing thickness of the erodible bed. This strong effect of bed entrainment was observed only
for flows on slopes higher than a critical angle of approximately 16◦ for glass beads. The question
remains as to whether this behaviour can be reproduced by granular flow models.

Understanding the rheological behaviour of granular material is a major challenge. In par-
ticular, a key issue is to describe the transition between flow (fluid-like) and no-flow (solid-like)
behaviour. Granular flows have been described by viscoplastic laws and especially by the so-called
µ(I)-rheology, introduced by Jop et al. [32]. It specifies that the friction coefficient µ is variable
and depends on the inertial number I that is related to the pressure and strain rate. Jop et
al. [33] considered this viscoplastic law and compared their results with laboratory experiments
to investigate the time evolution of the vertical profile of velocity in narrow channels, where the
sidewall friction is modelled through an additional friction term introduced by [31]. Lagrée et al.
[34] implemented the µ(I)-rheology in a full Navier-Stokes solver (Gerris) by defining a viscosity
from the µ(I)-rheology. They validated the model with 2D analytical solutions and compared
it to 2D discrete element simulations of granular collapses over horizontal rigid beds and with
other rheologies. Staron et al. [50, 51] applied this model to granular flows in a silo. Using an
augmented Lagrangian method combined with finite element discretisation to solve the 2D full
Navier-Stokes equations, Ionescu et al. [28] showed that this rheology quantitatively reproduces
laboratory experiments of granular collapses over horizontal and inclined planes. By interpreting
the µ(I)-rheology as a viscoplastic flow with a Drucker-Prager yield stress criterion and a viscosity
depending on the pressure and strain rate, they showed that the mean value of this viscosity has
a key impact on the simulated front dynamics and on the deposit of granular column collapses.
In particular without viscosity, the runout distance is strongly overestimated. However using a
constant viscosity or a spatio-temporally variable viscosity only slightly changes the results for
granular column of small aspect ratio (see [28]).

In [16], the authors implemented the µ(I)-rheology in a three-dimensional numerical model
with a finite element method combined with the Newton-Raphson algorithm with a regulariza-
tion technique. The numerical model was validated by an analytical solution for a dry granular
vertical-chute flow and a dry granular flow over an inclined plane and by laboratory experiments.
Previously, Chauchat & Médale [15] simulated the bed-load transport problem in 2D and 3D with
a two-phase model that considers a Drucker-Prager rheology for the granular phase. Lusso et
al. [36] used a finite element method to simulate a 2D viscoplastic flow considering a Drucker-
Prager yield stress criterion and a constant viscosity. They obtained similar results taking into
account either a regularization method or the augmented Lagrangian algorithm. By comparing
the simulated normal velocity profiles and the time change of the position of the flow/no-flow
(i. e. flowing/static) interface with laboratory experiments by Farin et al. [21], they concluded
that a pressure and rate-dependent viscosity can be important to study flows over an erodible
bed. A similar conclusion is presented in [35] after comparing the normal velocity profiles and the
position of the flow/no-flow interface during the stopping phase of granular flows over erodible
beds calculated with a simplified thin-layer but not depth-averaged viscoplastic model ([13]) with
those measured in laboratory experiments.

Because of the high computational cost of solving the full 3D Navier-Stokes equations, in
particular in a geophysical context, granular flows have often been simulated using depth-averaged
shallow models. The shallow or thin-layer approximation (the thickness of the flow is assumed to be
small compared to its downslope extension) associated with depth-averaging leads to conservation
laws like the Saint-Venant equations. These approximations have been applied to granular flows by
Savage & Hutter [47] by assuming a Coulomb friction law where the shear stress at the bottom is
proportional to the normal stress, with a constant friction coefficient µ. However, this model does
not reproduce the increase in runout distance observed with increasing thickness of the erodible
bed. The analytical solution deduced in [20] proves that this model leads to the opposite effect.
The question is as to whether this opposite behaviour between the experiments and simulations
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is due to the thin-layer approximation and/or depth-averaging process or to the rheological law
implemented in the model (i.e. constant friction coefficient).

Recently, Capart et al. [14] proposed a depth-integrated model taking into account a lin-
earization of the µ(I)-rheology. They prescribed an S-shaped velocity profile corresponding to
equilibrium debris flows and typical of granular flows over erodible beds. Their velocity profiles
were reconstructed using the computed averaged velocity making it possible to compare their re-
sults with velocity profiles measured in laboratory experiments. Gray & Edwards [26] introduced
the µ(I)-rheology in a depth-averaged model by adding a viscous term and prescribing a Bagnold
velocity profile, typical of granular flows over rigid beds. Edwards & Gray [19] showed the ability
of this model to capture roll-waves and erosion-deposition waves, if it is combined with the basal
friction law introduced in [45]. In these two depth-averaged models, however, the shape of the
velocity profile is prescribed so that they cannot reproduce the different profiles observed in highly
transient flows such as in granular collapses where the velocity profiles change from Bagnold-like
near the front to S-shaped upstream where upper grains flow above static grains (see [28]). Fur-
thermore, in depth-averaged models, only the mean velocity over the whole thickness of the flow
is calculated (i.e., the whole granular column is either flowing or at rest, except for the model
proposed by Capart et al. [14]). Granular collapse experiments and simulations have shown on
the contrary that during the stopping phase and when erosion/deposition processes occur, static
zones may develop near the bottom and propagate upwards. The resulting normal gradient of the
downslope velocity, which changes in time, is a significant term in the strain rate and therefore
strongly influences the µ(I) coefficient. The well-posedness of the full µ(I)-rheology is proved by
Barker et al. [7] for a large intermediate range of values of the inertial number I. It is ill-posed
for low and high values of I, even for steady-uniform flows where I ranges from zero to infinity
when the slope varies between the limit angles of the µ(I)-rheology.

Multilayer models represent an interesting alternative to depth-averaged models, making it
possible in particular to resolve the shape of velocity profiles. They were introduced by Audusse
[1] and extended by Audusse et al. [4]. A different multilayer model, which takes into account
the exchange of mass and momentum between the layers, has since been derived by Audusse et
al. [3, 5], and Sainte-Marie [46].

A new procedure to obtain a multilayer model has been introduced by Fernández-Nieto et al.
[23]. Several differences appear between this multilayer model and the ones deduced by Audusse et
al. First, in [23], the multilayer model is derived from the variational formulation of Navier-Stokes
equations with hydrostatic pressure by considering a discontinuous profile of the solution at the
interfaces of a vertical partition of the domain. This procedure proves that the solution of this
multilayer model is a particular weak solution of the Navier-Stokes system. Moreover, the mass
and momentum transfer terms at the interfaces of the normal partition are deduced from the jump
conditions verified by the weak solutions of the Navier-Stokes system. In addition, the definition
of the vertical velocity profile is easily obtained using the mass jump condition combined with the
incompressibility condition.

By comparing this model with granular flow experiments on erodible beds ([33, 38, 21]), we
evaluate (i) if the model with the µ(I)-rheology gives a reasonable approximation of the granular
flow dynamics in different regimes and of their deposits, (ii) if the model is able to reproduce
strong changes in velocity profiles during highly transient flows, (iii) if it reproduces the increase
in runout distance observed for granular collapses for increasing thickness of the erodible bed
above a critical slope angle θc ∈ [12o, 16o] and (iv) how the multilayer approach improves the
results compared to the classical depth-averaged Saint-Venant model (i.e. monolayer model).

The paper is organised as follows. Section 2 is devoted to presenting the initial system com-
posed of the 2D Navier-Stokes equations with the µ(I)-rheology and the appropriate boundary
conditions. We also give the local coordinates system that we consider for the derivation. In
Section 3 we present the multilayer approach following [23] to derive a 2D multilayer model for
dry granular flows up to first order when considering the thin-layer asymptotic approximation.
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The final µ(I)-rheology Multilayer Shallow Model (MSM) is also presented in this section together
with the associated energy balance. Section 4 is devoted to presenting the numerical results. First,
we validate our model using the 2D analytical solution of a Bagnold flow and a flow in a narrow
channel with a strong effect of the lateral wall friction. We also compare with experimental data
for the previous case, and do a deeper comparison of our results with granular collapse laboratory
experiments done by Mangeney et al. [38]. We show that the µ(I)-rheology is able to qualita-
tively reproduce the increase in runout distance of granular flows over erodible beds, in contrast
with the constant friction model. Moreover, the multilayer approach reproduces the change in
shape of the velocity profiles and significantly improves results compared to the monolayer one
(i.e. Saint-Venant). Finally, conclusions are presented in Section 5.

2 The initial system

In this section we present the two-dimensional model considered to describe the dynamics of
granular flows. First, we introduce the starting system of equations, completed with the definition
of the stress tensor including the µ(I)-rheology. We then specify the suitable boundary conditions.
Finally, we present the complete model in local coordinates.

2.1 Governing equations

We consider a granular mass flow with velocity u ∈ R2 and density ρ ∈ R and we set the
incompressible Navier-Stokes equations describing the dynamics of the system:{ ∇ · u = 0,

ρ∂tu + ρ∇ · (u⊗ u)−∇ · σ = ρ g,
(1)

where g is the gravity force. The total stress tensor is

σ = −pI + τ , (2)

with p ∈ R the pressure. I is the 2D identity tensor and τ the deviatoric stress tensor given by

τ = ηD(u),

where η ∈ R denotes the viscosity and D(u) the strain-rate tensor

D(u) =
1

2
(∇u+ (∇u)′).

2.2 µ(I)-rheology

As discussed in the Introduction, we consider the so-called µ(I)-rheology (see [32]) in order to
take into account the non-Newtonian nature of granular flows. Hence, the viscosity coefficient is
defined by

η =
µ(I)p

‖D(u)‖
, (3)

with ‖D‖ =
√

0.5 D : D the usual second invariant of a tensor D. The friction coefficient µ(I) is
written as

µ(I) = µs +
µ2 − µs
I0 + I

I,
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where I0 is a constant value and µ2 > µs are constant parameters. I is the inertial number

I =
2ds‖D(u)‖√

p/ρs
, (4)

where ds is the particle diameter and ρs the particle density. The apparent flow density is then
defined as

ρ = ϕsρs, (5)

where the solid volume fraction, denoted by ϕs, is assumed to be constant.
Note that when the shear rate is equal to zero, µ(I) is reduced to µs. For high values of the

inertial number, µ(I) converges to µ2. Otherwise, if we consider a constant value of µ, independent
of I, the model is always ill-posed (see [48]).

The µ(I)-rheology includes a Drucker-Prager plasticity criterion, the deviatoric tensor is defined
as 

τ =
µ(I)p

‖D‖
D if ‖D‖ 6= 0,

‖τ‖ ≤ µsp if ‖D‖ = 0.

Note that the µ(I)-rheology can equivalently be written as a decomposition of the deviatoric stress
in a sum of a plastic term and a rate-dependent viscous term (see [28]):

τ =
µsp

‖D‖
D + 2η̃D if ‖D‖ 6= 0,

‖τ‖ ≤ µsp if ‖D‖ = 0;

with a viscosity defined as η̃ =
(µ2 − µs)p

I0
ds

√
p/ρs + 2‖D‖

. Here we investigate the rheology defined by

a variable friction µ(I) and a constant friction µs. In [28], the authors showed that simulations
of the front propagation of granular column collapses and of their deposits are very sensitive to
the value of the average value of the viscosity (see their figures 8 and 13). However, replacing η̃
by a constant viscosity equal to the averaged value of the spatio-temporal viscosity η̃ does not
significantly change the simulated dynamics and deposit. Here we compare the case where µ = µs
so that η̃ = 0 with the µ(I) rheology corresponding to typical values of the viscosity η = 1 Pa·s
for granular collapses over horizontal and inclined planes ([28]).

The model considering a viscosity defined by (3) presents a discontinuity when ‖D(u)‖ = 0.
To avoid this singularity there are several ways to proceed. One of them is to apply a duality
method, such as augmented Lagrangian methods ([25]) or the Bermúdez-Moreno algorithm ([10]).
Another option is to use a regularization of D(u), which is cheaper computationally; however it
does not give an exact solution, contrary to duality methods.

In this work, we take into consideration two kinds of regularizations of D(u). First, we use

the regularization proposed in [34], which consist of bounding the viscosity by ηM = 250ρ
√
gh3

Pa·s, considering instead of (3),

η =
µ(I)p

max
(
‖D(u)‖, µ(I)p

ηM

) . (6)
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In this way, we obtain η = ηM if ‖D(u)‖ is close to zero. We used this regularization in the
simulation of the granular flow experiments. However, as explained in Section 4.1, we cannot
consider this regularization in some tests presented below, for which we have to take into account
the regularization introduced in [8],

η =
µ(I)p√

‖D(u)‖2 + δ2
,

where δ > 0 is a small parameter.

2.3 Boundary conditions

We consider the usual geometric setting, that is, the granular material fills a spatial domain lim-
ited by a fixed topography at the bottom and by a free surface at the top.

Since the domain is moved with the velocity of the material, we set the kinematic condition

Nt + u · nh = 0, at the free surface, (7)

with (Nt,n
h) the time-space normal vector to the free surface. We also assume a normal stress

balance
p = 0, at the free surface. (8)

At the bottom we consider the no-penetration condition

u · nb = 0, at the bottom, (9)

where nb is the downward unit normal vector to the bottom. We also consider a Coulomb-type
friction law involving the variable friction coefficient µ(I):

σ nb −
((
σ nb

)
· nb
)
nb =

µ(I)p
u

|u|

0

 , at the bottom. (10)

Note that the multilayer approach considered here can also be deduced by considering a no-
slip condition, that is, u = 0 at the bottom. This condition implies the no penetration condition
(9). Then, the only difference is that instead of considering condition (10), the definition of
σ nb −

((
σ nb

)
· nb
)
nb at the bottom must be set by using the no-slip condition and the profile

of u (see [26]). The resulting model with this alternative condition is analysed at the end of
Subsection 3.3.

2.4 Local coordinates

Let us consider tilted coordinates, which are commonly used for granular flows (see [22, 42, 26,

12, 13]). Let b̃(x) be an inclined fixed plane of constant angle θ with respect to the horizontal
axis; we define the coordinates (x, z) ∈ Ω × R+ ⊂ R2. The x and z axis are measured along the
inclined plane and along the normal direction respectively (see figure 1). In this reference frame
the gravitational force is written as

g = (−g sin θ,−g cos θ)′.
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In addition, we set b(x) an arbitrary bottom topography and a layer of the material over it with

thickness h(t, x). Both are measured in the normal direction to the inclined plane b̃(x). We
consider the velocity u ∈ R2 with horizontal (downslope direction) and vertical (normal direc-
tion) components (u,w). We set∇ = (∂x, ∂z), the usual differential operator in the space variables.

With these definitions we write:

τ =

(
τxx τxz
τxz τzz

)
and D(u) =

1

2

(
2∂xu ∂zu+ ∂xw

∂zu+ ∂xw 2∂zw

)
.

In this reference frame, system (1) can be developed as
∂xu+ ∂zw = 0,

ρ
(
∂tu+ u ∂xu+ w ∂zu

)
+ ∂xp = −ρg sin θ + ∂xτxx + ∂zτxz,

ρ
(
∂tw + u ∂xw + w ∂zw

)
+ ∂zp = −ρg cos θ + ∂xτxz + ∂zτzz.

(11)

For the boundary conditions (7)-(10) we just take into account the definitions of the normal
vectors. Namely, the time and space normal vectors to the free surface are respectively

Nt = ∂th; nh =
(∂x(b+ h),−1)√
1 + |∂x(b+ h)|2

;

and the normal vector to the bottom reads:

nb =
(∂xb,−1)√
1 + |∂xb|2

.

3 The µ(I)-rheology multilayer model

In this section, we present a multilayer model designed to approximate the dynamics of granular
flows. We follow [23], in which a multilayer approach was developed to solve the Navier-Stokes
equations. In our case, the system to approximate is given by the equations (11) together with
the boundary conditions described in Section 2.3. The originality of this paper is to develop the
multilayer approach together with an asymptotic approximation. The system is deduced under
several specific changes involving the asymptotic approximation and the definition of the stress
tensor according to the µ(I)-rheology that introduces a non-constant viscosity coefficient. The
advantage of this approach is that we recover the normal profile of the downslope and normal
components of the velocity.

In the first subsection we show the dimensional analysis of the equations and write the non-
dimensional system in matrix form. In the second part we present a brief explanation of the
procedure to obtain the multilayer model and the model itself. A more detailed presentation of
the deduction is made in Appendix A, where we focus on the aspects of the derivation that differ
from the method proposed in [23].

3.1 Dimensional analysis

In this subsection we carry out a dimensional analysis of the system (1)-(10) under the local
coordinates system specified in Section 2.4. We consider a shallow domain by assuming that the
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ratio ε = H/L between the characteristic height H and the characteristic length L is small. We
also introduce the characteristic density ρ0. Following the scaling analysis proposed in [26], we
define the dimensionless variables, denoted with the tilde symbol (̃.), as follows:

(x, z, t) = (Lx̃,Hz̃, (L/U)t̃), (u,w) = (Uũ, εUw̃),

h = Hh̃, ρ = ρ0ρ̃, p = ρ0U
2p̃,

η = ρ0UHη̃, ηM = ρ0UHη̃M ,

(τxx, τxz, τzz) = ρ0U
2 (ετ̃xx, τ̃xz, ετ̃zz) .

Let us also note that

D(u) =
U

H

1

2

(
2ε∂x̃ũ ∂z̃ũ+ ε2∂x̃w̃

∂z̃ũ+ ε2∂x̃w̃ 2ε∂z̃w̃

)
,

and the Froude number

Fr =
U√

g cos θH
.

Then, the system of equations (11) can be rewritten using this change of variables as (tildes have
been dropped for simplicity):

∂xu+ ∂zw = 0,

ρ
(
∂tu+ u∂xu+ w∂zu

)
+ ∂xp = −1

ε
ρ

1

Fr2
tan θ + ε∂xτxx +

1

ε
∂zτxz,

ε2ρ
(
∂tw + u∂xw + w∂zw

)
+ ∂zp = −ρ 1

Fr2
+ ε∂xτxz + ε∂zτzz.

(12)

We also write the boundary and kinematic conditions using dimensionless variables. At the free
surface we get

∂th+ u|z=b+h ∂x (b+ h)− w|z=b+h = O
(
ε2
)

; p|z=b+h = 0, (13)

and at the bottom we obtain

u|z=b ∂xb = w|z=b ;

(η∂zu)|z=b =

(
µ(I)p

u

|u|

)
|z=b

+O (ε2) .
(14)

As shown previously, it is convenient to write the set of equations (12) in matrix notation
before applying the multilayer approach. First, we focus on the equations of momentum. We
multiply the horizontal momentum equation by ε and the vertical one by 1/ε. This gives

ερ
(
∂tu+ u∂xu+ u∂zw

)
+ ε∂xp = −ρ 1

Fr2
tan θ + ε2∂xτxx + ∂zτxz,

ερ
(
∂tw + u∂xw + w∂zw

)
+

1

ε
∂zp = −1

ε
ρ

1

Fr2
+ ∂xτxz + ∂zτzz.

Note that the stress tensor can be written:
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τ ε = η Dε(u) with Dε(u) :=
1

2

(
2ε2∂xu ∂zu+ ε2∂xw

∂zu+ ε2∂xw 2 ∂zw

)
. (15)

We introduce the notation:

f =

(
tan θ

Fr2
,

1

εFr2

)′
and E =

(
ε 0

0 1/ε

)
.

Now we can write the momentum equations as follows

ερ∂tu+ ερ∇ · (u⊗ u) +∇ · (pE) = −ρf +∇ · (ηDε(u)),

and we obtain the system (12) in matrix notation:
∇ · u = 0,

ρ∂tu + ρ∇ · (u⊗ u)− 1

ε
∇ · σ = −1

ε
ρf ,

(16)

where the stress tensor is rewritten as σ = −pE + τ ε, with τ ε given by (15).

3.2 A multilayer approach

We apply the multilayer approach introduced in [23] to the system (13)-(16). Note that the
structure of the system (16) looks like that of Navier-Stokes equations (1) and then the whole
procedure developed in [23] can be followed. In the next lines we describe the main points of the
derivation and we introduce the required notation to understand the final model.

3.2.1 Notation

We denote the granular domain ΩF (t) and its projection IF (t) on the reference plane, for a positive
t ∈ [0, T ], i.e.

IF (t) =
{
x ∈ R; (x, z) ∈ ΩF (t)

}
.

The multilayer approach considers a vertical partition of the domain in N ∈ N∗ layers with preset
thicknesses hα(t, x) for α = 1, ..., N , (see figure 1). Note that

∑N
α=1 hα = h. In practice, we set a

vertical partition of the domain as follows: we introduce the positive coefficients lα such that

hα = lαh for α = 1, ..., N ;
N∑
α=1

lα = 1.

Note that the thickness of each layer is automatically adapted to the movement of the free surface,
since it depends on the total thickness of the mass flow. These layers are separated by N + 1
interfaces Γα+ 1

2
(t), which are described by the equations z = zα+ 1

2
(t, x) for α = 0, 1, .., N , x ∈ IF (t).

We assume that these interfaces are smooth enough. Observe that the fixed bottom and the free
surface are respectively b = z 1

2
and b+h = zN+ 1

2
, corresponding to the interfaces at the bottom Γ 1

2

and at the free surface ΓN+ 1
2

respectively. Note that zα+ 1
2

= b+
∑α

β=1 hβ and hα = zα+ 1
2
− zα− 1

2
,

10



Figure 1: Sketch of the granular material domain and its multilayer division.

for α = 1, ..., N . The subdomain between Γα− 1
2

and Γα+ 1
2

is denoted by Ωα(t), for a positive

t ∈ [0, T ],

Ωα(t) =
{

(x, z); x ∈ IF (t) and zα− 1
2
< z < zα+ 1

2

}
.

We need to introduce a specific notation about the approximations of the variables on the in-
terfaces (see figure 1). For a function f and for α = 0, 1, ..., N , we set

f−
α+ 1

2

:= (f|Ωα(t)
)|Γ

α+ 1
2

(t)
and f+

α+ 1
2

:= (f|Ωα+1(t)
)|Γ

α+ 1
2

(t)
.

Note that if the function f is continuous,

fα+ 1
2

:= f|Γ
α+ 1

2
(t)

= f+
α+ 1

2

= f−
α+ 1

2

.

In addition, for a given time t, we denote

nT,α+ 1
2

=

(
∂tzα+ 1

2
, ∂xzα+ 1

2
,−1

)′
√

1 +
(
∂xzα+ 1

2

)2

+
(
∂tzα+ 1

2

)2
and nα+ 1

2
=

(
∂xzα+ 1

2
,−1

)′
√

1 +
(
∂xzα+ 1

2

)2
,

the space-time unit normal vector and the space unit normal vector to the interface Γα+ 1
2
(t)

outward to the layer Ωα+1(t) for α = 0, ..., N .

3.2.2 Weak solution with discontinuities

We are looking for a particular weak solution (u, p, ρ) of (16) (see [23]). We remind the reader
that this solution must meet the following conditions:

11



(i) (u, p, ρ) is a standard weak solution of (16) in each layer Ωα(t),

(ii) (u, p, ρ) satisfies the normal flux jump condition for mass and momentum at the interfaces
Γα+ 1

2
(t), namely:

[(ρ; ρu)]α+ 1
2
nT,α+ 1

2
= 0[

(ρu; ρu⊗ u− 1

ε
σ)
]
α+ 1

2

nT,α+ 1
2

= 0

where [(a; b)]α+ 1
2

denotes the jump of (a; b) across the interface Γα+ 1
2
(t).

There are two main differences with the derivation in [23]: first, the µ(I)-rheology produces a
non-constant viscosity coefficient, which implies an additional difficulty in order to develop the
momentum balances at the interfaces. Second, the system to be solved is an asymptotic approxi-
mation of the Navier-Stokes equations, which helps to resolve the previous difficulty since we look
for a first-order approximation in ε.

A particular family of velocity functions is considered, by assuming that the thickness of each
layer is small enough to make the horizontal velocities independent of the vertical variable z
(usual shallow domain hypothesis). As a consequence, thanks to the incompressibility condition
in each layer, we obtain that vertical velocities are linear in z and maybe discontinuous. We denote
the velocity in each layer as

u|Ωα(t)
:= uα := (uα, wα)

′
,

where uα and wα are the horizontal and vertical velocities, respectively, on layer α. Then,

∂zuα = 0; ∂zwα = dα(t, x) (17)

for some smooth function dα(t, x).

Pressure

From the asymptotic analysis, we directly get a hydrostatic pressure that is obtained from the
vertical momentum equation in (12):

∂zpα = −ρ 1

Fr2
+O(ε).

By the continuity of the dynamic pressure, we can deduce at first order that

pα(z) =
ρ

Fr2
(b+ h− z). (18)

Mass conservation across the interfaces and normal velocity

The mass conservation jump condition gives us the definition of the normal mass flux at the
interface Γα+ 1

2
(t), denoted by Gα+ 1

2
:= G+

α+ 1
2

= G−
α+ 1

2

for:

G±
α+ 1

2

= ∂tzα+ 1
2

+ u±
α+ 1

2

∂xzα+ 1
2
− w±

α+ 1
2

. (19)

By integrating the incompressibility equation and using this mass conservation condition, we get
the definition of the vertical velocity wα for uα a solution of (16) (see [23] for details). Thus, if we
consider that there is no mass transference with the bottom (i.e. G1/2 = 0), we obtain

w+
1
2

= u1∂xb+ ∂tb,

12



and for α = 1, ..., N and z ∈ (zα− 1
2
, zα+ 1

2
),

wα(t, x, z) = w+
α− 1

2

(t, x) − (z − zα− 1
2
)∂xuα(t, x),

w+
α+ 1

2

= (uα+1 − uα) ∂xzα+ 1
2

+ w−
α+ 1

2

;
(20)

where
w−
α+ 1

2

= w+
α− 1

2

− hα∂xuα.

Momentum conservation across the interfaces

The momentum jump conditions become:

1

ε

[
σ
]
α+ 1

2

nα+ 1
2

=
ρGα+ 1

2√
1 +

∣∣∣∂xzα+ 1
2

∣∣∣2 [u]α+ 1
2
,

where, for α = 1, . . . N − 1, the total stress tensor is

σ±
α+ 1

2

= −pα+ 1
2
E + τ±

ε,α+ 1
2

,

with pα+ 1
2

= p+
α+ 1

2

= p−
α+ 1

2

and τ±
ε,α+ 1

2

approximations of pα and τ ε,α at Γα+ 1
2
. Following [23], we

finally get that the momentum jump condition gives

τ±
ε,α+ 1

2

nα+ 1
2

= τ̃ ε,α+ 1
2
nα+ 1

2
± 1

2

ερGα+ 1
2√

1 +
∣∣∣∂xzα+ 1

2

∣∣∣2 [u]|Γ
α+ 1

2
(t)
,

(21)

where τ̃ ε,α+ 1
2

is an approximation of
(
ηDε(uα)

)
|Γ
α+ 1

2

, defined by

τ̃ ε,α+ 1
2

= ηα+ 1
2
D̃ε,α+ 1

2
=

1

2
ηα+ 1

2


2ε2∂x

(
u+
α+ 1

2

+ u−
α+ 1

2

2

)
D̃ε,α+ 1

2
,xz

(
D̃ε,α+ 1

2
,xz

)′
2UVZ ,α+ 1

2

 . (22)

In this equation,

D̃ε,α+ 1
2
,xz = ε2∂x

(
w+
α+ 1

2

+ w−
α+ 1

2

2

)
+ UHZ ,α+ 1

2
,

and (UHZ ,α+ 1
2
,UVZ ,α+ 1

2
) is defined to approximate the derivatives in z. We remind the reader that we

use a mixed formulation because of the possible vertical discontinuous profile. Thus, the auxiliary
unknown UZ satisfies

UZ − ∂zu = 0, with UZ = (UHZ ,UVZ ). (23)
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And to approximate UZ , we approximate u by ũ, a P1(z) interpolation such that ũ|z= 1
2

(z
α− 1

2
+z

α+ 1
2

) =

uα. Then UZα+ 1
2

=
(
UHZ ,α+ 1

2
,UVZ ,α+ 1

2

)
is an approximation of UZ(ũ) at Γα+ 1

2
.

Let us remark that the previous expression of the tensor τ̃ ε,α+ 1
2

in (22) has the same structure as

the original case in [23], except for the viscosity that now is not constant because it is defined by
the µ(I)-rheology in (6). Then, we must give an approximation of the viscosity at the interface
up to first order in ε, which we denoted by ηα+ 1

2
. We have considered the following first-order

approximation of ‖D(u)‖ at z = zα+ 1
2
,

‖D(u)‖α+ 1
2
≈
∣∣∣UHZ ,α+ 1

2

∣∣∣ . (24)

Then, it reads

ηα+ 1
2

= ηα+ 1
2
(UHZ ,α+ 1

2
) =

µ(Iα+ 1
2
)pα+ 1

2

max

(∣∣∣UHZ ,α+ 1
2

∣∣∣ , µ(I
α+ 1

2
)p
α+ 1

2

ηM

) , (25)

with

UHZ ,α+ 1
2

=
uα+1 − uα
hα+ 1

2

, for α = 1, . . . , N − 1,

with hα+ 1
2

being the distance between the midpoints of layers α and α + 1. Moreover,

UHZ , 1
2

=
u1

h1

,

and

pα+ 1
2

=
ρ

Fr2

N∑
β=α+1

hβ , Iα+ 1
2

=
2 ds

∣∣∣UHZ ,α+ 1
2

∣∣∣√
pα+ 1

2
/ρs

, for α = 0, . . . , N − 1. (26)

Note that ηN+1/2 = 0, because we suppose that the atmospheric pressure is zero.

3.3 Final model

The final model is derived as in [23] by looking for a particular weak solution of the asymptotic
system (16). First the equations (16) are multiplied by some test functions, and secondly we
integrate this system in the domain Ωα(t) (see Appendix A for more details). In this way, the
final µ(I)-rheology multilayer model is obtained in dimensionless variables. The last step is to
come back to the original variables taking into account the assumptions described in Subsection
3.1. As a result, the final model reads, for α = 1, ..., N ,



lα

(
∂th+ ∂x(huα)

)
= Gα+ 1

2
−Gα− 1

2
,

lα

(
ρ∂t (huα) + ρ∂x (hu2

α) + ρg cos θ h ∂x

(
b+ b̃+ h

))
=

= Kα− 1
2
−Kα+ 1

2
+

1

2
ρGα+ 1

2
(uα+1 + uα) − 1

2
ρGα− 1

2
(uα + uα−1)

(27)
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where Gα+ 1
2

are given in (19),

Kα+ 1
2

= −ηα+ 1
2
(UHZ ,α+ 1

2
)UHZ ,α+ 1

2
and K 1

2
= −µ

(
I 1

2

)
ρg cos θ h

u1

|u1|
, (28)

for ηα+ 1
2

defined in (25)-(26).

Note that the proposed model (27) has 2N equations and unknowns:
(h, {huα}α=1,...,N , {Gα+ 1

2
}α=1,...,N−1). But thanks to (19)-(20) we can write

Gα+ 1
2

= ∂tzα+ 1
2

+
uα + uα+1

2
∂xzα+ 1

2
− wα+ 1

2
, where wα+ 1

2
=
w+
α+ 1

2

+ w−
α+ 1

2

2
.

As a consequence, the system has 2N unknowns that are also the total height (h), the dis-
charge at each layer ({huα}α=1,...,N) and the averaged vertical velocity at each internal interface
({wα+ 1

2
}α=1,...,N−1).

Nevertheless, by combining the continuity equations, the system can be rewritten with N + 1
equations and unknowns. The unknowns of the reduced system are the total height (h) and the
discharge of each layer,

qα = huα, for α = 1, . . . , N.

By introducing (see [23])

ξα,γ =


(
1− (l1 + · · ·+ lα)

)
lγ, if γ ≤ α,

−(l1 + · · ·+ lα)lγ, otherwise,

for α, γ ∈ {1, . . . , N}, the system (27)-(28) is rewritten as

∂th+ ∂x

(
N∑
β=1

lβqβ

)
= 0,

∂tqα + ∂x

(
q2
α

h
+ g cos θ

h2

2

)
+ g cos θ h ∂xzb +

+
N∑
γ=1

1

2hlα

(
(qα + qα−1) ξα−1,γ − (qα+1 + qα) ξα,γ

)
∂xqγ =

=
1

ρlα

(
~Kα− 1

2
− ~Kα+ 1

2

)
α = 1, . . . , N,

where zb = b+ b̃ has been introduced for simplicity.

Moreover, we can see that this model satisfies a dissipative energy inequality. Denoting the
energy of the layer α = 1, · · · , N for the system (27)-(28) by

Eα = hα

(
|uα|2

2
+ g cos θ

(
zb +

h

2

))
,
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the following dissipative energy inequality is satisfied:

ρ∂t

(
N∑
α=1

Eα

)
+ ρ∂x

[
N∑
α=1

uα

(
Eα + ρg cos θ hα

h

2

)]
≤

≤ −ρg cos θ h |u1|µ(I)− |uN |
2

hN
ηN+ 1

2
−

N−1∑
α=1

(uα+1 − uα)2

hα+ 1
2

ηα+ 1
2
.

Finally, note that if we consider a no-slip condition to deduce the model instead of the Coulomb
friction condition (10), the only difference that appears in the multilayer approach is the defini-
tion of K 1

2
. It must be defined directly in terms of the rheology, in the same way as Kα+ 1

2
for

α = 1, . . . , N − 1. That is,
K 1

2
= −η 1

2
(UHZ , 1

2
)UHZ , 1

2
,

where UHZ , 1
2

is an approximation of the horizontal component of the solution of equation (23) for

z = b. Then, using the no-slip condition, a second-order approximation is

UHZ , 1
2

=
2u1

h1

.

4 Numerical tests

The numerical approximation is performed in 2D (downslope and normal directions). We rewrite
the model as a non-conservative hyperbolic system with source terms as in [23]. Then a splitting
procedure is considered.
First, we set aside the term that appears in the internal interfaces and a standard path-conservative
finite volume method is applied. These path-conservative methods were introduced in [41]. To
deal with the Coulomb friction term, we use the hydrostatic reconstruction introduced in [2], which
is applied in [11] to solve the Saint-Venant system with Coulomb friction. The main advantage of
this reconstruction is its great stability.
The second step is to solve the contribution of the term in the internal interfaces, which repre-
sents the mass and momentum exchange between layers. In this step, a semi-implicit scheme is
employed, taking into account the regularization of ‖D(uα)‖ mentioned in Section 2.2 in order to
avoid the singularity when ‖D(uα)‖ vanishes.

In order to validate the Multilayer Shallow Model (denoted MSM hereafter) with the µ(I)-
rheology, we compare it to (i) 2D steady and transient uniform flows over inclined surfaces with
and without the effect of sidewall friction (analytical solutions and experimental data for deep
and surface flows), (ii) laboratory experiments of highly transient and non-uniform granular flows
over inclined planes covered by an erodible bed, in which case the shape of the velocity profiles
strongly changes with time and space.

4.1 Granular surface flows in channel

In this subsection we deal with several Bagnold flows. First, we consider a uniform Bagnold flow
without taking into account the effect of the lateral wall friction. Then, we show that our multilayer
model is able to capture the velocity profiles for flows in a narrow channel when sidewall friction
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Figure 2: Sketch of the analytical solution.

is introduced. In that case we compare with the analytical solution and laboratory experiments.
Note that Bagnold flows verify, at the free surface

p|z=H = 0 and ‖D(u)‖|z=H = |∂zu||z=H = 0.

Therefore, we cannot use the regularization (6) since its denominator vanishes at the free surface.
In this case we use the regularization

η =
µ(I)p√

‖D(u)‖2 + δ2
,

where δ > 0 is a small parameter (see [8]).

4.1.1 Steady uniform Bagnold flow: analytical solution

Let us first compare the model with the analytical solution for a uniform flow over an inclined
plane of slope θ and thickness H > 0, i.e. a Bagnold flow (see [24], [49] or [34]). This solution is
obtained by imposing zero pressure and zero shear stress at the free surface and a no-slip condition
at the bottom (Coulomb friction can be easily changed by no-slip condition in the µ(I)-rheology
multilayer model, see Sections 2.3 and 3.3).

By denoting u and w the downslope and normal velocities, p the pressure and τ the shear stress
and by taking the rheological parameters defined in Section 2.2, the steady uniform Bagnold flow
is described by

u(z) =
2

3ds
I0

(
tan θ − µs
µ2 − tan θ

)√
ϕsg cos θ

(
H3/2 − (H − z)3/2

)
,

u(z = 0) = 0, w = 0,

p(z) = ρg cos θ (H − z) ,

τ(z) = µ(I)p = ρg sin θ (H − z) ,

p(z = H) = 0, τ(z = H) = 0,

µ(I) = tan(θ), for z ∈ (0, H).

(29)
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Figure 3: Comparison between the analytical solution (dashed and solid lines) and the simulations obtained using
the MSM with the µ(I)-rheology (symbols). (a) Analytical and simulated downslope horizontal velocity u, pressure
p and strain rate ‖D(u)‖; (b) Analytical and simulated shear stress and friction coefficient µ(I); (c) Comparison
between the simulated (symbols) and the exact (dashed line) horizontal velocity at the free surface as a function of
the slope angle.
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Figure 4: (a) Computing time as a function of the number of layers in the MSM and (b) relative error between
the computed and exact velocity for simulations over a slope of θ = 24.64◦.
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N(∆z = 1/N) L1 - Error L1 - Order L2 - Error L2 - Order L∞ - Error L∞ - Order
4 8.74e-3 – 8.08e-3 – 7.59e-3 –
8 2.27e-03 1.84 2.13e-3 1.92 2.39e-3 1.66
16 5.84e-04 1.96 5.58e-4 1.93 7.84e-4 1.61
32 1.48e-04 1.97 1.45e-4 1.941 2.62e-4 1.57
64 3.76e-05 1.982 3.76e-5 1.948 8.94e-5 1.55
128 9.48e-06 1.988 9.73e-6 1.95 3.08e-5 1.53

Table 1: Order of the error for the velocity of the Bagnold flow.

For the numerical simulation, as in the analytical solution, we consider a uniform flow with
constant thickness H = 1 m and velocity u = w = 0 m· s−1 at the initial time t = 0 s. The
boundary conditions at the free surface and at the bottom have been set as in (29). At the right
and left boundaries, we use open boundary conditions.

We choose the rheological parameters I0 = 0.279 and µs = 0.38 ≈ tan(20.8◦), µ2 = 0.62 ≈
tan(31.8◦) and the particle diameter ds = 4 cm with solid volume fraction ϕs = 0.62. The slope
angle is taken as θ = 0.43 rad ≈ 24.64◦. Figure 3 shows the good agreement between the simulated
and exact solutions for the profiles of the velocity, pressure, shear stress, µ(I) and ‖D(u)‖. It
also shows the downslope velocity at the free surface as a function of the slope angle. Note that
for slopes smaller than arctan(µs), the surface velocity is close to zero (it is not equal to zero,
because of the regularization method), namely u(z = H) ∼ 10−5, so that the mass is almost at rest.

These results are computed using 50 layers in the MSM. Note that we use a slope in the well-posed
region described in [7] for the full µ(I)-rheology, which is smaller than the well-posed region for
the depth-averaged µ(I)-rheology (well-posed for δs = 20.8o 6 θ < δ2 = 31.8o in the case of
depth-averaged µ(I)-rheology). If we use a slope close enough to δ2 the system becomes unstable
because of the ill-posedness of the full µ(I)-rheology in this region.

Figure 4 shows the computing time required to simulate 50 seconds (on a laptop with Intel R©CoreTM

i7-4500U and 8 GB of RAM) and the relative error between the computed velocity and the exact
solution using a different number of layers and 30 nodes in the x-direction. In table 1 we show
that second-order accuracy is reached in norms L1 and L2, while in norm L∞ the order is over
1.5. This behaviour in norm L∞ is due to the boundary conditions at the free surface, where the
analytical solution verifies that ∂zu = 0.

4.1.2 2D steady uniform flow in a channel: sidewalls effect on the velocity profile

The relevance of the lateral wall friction when a granular material flows in a channel has been
proved by Jop et al. [31] (see also [6]). Under the hypothesis of a steady uniform flow and
neglecting the variations in the transverse direction, they propose to model this effect with a
modified µ(I)-rheology by adding an extra term, which defines an effective friction term

µ(I) = µs +
µ2 − µs
I0 + I

I + µw
H − z
W

, (30)

where W is the channel width, µw is the constant coefficient of friction with the side walls and H
the thickness of the flow. Note that this extra term (last term) increases when we get closer to
the bottom from the free surface. In addition, for a channel slope θ with respect to the horizontal
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axis, the analytical expression for the velocity profile reads (see appendix B in [31]):

u(z) = 2
I0

√
ϕs g cos θ

ds

[
1

3
(H − z)3/2 − 1

3
(H − h∗)3/2 −

−µ2 − µs
µw

W
(

(H − z)1/2 − (H − h∗)1/2
)

+

+
√
h2

µ2 − µs
µw

W

(
arctan

√
H − z
h2

− arctan

√
H − h∗

h2

)]
,

where

h∗ = H − tan θ − µs
µw

W, h2 =
µ2 − tan θ

µw
W.

Note that we can integrate the last equation and the discharge is obtained as a function of
the slope θ. In these experiments, Jop et al. [31] fixed the discharge and computed the velocity
profile for different widths. We choose the same material and rheological properties and perform
these experiments. The grain diameter is ds = 0.53 mm and the volume fraction is ϕs = 0.6.
The rheological parameters are µs = tan(20.9o), µ2 = tan(32.76o) and I0 = 0.279. The friction
coefficient with the sidewalls is µw = tan(10.4o). We set the thickness of the flow H = 45ds, the
dimensionless discharge Q∗ = 31.5 and different widths of the channel are considered (W = 19ds,
57ds, 283ds).

Figure 5 shows the exact agreement between the analytical solution and the simulations for
the velocity profile. In this case we consider 50 layers to obtain the solution. In table 2 we present
the errors and accuracy order of the method for W = 283ds. We obtain similar results to those
presented in the previous subsection.

4.1.3 Laboratory experiments: transient velocity profiles

We compare our model with the experiments and simulations presented in [33] where granular
material is flowing within a narrow channel of width W = 19ds ≈ 1 cm. The grain diameter is
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N(∆z = 1/N) L1 - Error L1 - Order L2 - Error L2 - Order L∞ - Error L∞ - Order
4 1.72e-2 – 1.41e-2 – 1.14e-2 –
8 4.71e-3 1.87 5.24e-3 1.43 6.61e-3 0.78
16 1.33e-3 1.82 1.21e-3 2.11 1.42e-3 2.21
32 2.65e-4 2.32 3.50e-4 1.79 7.23e-4 0.97
64 7.46e-5 1.83 1.00e-4 1.80 2.56e-4 1.49
128 1.80e-5 2.05 2.58e-5 1.95 8.80e-5 1.54

Table 2: Order of the error for the velocity of the Bagnold flow with lateral wall effect. Case W = 283 ds.
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Figure 6: Comparison between the laboratory experiments (symbols) and simulations (dash-dotted lines) in [33],
and simulations using the MSM with the µ(I)-rheology (solid lines) for the transient velocity profiles for two different

slopes θ, and times t∗ = t/
√
ds/g : (a) θ = 26.1o, t∗ = 1.2, 15.1, 166.1; (b) θ = 32.15o, t∗ = 2.3, 7.5, 24.2, 77.8, 175.

ds = 0.53 mm, the volume fraction is ϕs = 0.6 and the rheological parameters are µs = tan(20.9o),
µ2 = tan(32.76o) and I0 = 0.279. The friction with the wall is modelled as in the precedent
test, following (30). In this case, the authors set the friction coefficient with the sidewalls as
µw = tan(13.1o).

For the simulations, we impose zero velocity at the initial time and the material flows because
of the gravitational force. We use 50 layers in the MSM. Figure 6 shows the comparison between
the results in [33] and the simulation using the MSM µ(I)-rheology model for the transient velocity
profiles and its final state in two configurations. As is concluded in [33], the agreement for the
transient velocity profiles is better for high slopes and less accurate for low inclinations. In the
case of high inclination angles our model results are similar to their simulations (see figure 6b),
and are slightly better in the other cases (see figure 6a).

4.2 Granular collapse experiments

We will now use the MSM to simulate the laboratory experiments performed in [38]. The objec-
tives are: to evaluate if (i) the model with the µ(I)-rheology gives a reasonable approximation of
the flow dynamics and deposits of highly transient and non-uniform granular flows, (ii) it recovers
the strong change in the shape of the velocity profiles with time and space, (iii) it reproduces the
increase in runout distance observed for increasing thickness of the erodible bed above a critical
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Figure 7: Sketch of the initial and final state of the granular collapse. A granular column with a thickness h0 = 14
cm and a length r0 = 20 cm is released on an inclined plane of slope θ. The plane is covered by an erodible bed
of thickness hi made of the same material. When the flow stops, the maximum final thickness is hf and its final
extent rf .

slope angle θc ∈ [12o, 16o] and (iv) the multilayer approach improves the results compared to the
classical depth-averaged Saint-Venant model (i.e. monolayer model).

In Subsection 4.2.1 we also introduce a modification in the calculation of the friction coefficient
µ(I). In particular, we take into account second-order terms to approximate ‖D(u)‖. As shown
below, this correction provides better results in some test cases.

4.2.1 Improvement of the approximation of the µ(I) coefficient

The advantage of the multilayer models is that we obtain a variable profile of the downslope
velocity, in contrast with the prescribed profile of the monolayer model. It makes it possible to
obtain a better approximation of ‖D(u)‖ (see equation (24)). As a consequence, this improves
the approximation of the inertial number I (see equations (4) and (26)), which is a key number
in the variable friction coefficient µ(I).

As the main advantage of the multilayer model is the improvement of the approximation of
‖D(u)‖, we present two approximations that can be made with the multilayer model. First, let
us recall that a first-order approximation corresponds to the definition (24). This approximation

considers only the leading-order term, i.e. ‖D(u)‖α+ 1
2
≈
∣∣∣∂zuα+ 1

2

∣∣∣ =
∣∣∣UHZ ,α+ 1

2

∣∣∣. Note that in

dimensionless form, we have

‖D(u)‖ =

√
1

ε2
(∂zu)2 + 4 (∂xu)2 + 2∂xw∂zu+ ε2 (∂xw)2. (31)

We can improve the approximation of ‖D(u)‖ at the interfaces z = zα+ 1
2

by considering the

approximation taking into account second-order terms in the previous equation. For the numerical
tests, we consider the following approximation ‖D(u)‖ at the interfaces,

‖D(u)‖α+ 1
2
≈
√∣∣∣UHZ ,α+ 1

2

∣∣∣2 + (∂x(uα+1 + uα))2. (32)
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Note that this definition corresponds to an approximation of

‖D(u)‖ ≈
√

(∂zu)2 + 4 (∂xu)2

at z = zα+ 1
2
. Nevertheless, in (31), the term 2∂zu ∂xw is not taken into account although it is

of the same order as 4(∂xu)2. This is because when an approximation of this term is added, we
obtain results that are very similar to those obtained when considering (32). Furthermore adding
this term implies an additional computational cost since pre-calculated vertical velocities are re-
quired. Note that (32) is a second-order correction while we have developed a first-order model
that neglects other second-order terms. This correction, however, highlights the importance of
second-order terms in granular collapses over erodible beds, even if it is a partial correction.

The effect of this second-order approximation on the results is discussed below in Sections 4.2.3
and 4.2.4. In particular, we observe an improvement of the results compared to the original
first-order approximation of ‖D(u)‖.

4.2.2 Experimental and test data

In the laboratory experiments performed in [38], subspherical glass beads of diameter ds = 0.7 mm
were used. The particle density ρs = 2500 kg m−3 and volume fraction ϕs = 0.62 were estimated,
leading to an apparent flow density ρ = ϕsρs = 1550 kg m−3.
The variable rf denotes the runout distance, i.e. the length of the deposit measured from the
position of the front of the released material at the initial time located at x = 0 m, tf denotes the
flow time from t = 0 s to the time when the material stops and hf denotes the maximum final
thickness of the deposit (see figure 7).

In order to use the µ(I)-rheology, the rheological parameters (µs, µ2 and I0) must be de-
fined. We consider the data proposed in [28]. The minimum and maximum friction angles are
µs = tan(20.9o) and µ2 = tan(32.76o), according to the measurements made in the experiments
presented in [45] and [31]. These parameters can be obtained by fitting the curve hstop(θ), where
hstop is the thickness of the deposit lying on the slope when the supply is stopped after steady
uniform flow (see [44] for more details). Nevertheless, in [28] the value of µs and µ2 are incre-
mented, in order to consider the effect of lateral wall friction. Let us remember that lateral wall
friction is modelled in [31] as an additional friction term µw(h − z)/W , where µw = tan(10.4o)
is the coefficient of friction in the side walls. Moreover, the thickness of the flowing layer (see
[38]) is approximately 0.05 m and the width of the channel W = 10 cm. Therefore, the addi-
tional friction term is approximately 0.1. As a result, in [28] the authors propose to consider
µs = tan(25.5◦) ≈ tan(20.9o) + 0.1 and µ2 = tan(36.5◦) ≈ tan(32.76o) + 0.1. Moreover, we set
I0 = 0.279 (see [32]).

That might be a coarse way to introduce the wall friction effect, owing that the multilayer
model is able to approximate the term µw(h − z)/W in each layer. However, introducing the
friction term µw(h − z)/W does not give good results in this granular collapse test. Actually it
seems that there is not enough friction at the initial times to well capture the S-shaped profile.
Note that the numerical simulations with the proposed hydrostatic multilayer approach cannot be
accurate at short times because the dominant effect is the non-hydrostatic pressure. At short times
the flowing layer can be overestimated, and, consequently, the effect of the lateral wall friction is
not properly taken into account. These comparisons only make sense at the latter stage of the
flow. We plot the results for intermediate times in order to illustrate this discussion (see figure 15).

This experiment has been simulated for different slopes θ and thicknesses hi of the erodible
bed: θ = 16◦ and hi = 1.4, 2.5, 5 mm, θ = 19◦ and hi = 1.5, 2.7, 5.3 mm, θ = 22◦ and
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Table 3: Summary of notation of the different models and colors-symbols

hi = 1.82, 3.38, 4.6 mm, and θ = 23.7◦ and hi = 1.5, 2.5, 5 mm. Note that the model does not
take into account the effect of removing the gate during the initial instants even though it has a
non-negligible impact on the flow dynamics as shown in [28]. For instance, when the gate is taken
into account, even with no friction along it, the flow is substantially slowed down; however, the
deposit is almost unchanged. All the simulations are performed using 20 layers.

We compare hereafter (i) the constant and variable friction rheologies and (ii) the monolayer
and multilayer approaches. In table 3, we summarize the notation and symbols used for the
different models. MSM is the notation for multilayer models. Note that the monolayer model
with a constant friction coefficient (denoted µs-monolayer model) corresponds to the Savage-Hutter
classical model when Kact/pas = 1. This model is widely used in the literature, e.g. [27], [39]. Note
also that the monolayer model with a variable friction coefficient (denoted µ(I)-monoloyer model)
corresponds to the one proposed by Pouliquen [44], which has been recently used by Mangeney-
Castelnau et al. [40] and Mangeney et al. [37]. This model also coincides with the one proposed
in [26] by dropping second-order terms, that is, viscous terms.

4.2.3 Deposit profiles

Let us compare the deposits simulated with the µ(I)-rheology and with a constant friction coef-
ficient µs for different slopes θ and erodible bed thicknesses hi. Figure 8 shows that the deposit
calculated with the variable friction coefficient µ(I) is closer to the experimental deposit than
the one calculated with a constant friction coefficient µs. The runout distance with the constant
coefficient µs is always too long except for θ = 19o and hi = 5.3 mm (see figure 8d). To properly
reproduce the runout distance with a constant friction coefficient, we need to increase its value.
For example, with a slope θ = 16◦ and an erodible bed thickness hi = 2.5 mm (figure 8a), we need
to use the value µs = tan(27.3◦) to produce the runout observed in the laboratory experiments.
That means an increment of 0.039 in the µs value. These results are consistent with the simula-
tions of [28], showing that the runout is strongly overestimated when the viscosity tends to zero
(i. e. when µ tends to µs).

Figure 9 shows, for a slope θ = 22◦ and hi = 1.82 mm, the final deposit obtained using
the constant or variable friction coefficients for multilayer and monolayer models. The difference
between the multilayer and monolayer models is stronger when using the µ(I)-rheology. For
instance, the multilayer approach changes the full deposit profiles for the µ(I)-rheology, while it
only changes the front position for µs. The multilayer approach makes it possible to obtain a
deposit shape which is very close to the experiments with the µ(I)-rheology. More generally, the
shape of the deposit is closer to the observations with µ(I)-MSM than with µs-MSM.
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Figure 8: Deposit obtained in the experiments (solid-circle blue line), with the µs-MSM (dotted-circle red line)
and with the µ(I)-MSM (solid-cross green line), for different slopes θ and erodible bed thicknesses hi.
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Figure 9: Deposit obtained in the experiments (solid-circle blue line), with the µs-MSM (dotted-circle red line), the
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location for data shown in figure 10.
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Figure 10: Influence of the thickness of the erodible bed on the runout distance rf and on the maximum final
thickness hf (inset graphs) with the µ(I)-MSM (left hand side) and with the µs-MSM (right hand side), for a slope
θ = 22◦, in zones marked with circle in figure 9.

4.2.4 Effect of the erodible bed

Figure 10 shows two zooms, one near the maximum thickness of the deposit (zone of circle (I) in
figure 9), and one near the front (zone of circle (II) in figure 9), for θ = 22◦ and different values
of hi. With the µ(I)-MSM, the runout distance rf increases as the thickness of the erodible bed
hi increases (figure 10a(II)) as observed in laboratory experiments. On the contrary, with the
µs-MSM (figure 10b(II)), the runout distance rf decreases with increasing hi. Note that in both
cases the maximum final thickness hf decreases with increasing hi as it occurs in the experiments
(figure 10a(I),b(I)).

Figure 11 shows that the decrease in runout distance with increasing hi for constant friction
µs is observed for all slopes, e.g. θ = 0◦, 10◦, 16◦, 19◦, 22◦, and 23.7◦. For the constant friction
coefficient case, the µs-MSM and µs-monolayer models follow the same trend. Note that this
non-physical decrease in runout distance with increasing hi has been demonstrated analytically
in [20] for the monolayer model. Moreover, laboratory experiments show that when the thickness
of the erodible bed increases, for slopes θ ≥ θc, where θc ∈ [12◦, 16◦] is a critical slope, the runout
distance rf and the stopping time tf both increase while the maximum final thickness hf decreases.
Note that there is no pattern concerning the runout when the thickness hi is increased for slopes
θ < θc (θ = 0◦, 10◦) in the laboratory experiments.

Figure 12 shows that the increase of runout distance observed in the experiments for increasing
hi is qualitatively well reproduced with the µ(I)-MSM. With the µ(I)-MSM, the runout increase
with hi is actually larger for higher slopes, as observed experimentally: at θ = 16◦, the runout
distance is almost unaffected by the thickness of the erodible bed while it increases by 26.9% at
θ = 22◦ when the thickness of the erodible bed increase from 1.82 mm to 4.6 mm. Note that in the
µ(I)-MSM, the increase of the runout distance appears on slopes θ > 16◦, higher than θc in the
experiments. Actually, it appears starting with the slope θ = 18◦. When using the µ(I)-monolayer
model, the runout distance is higher than for the µ(I)-MSM whatever the slope and thickness of
the erodible bed. Based on the values of the runout distance in these cases, it is hard to dis-
criminate which of the monolayer or multilayer models is closer to the experiments. However, in
the µ(I)-monolayer model, the runout distance at θ = 16◦ and 19◦ decreases when hi increases,
contrary to the experimental data. For θ = 22◦ and θ = 23.7◦, the monolayer and multilayer µ(I)
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Figure 11: Influence of the thickness hi of the erodible bed on the final runout rf for slopes θ =
0◦, 10◦, 16◦, 19◦, 22◦, 23.7◦ observed in the experiments of [38] (solid-circle blue line) and obtained with dif-
ferent simulations using the µs-MSM, with 20 layers (dotted-circle red line) and the µs-monolayer model, i.e. the
Savage-Hutter model (dashed red line). There is no laboratory data for θ = 23.7◦. Normalization is made using
h0 = 14 cm.
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observed in the experiments of [38] (solid-circle blue line) and obtained with different simulations using the µ(I)-
MSM, with 20 layers (solid-cross green line) and with the µ(I)-monolayer model (solid green line) and with the
µ(I)-C-MSM (dashed black line). There is no laboratory data for θ = 23.7◦. Normalization is made using h0 = 14
cm.
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Figure 13: Influence of the thickness hi of the erodible bed on the final time tf for slopes θ = 16◦, 19◦ and 22◦

by using the µ(I)-MSM with 20 layers (solid-cross green line), the µ(I)-monolayer model (solid green line) and the
values observed in the experiments of [38] for slope θ = 22◦ (solid-circle blue line). Normalization is made using

τc =
√
h0/(g cos θ) and h0 = 14 cm.

models reproduce qualitatively the increase in runout with hi. Note that for θ = 0◦, 10◦ (θ < θc),
the µ(I) models predict a very slight decrease in the runout distance.

The µ(I)-MSM is the model corresponding to the multilayer approach with the µ(I)-rheology
when ‖D(u)‖ is approximated by the main term in (31), and µ(I)-C-MSM when ‖D(u)‖ is
approximated by the correction (32). Figure 12 shows that the correction of ‖D(u)‖ corresponding
to µ(I)-C-MSM improves the simulation of both the runout extent and the influence of the erodible
bed. They both increase the runout when hi increases, although the effect of erosion is still much
smaller than in the experiments.

For example, for θ = 19o, when hi varies from 1.5 mm to 5.3 mm, the experimental runout
increases by 15.1%. On the contrary, for the monolayer model the runout decreases by 1.1%. For
the µ(I)-MSM the runout increases by 2.5%, and for the µ(I)-C-MSM it increases by 6.8%. For
θ = 22o, when hi varies from 1.82 mm to 4.6 mm, the experimental runout increases by 26.9%. It
increases by 2.2%, 4.4% and 8.6% for the monolayer model, the µ(I)-MSM and the µ(I)-C-MSM,
respectively.

In figure 13, the final time (time at which the front stops) is plotted as a function of the
thickness of the erodible bed for θ = 16o, θ = 19o and θ = 22o. Moreover, for θ = 22o, we also plot
the experimental data. Experimental data show that the final time increases when the thickness
of the erodible bed increases. We can see that this is true for all the values of θ for the multilayer
method. However, we observe that it is only true for the highest value, θ = 22o, in the case of the
monolayer model, whereas the final time decreases when the erodible bed increases for θ = 16o

and θ = 19o.

4.2.5 Flow dynamics and velocity profiles

Figures 14 and 15 show the time evolution of the granular column thickness for a slope θ = 22◦ and
an erodible bed of thickness hi = 1.82 mm for µs and µ(I), respectively, for both the monolayer
and multilayer models. As observed for the deposit, the difference between the thickness profiles
simulated with the multilayer and the monolayer model is stronger for µ(I) than for µs. The µ(I)-
MSM makes it possible to increase the maximum thickness of the flow and decrease the thickness
of the front. This is an important result as the shape of the front may be an indicator of the flow
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Figure 14: Thickness of the granular mass at different times in the experiments (solid-circle blue line), with the
µs-MSM with 20 layers (dotted-circle red line), with the µs-monolayer model (Savage-Hutter model, dashed red line)
and the flow/non-flow interface (dashed-brown line), for the slope θ = 22◦ and erodible bed thickness hi = 1.82 mm.
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Figure 16: Simulated deposits at different slopes θ and erodible bed thicknesses hi with the µ(I)-C-MSM (dashed
black line) and the µ(I)-MSM (solid-cross green line). The deposits observed in the experiments is represented by
solid-circle blue lines.

rheology ([43, 30]).
When a constant coefficient µs is used, very similar profiles are obtained with the µs-MSM

and µs-monolayer model (Savage-Hutter model). As a result, the multilayer approach does not
significantly improve the results when a constant friction coefficient is used. Note that during the
initial instants, the simulated mass spreads faster than in the experiments. This is partly due to
the role of initial gate removal that is not taken into account here. However, this effect does not
explain the strong difference between the simulation and experiments (see [28] for more details).
The hydrostatic assumption may also be responsible for this overestimation of the spreading ve-
locity (see e.g. [39]). In these figures we also show the flow/no-flow interfaces computed with the
multilayer models µs - MSM, µ(I) - MSM and µ(I) - C - MSM, by considering a threshold velocity
of 0.001 m/s to compute these interfaces. We see in figure 14 that the flow/no-flow interface has
a step-like shape for µs - MSM while it has a smoother shape for µ(I) - MSM (see figure 15)
in better qualitative agreement with laboratory experiments and numerical modelling solving the
full Navier-Stokes equations (e. g. figures 9 and 18 of [28]). The flow/no-flow interface in the
uppermost part even seems to be improved when using µ(I) - C - MSM. For µ(I) - MSM and µ(I)
- C - MSM, the lower layers stop before the upper layers as observed experimentally. Note that in
figures 14 and 15 we do not see the flow/no-flow interface at the final time because the material has
already stopped. As was shown in Subsection 4.1, the wall friction effect is crucial to determine
the position of the flow/no-flow interface. Because in this test we do not consider the exact defini-
tion of the wall friction term, as in [28], the flow/no-flow interface should not be very well captured.

Figure 16 shows that the second-order correction in µ(I)-C-MSM leads to simulated deposits
that are generally closer to the experimental observations than those calculated with µ(I)-MSM.
In particular, the deposits at θ = 19◦ and θ = 22◦ with hi = 4.6 mm are very well reproduced
(figure 16b,c,d,f). However, in some cases, µ(I)-MSM gives better results than µ(I)-C-MSM, for
example for θ = 22◦ with hi = 1.82 mm. This is true for the overall dynamics as illustrated in
figure 15 that shows the time change of the granular column thickness. We can see that with µ(I)-
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Figure 17: Normal profiles of the downslope velocity obtained with the µ(I)-MSM (40 layers) for θ = 22◦ and
hi = 1.82 mm during granular collapse at different positions (x = 0.095, 0.495, 0.995 m). For these positions, we
represent the velocity profiles for different times, taken every 0.15 s (blue lines). The first selected profile (green)
shows a profile at the beginning of the flow and the second (red) and third (magenta) profiles were measured during
the stopping stage. The final deposit is represented by the solid brown line.

C-MSM, the avalanche is faster and the runout is overestimated and very similar to the runout
obtained with the µ(I) monolayer model. As other second-order terms than those included in the
µ(I)-C-MSM model are neglected, it is not easy to draw a firm conclusion on the improvement of
results when using second-order terms.

The multilayer approach makes it possible to obtain a normal profile of the downslope velocity.
Figures 17 and 18 show the normal profiles of the downslope velocity obtained at different times
until the mass stops, for two different configurations of slopes and erodible beds. In order to
obtain a more accurate profile, 40 layers are used in the µ(I)-MSM. The different kind of profiles
observed in figures 17 and 18 are in good qualitative agreement with typical velocity profiles of
granular flows [24] (see also [35] and [36]), from Bagnold-like to S-shaped profiles. This shows the
ability of the model to recover velocity profiles in a wide range of regimes.

Finally, let us compare the averaged velocity obtained with the µ(I)-monolayer model to
the average of the velocities over all the layers in the µ(I)-MSM. In figure 17, for the green
profile (respectively red and magenta profiles), the velocity in the monolayer model is 1.01 m/s
(respectively 0.02 and 0.14 m/s) and it is 0.95 m/s in the multilayer model (respectively 0.03 and
0.05 m/s). Note that we obtain similar values for the first and second profiles. For the third
profile, the averaged velocities strongly differ. Actually, at this position and time, the velocity
profile corresponds to the stopping phase for the multilayer model but not for the monolayer
model. As a result, the velocity obtained in the multilayer model is lower than that obtained
in the monolayer model. Figure 19 shows the normal profile of normal velocity for the same
configuration as figure 17. Note that the normal velocities are always negative and that their
absolute values are greater in the upper layers.
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5 Conclusions

In this work, we have proposed a Multilayer Shallow Model for dry granular flows that considers
a µ(I)-rheology. The multilayer approach has been applied as in [23], thus leading to a solution
of the resulting model that is a particular weak solution of the full Navier-Stokes equations with
the µ(I)-rheology. A regularization method has been used to avoid the singularity occurring
when ‖D(u)‖ vanishes. Our multilayer model satisfies a dissipative energy inequality, which is a
requirement for a geophysical model to achieve a solution with physical meaning.

The numerical solutions of this model have been compared to the steady uniform Bagnold
flow, whose analytical solution is known ([24, 49, 34]). The model has also been compared with
analytical solution and laboratory experiments of granular surface flows in narrow channel, where
the lateral walls have an important role in the velocity profile ([31, 33]). The MSM gives accurate
approximations of these tests.

By comparing the numerical results obtained with this new model to laboratory experiments,
we have shown that the model qualitatively and sometimes quantitatively reproduces the granular
column collapses over inclined erodible beds performed in [38]. The increase of the runout distance
with increasing thickness of the erodible bed is only reproduced when using the MSM with the µ(I)-
rheology (µ(I)-MSM), although this increase is significantly underestimated. To our knowledge,
this is the first time that a model has been able to reproduce this effect. The increase in runout
distance appears for slopes θ ≥ 18◦ whereas it is observed for slopes θ ≥ 16◦ in the laboratory
experiments. On the other hand, when using the µ(I)-monolayer model, the increase of runout
distance with the thickness of the erodible bed only occurs for slopes θ ≥ 21◦ . Moreover, in
the monolayer model for θ = 19◦, the runout distance decreases as the thickness of the erodible
bed increases, contrary to observations. As a result, when using the µ(I)-rheology, the multilayer
model significantly improves the simulated deposits at different slopes over different thicknesses of
the erodible bed compared to the monolayer model. In particular it changes the shape of the front.
This is an important result as the shape of the front may be an indicator of the flow rheology
([43, 30]).

When considering a constant friction coefficient, the multilayer approach only slightly changes
the results compared to the monolayer model. Even with the multilayer model, the use of a
constant friction coefficient does not make it possible to reproduce the increase in runout distance
with increasing thickness of the erodible bed. In fact, the opposite effect is observed. This confirms
the analytical results of [20] obtained for the monolayer Savage-Hutter equations. Furthermore
the constant friction model strongly overestimates the front velocity and the runout distances. As
a result, simulation of the effect of a thin erodible bed on the granular front dynamics in granular
collapses and on their deposits seems to be a good test to discriminate between the different
rheologies.

An important result is that this multilayer approach allows us to obtain the normal profiles of
the downslope and normal velocities. These profiles qualitatively agree with the typical granular
flow profiles during the developed flow and during the stopping phase [24]. In particular, the
model makes it possible to reproduce the change from Bagnold-like to S-shaped velocity profiles,
characteristic of flows over a rigid substrate and over a layer of static grains, respectively. As a
result, this model should be applicable to a larger range of flow regimes than the depth-averaged
models proposed by Capart et al. [14] and Edwards & Gray [19] for which velocity profiles are
prescribed.

One of the differences between the multilayer and monolayer approaches is the accuracy of the
approximation of the strain rate and consequently of the inertial number and the µ(I) friction
coefficient. We have seen that the µ(I)-C-MSM model, which introduces a second-order correction
to improve the approximation of the strain rate, generally improves the results. The increase in
runout distance when the thickness of the erodible bed is increased is larger and therefore closer
to the laboratory experiments. In addition, the critical slope above which the runout increases
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with the thickness of the erodible bed is θ ≥ 16◦, which is closer to the value observed in the
experiments than the critical slope predicted by the model without the second-order correction.
This suggests that the extension of this shallow model up to the second order could be an important
contribution.
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A Derivation of the multilayer model

This appendix is dedicated to clarifying the complete derivation of the final model shown in sub-
section 3.3.

Let us consider the weak formulation of (16) in Ωα(t) for α = 1, ..., N . We assume that the
velocity u, the pressure p and the density ρ are smooth in each Ωα(t) but may be discontinuous
across the interfaces Γα+1/2 for α = 1, ..., N − 1.
Assuming uα ∈ L2(0, T ;H1(Ωα(t))2), ∂tuα ∈ L2(0, T ;L2(Ωα(t))2) and pα ∈ L2(0, T ;L2(Ωα(t))),
then a weak solution in Ωα(t) should satisfy



0 =

∫
Ωα(t)

(∇ · uα)ϕdΩ,

−1

ε

∫
Ωα(t)

ρf · v dΩ =

∫
Ωα(t)

ρ∂tuα · v dΩ +

∫
Ωα(t)

ρ
(
uα · ∇uα

)
· v dΩ +

+
1

ε

∫
Ωα(t)

(∇ · (Epα)) · v dΩ− 1

ε

∫
Ωα(t)

(∇ · (τ ε,α )) · v dΩ,

(33)

for all ϕ ∈ L2(Ωα(t)) and for all v ∈ H1(Ωα(t))2.

We consider unknowns, velocities and pressures, that satisfy (17) and the system (33) for test
functions such that

∂zϕ = 0

and

v (t, x, z) =
(
v (t, x), (z − b)V (t, x)

)′
, v|∂IF (t)

= 0, (34)

where v (t, x) and V (t, x) are smooth functions that do not depend on z.

We will now develop (33) in order to obtain the mass and momentum conservation equations
that satisfy the weak solution for this family of test functions for each layer.
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A.1 Mass conservation

Similarly to the development in [23], we obtain the mass conservation law for each layer

∂thα + ∂x(hαuα) = Gα+ 1
2
−Gα− 1

2
, α = 1, ..., N (35)

where GN+1/2 and G1/2 stand for the mass exchange with the free surface and the bottom respec-
tively and both should be given data.

A.2 Momentum conservation

Let v ∈ H1(Ωα)2 be a test function satisfying (34). We develop the momentum equation in (33) by
integrating with respect to the variable z and by identifying the horizontal and vertical components
of the vector test function v. In addition, taking into account the hydrostatic pressure framework,
we can leave out the equation corresponding to the vertical component. This is equivalent to
considering the vector test function where the vertical component vanishes, i.e. v = (v (t, x), 0).
Therefore, the horizontal momentum equation reads, for a weak solution u and for all α = 1, ..., N :

−1

ε

∫
Ωα(t)

ρf · (v , 0) dΩ =

∫
Ωα(t)

ρ∂t(uα, εwα) · (v , 0) dΩ +

+

∫
Ωα(t)

ρ
(

(uα, εwα) · ∇(uα, wα)
)
· (v , 0) dΩ −

−1

ε

∫
Ωα(t)

(pαE) : ∇(v , 0) dΩ +
1

ε

∫
Ωα(t)

τ ε,α : ∇(v , 0) dΩ +

+
1

ε

∫
Γ
α+ 1

2
(t)

((
−pα+ 1

2
E + τ−

ε,α+ 1
2

)
nα+ 1

2

)
· (v , 0) dΓ −

−1

ε

∫
Γ
α− 1

2
(t)

((
−pα− 1

2
E + τ+

ε,α− 1
2

)
nα− 1

2

)
· (v , 0) dΓ.

(36)

We develop each term of this equation, taking into account that

∂zuα = ∂zv = v|∂IF (t)
= 0.

The only terms that differ from those in [23] are those affected by the stress tensor. So we specify
the development just for them. The rest of the terms in (36) follow the same pattern as in [23].

We prove that the term corresponding with the horizontal diffusion is a second-order term:

1

ε

∫
Ωα(t)

τε,xx,α ∂xv dΩ =
1

ε

∫
IF (t)

 zα+1/2∫
zα−1/2

τε,xx,α ∂xv dz

 dx =
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=
1

ε

∫
IF (t)

 zα+1/2∫
zα−1/2

τε,xx,αdz

 ∂xv dx = −1

ε

∫
IF (t)

∂x

 zα+1/2∫
zα−1/2

τε,xx,α dz

 v dx+

+
1

ε

∫
∂IF (t)

 zα+1/2∫
zα−1/2

τε,xx,α dz

 v n dΓ = −1

ε

∫
IF (t)

∂x

 zα+1/2∫
zα−1/2

τε,xx,α dz

 v dx.

Because ∂zuα = 0, we obtain that ‖Dε(uα)‖ is independent of z up to order ε, since

Dε(uα) =

(
ε2∂xuα 0

0 ∂zw

)
.

Then, we get
1

ε

∫ z
α+ 1

2

z
α− 1

2

τxx,α dz =
1

ε

∫ z
α+ 1

2

z
α− 1

2

ε2η ∂xuα dz = O(ε).

Therefore, we can neglect this term since we are interested in the first-order model. Finally, the
term that appears in the interfaces is written∫

Γ
α+ 1

2
(t)

((
−Epα+ 1

2
+ τ−

ε,α+ 1
2

)
nα+ 1

2

)
· (v , 0) dΓ =

=

∫
IF (t)

((
−Epα+ 1

2
+ τ−

ε,α+ 1
2

)
nα+ 1

2

)
· (v , 0)

√
1 +

(
∂xzα+ 1

2

)2

dx.

Note that
1

ε
Epα+ 1

2
nα+ 1

2
· (v , 0) = pα+ 1

2
nα+ 1

2
· (v , 0). Moreover,

(
τ−
ε,α+ 1

2

nα+ 1
2

)
· (v , 0)

√
1 +

(
∂xzα+ 1

2

)2

=
(
τ−
ε,xx,α+ 1

2

∂xzα+ 1
2
− τ−

ε,xz,α+ 1
2

)
v .

Introducing these calculations into (36) and taking into account that f =
(

tan θ
Fr2 ,

1
Fr2

)′
, we obtain∫

IF (t)

[
ρhα∂tuα + ρhαuα ∂xuα +

ρ

Fr2
hα∂x (b+ h) +

1

ε
ρhα

tan θ

Fr2
+

+
1

ε

(
τ−
ε,xx,α+ 1

2

∂xzα+ 1
2
− τ−

ε,xz,α+ 1
2

)
− 1

ε

(
τ+
ε,xx,α− 1

2

∂xzα− 1
2
− τ+

ε,xz,α− 1
2

)]
v dx = 0 .

And this yields, for each layer α = 1, · · · , N , the momentum equation

ρhα∂tuα + ρhαuα ∂xuα +
ρ

Fr2
hα∂x (b+ h) + ρ

1

ε
hα

tan θ

Fr2
+

+
1

ε

(
τ−
ε,xx,α+ 1

2

∂xzα+ 1
2
− τ−

ε,xz,α+ 1
2

)
− 1

ε

(
τ+
ε,xx,α− 1

2

∂xzα− 1
2
− τ+

ε,xz,α− 1
2

)
= 0.
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Observe that

τ−
ε,xx,α+ 1

2

∂xzα+ 1
2
− τ−

ε,xz,α+ 1
2

=

[
τ−
ε,α+ 1

2

nα+ 1
2

√
1 +

(
∂xzα+ 1

2

)2
]
H

,

where [ · ]H denotes the first component. Now by (21) we obtain[
τ−
ε,α+ 1

2

nα+ 1
2

√
1 +

(
∂xzα+ 1

2

)2
]
H

=

[
τ̃ ε,α+ 1

2
nα+ 1

2

√
1 +

(
∂xzα+ 1

2

)2

− ε

2
ρGα+ 1

2
[u]|Γ

α+ 1
2

(t)

]
H

=

= τ̃ε,xx,α+ 1
2
∂xzα+ 1

2
− τ̃ε,xz,α+ 1

2
− ε

2
ρGα+ 1

2
(uα+1 − uα) ,

and analogously

[
τ+
ε,α− 1

2

nα− 1
2

√
1 +

(
∂xzα− 1

2

)2
]
H

= τ̃ε,xx,α− 1
2
∂xzα− 1

2
− τ̃ε,xz,α− 1

2
+
ε

2
ρGα− 1

2
(uα − uα−1) .

This allows us to rewrite the momentum equation as

ρhα∂tuα + ρhαuα ∂xuα +
ρ

Fr2
hα∂x (b+ h) + ρ

1

ε
hα

tan θ

Fr2
+

+
1

ε

(
τ̃ε,xx,α+ 1

2
∂xzα+ 1

2
− τ̃ε,xz,α+ 1

2

)
− 1

ε

(
τ̃ε,xx,α− 1

2
∂xzα− 1

2
− τ̃ε,xz,α− 1

2

)
=

=
1

2
ρGα+ 1

2
(uα+1 − uα) +

1

2
ρGα− 1

2
(uα − uα−1) .

Note that

1

ε

(
τ̃ε,xx,α+ 1

2
∂xzα+ 1

2
− τ̃ε,xz,α+ 1

2

)
=

1

ε

[
τ̃ ε,α+ 1

2
nα+ 1

2

√
1 +

(
∂xzα+ 1

2

)2
]
H

=

=
1

ε

[
ηD̃ε,α+ 1

2
nα+ 1

2

]
H

√
1 +

(
∂xzα+ 1

2

)2

= εηα+ 1
2
∂x

(
u+
α+ 1

2

+ u−
α+ 1

2

2

)
∂xzα+ 1

2
−

−εηα+ 1
2

(
∂x

(
w+

α+ 1
2

+w−
α+ 1

2

2

))′
− 1

ε
ηα+ 1

2
UHZ ,α+ 1

2
.

Now we define

Kα+ 1
2

= −1

ε
ηα+ 1

2
UHZ ,α+ 1

2
, (37)

where ηα+ 1
2

is an approximation of η at z = zα+ 1
2

given by

ηα+ 1
2

=
µ(Iα+ 1

2
)pα+ 1

2

max

(∣∣∣UHZ ,α+ 1
2

∣∣∣ , µ(I
α+ 1

2
)p
α+ 1

2

ηM

) ,
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with

pα+ 1
2

=
ρ

Fr2

N∑
β=α+1

hβ , Iα+ 1
2

=
2 ds

∣∣∣UHZ ,α+ 1
2

∣∣∣√
pα+ 1

2
/ρs

.

These expressions of ηα+ 1
2

and Iα+ 1
2

are obtained from definitions (6) and (4), respectively, by

considering the hydrostatic pressure approximation (18) with the definition of ρ, (5) and with the
following first-order approximation of ‖D(u)‖ at z = zα+ 1

2
,

‖D(u)‖|z=z
α+ 1

2

≈
∣∣∣UHZ ,α+ 1

2

∣∣∣ .
By combining the previous equation with (35) we get the momentum equation up to order ε,

ρ∂t (hαuα) + ρ∂x(hαu
2
α) +

ρ

Fr2
hα∂x (b+ h) + ρ

1

ε
hα
tanθ

Fr2
=

= Kα− 1
2
−Kα+ 1

2
+

1

2
ρGα+ 1

2
(uα+1 + uα)− 1

2
ρGα− 1

2
(uα + uα−1) ,

(38)

for α = 1, ..., N .

Next, we must impose friction at the bottom ( Γα− 1
2

with α = 1). We can translate (14) into

the notation of the multilayer approach, giving

w|Γ 1
2

= 0,

1

ε
η 1

2
UHZ , 1

2
=
µ
(
I 1

2

)
ε

p 1
2

u+
1
2∣∣∣u+
1
2

∣∣∣ .
Therefore to impose the friction condition, we should change definition (37) of K 1

2
, taking into

account that
u+

1
2

= u1.

Then we obtain

K 1
2

= −1

ε
η 1

2
UHZ , 1

2
= −

µ
(
I 1

2

)
ε

p 1
2

u1

|u1|
.

Finally, the final model (27) is obtained when we write (38) in dimensional variables.
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[49] L. E. Silbert, D. Ertaş, G. S. Grest, T. C. Halsey, D. Levine, and S. J. Plimpton. Granular
flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E, 64:051302, Oct
2001.

[50] L. Staron, P.-Y. Lagrée, and S. Popinet. The granular silo as a continuum plastic flow: The
hour-glass vs the clepsydra. Physics of Fluids (1994-present), 24(10), 2012.

[51] L. Staron, P.-Y. Lagrée, and S. Popinet. Continuum simulation of the discharge of the granular
silo: A validation test for the µ(I)-visco-plastic flow law. The European physical journal. E,
Soft matter, 37(1), 2014.

42


