Presentations for the monoids of singular braids on closed surfaces

Juan González-Meneses

November, 2000

Abstract

We give presentations, in terms of generators and relations, for the monoids $S B_{n}(M)$ of singular braids on closed surfaces. The proof of the validity of these presentations can also be applied to verify, in a new way, the presentations given by Birman for the monoids of Singular Artin braids.

1 Introduction

In this paper we deal with the braid groups of a closed surface M. These groups are a natural generalization of Artin braid groups (A] and of the fundamental group of M. They are also subgroups of some Mapping Class groups of M, and finally they are fundamental groups of the so called Configuration spaces of M (see [B] for a general exposition).

They can be defined as follows. Fix $n(n \geq 1)$ distinct points $\left\{P_{1}, \ldots, P_{n}\right\} \in M$. A n-braid on M is an n-tuple $b=\left(b_{1}, \ldots, b_{n}\right)$ of disjoint smooth paths b_{i} in $M \times[0,1]$, such that for all i, the path b_{i} runs, monotonically on $t \in[0,1]$, from $\left(P_{i}, 0\right)$ to some $\left(P_{j}, 1\right)$. These n-braids are considered modulo isotopy (deformation of braids fixing the ends), and there exists a multiplication of braids, given by concatenation of paths. The set of isotopy classes of n-braids on M, along with this multiplication, forms the braid group with n strings on M, denoted by $B_{n}(M)$.

The following is a simple presentation of $B_{n}(M)$, in terms of generators and relations, where M is a closed, orientable surface of genus g G-M):

- Generators: $\quad \sigma_{1}, \ldots, \sigma_{n-1}, a_{1}, \ldots, a_{2 g}$.
- Relations:
(R1) $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$

$$
\begin{array}{r}
(|i-j| \geq 2) \\
(1 \leq i \leq n-2)
\end{array}
$$

(R2) $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$
(R3) $a_{1} \cdots a_{2 g} a_{1}^{-1} \cdots a_{2 g}^{-1}=\sigma_{1} \cdots \sigma_{n-2} \sigma_{n-1}^{2} \sigma_{n-2} \cdots \sigma_{1}$
(R4) $a_{r} A_{2, s}=A_{2, s} a_{r}$

$$
(1 \leq r, s \leq 2 g ; \quad r \neq s)
$$

(R5) $\left(a_{1} \cdots a_{r}\right) A_{2, r}=\sigma_{1}^{2} A_{2, r}\left(a_{1} \cdots a_{r}\right)$
$(1 \leq r \leq 2 g)$
(R6) $a_{r} \sigma_{i}=\sigma_{i} a_{r}$

$$
(1 \leq r \leq 2 g ; \quad i \geq 2)
$$

where

$$
A_{2, r}=\sigma_{1}^{-1}\left(a_{1} \cdots a_{r-1} a_{r+1}^{-1} \cdots a_{2 g}^{-1}\right) \sigma_{1}^{-1}
$$

The generators are represented in Figure 1, where we have drawn the the canonical projections on M of the considered braids, and M is represented as a polygon of $4 g$ sides, pairwise identified.

[^0]

Figure 1: The generators of $B_{n}(M)$.

We can also find in G-M a similar presentation, when M is a non-orientable, closed surface.
In the same way that singular Artin braids were defined (see B2]) to study Vassiliev invariants for these braids, we can define singular braids on M. Their definition is the same that the one of non-singular braids, but this time we allow a finite number of singular points (transverse intersection of two strings). The isotopy classes of these singular braids, with the analogous multiplication, form the monoid of singular braids with n strings on M, denoted by $S B_{n}(M)$. This monoid is used in G-MP to define the Vassiliev invariants of braids on closed, orientable surfaces, proving, among other results, that these invariants classify these braids.

In B2 we can find presentations for $S B_{n}$, the monoids of singular Artin braids, in terms of generators and relations. The main result of this paper is to give presentations for $S B_{n}(M)$. We will see, as well, that the proof of this results furnishes a new proof of the validity of the presentations in B2.

2 Presentation of $S B_{n}(M)$

We shall now give a presentation of $B_{n}(M)$, when M is a closed, orientable surface of genus $g \geq 0$. The non-orientable case is completely analogous, and is treated in a final remark at the end of this paper. We define, for all $i=1, \ldots, n-1$, the singular braid τ_{i} as in Figure 2, where the only non-trivial strings are the i-th and the $(i+1)$-th ones, which intersect to form a singular point. The result is the following:

Theorem 2.1. The monoid $S B_{n}(M)$ admits the following presentation:

- Generators: $\quad \sigma_{1}, \ldots, \sigma_{n-1}, a_{1}, \ldots, a_{2 g}, \tau_{1}, \ldots, \tau_{n-1}$.
- Relations:
(R1-R6) Relations of $B_{n}(M)$

$$
\begin{array}{lr}
\text { (R7) } \sigma_{i} \tau_{j}=\tau_{j} \sigma_{i} & (|i-j| \geq 2) \\
\text { (R8) } \tau_{i} \tau_{j}=\tau_{j} \tau_{i} & (|i-j| \geq 2) \\
\text { (R9) } \sigma_{i} \tau_{i}=\tau_{i} \sigma_{i} & (i=1, \ldots, n-1) \\
\text { (R10) } \sigma_{i} \sigma_{j} \tau_{i}=\tau_{j} \sigma_{i} \sigma_{j} & (|i-j|=1) \\
\text { (R11) }\left(a_{i, r} a_{i+1, r}\right) \tau_{i}\left(a_{i+1, r}^{-1} a_{i, r}^{-1}\right)=\tau_{i} & (i=1, \ldots, n-1 ; r=1, \ldots, 2 g) \\
\text { (R12) } \tau_{i} a_{j, r}=a_{j, r} \tau_{i} & (j \neq i, i+1 ; r=1, \ldots, 2 g)
\end{array}
$$

where

$$
a_{i, r}= \begin{cases}\left(\sigma_{i-1}^{-1} \cdots \sigma_{1}^{-1}\right) a_{r}\left(\sigma_{1}^{-1} \cdots \sigma_{i-1}^{-1}\right) & \text { if } r \text { is odd } \\ \left(\sigma_{i-1} \cdots \sigma_{1}\right) a_{r}\left(\sigma_{1} \cdots \sigma_{i-1}\right) & \text { if } r \text { is even. }\end{cases}
$$

Figure 2: The singular braid τ_{i}.

Figure 3: The braid $a_{i, r}=\left(\sigma_{i-1}^{-1} \cdots \sigma_{1}^{-1}\right) a_{r}\left(\sigma_{1}^{-1} \cdots \sigma_{i-1}^{-1}\right)$, when r is odd.

Remark that $a_{i, r}$ can be thought of as the i-th string crossing the "wall" α_{r}, as we can see in Figure 3 for the case when r is odd.

Proof of Theorem 2.1: First, it is evident that $\left\{\sigma_{1}, \ldots, \sigma_{n-1}, a_{1}, \ldots, a_{2 g}, \tau_{1}, \ldots, \tau_{n-1}\right\}$ is a set of generators of $S B_{n}(M)$, once that we know (by G-M) that $\left\{\sigma_{1}, \ldots, \sigma_{n-1}, a_{1}, \ldots, a_{2 g}\right\}$ generates $B_{n}(M)$.

It is also easy to prove that the proposed relations hold: (R1-R6) hold in $B_{n}(M)$, which is a sub-monoid of $S B_{n}(M)$. (R7-R10) are known to hold in $S B_{n}$, so they hold in a cylinder $D \times[0,1]$, where D is a disk containing the n points P_{1}, \ldots, P_{n}. We have just to extend the corresponding isotopy to all $M \times[0,1]$ by the identity. (R11) can be seen to hold in Figure $]_{\text {, a }}$, and finally (R12) is clear, since the only nontrivial strings of τ_{i} and $a_{j, r}$ can be isotoped to have disjoint projections on M, so these braids commute.

Figure 4: The braids $a_{i, r} a_{i+1, r} \tau_{i}$ and $\tau_{i} a_{i, r} a_{i+1, r}$ are isotopic, when r is odd.
In order to show that the relations are sufficient, we need the following lemma:
Lemma 2.2. The monoid $S B_{n}(M)$ is left-cancelative. That is, for all $a, b, c \in S B_{n}(M)$, one has: $c a=c b \Rightarrow a=b$.

Proof: Since $\sigma_{1}, \ldots, \sigma_{n-1}, a_{1}, \ldots, a_{2 g}$ are invertible, for they belong to $B_{n}(M)$, we just need to prove that $\tau_{i} a=\tau_{i} b \Rightarrow a=b$ for all $a, b \in S B_{n}(M)$ and all $i=1, \ldots, n-1$.

Thus, let us suppose that there exists an isotopy H_{t} of $M \times[0,1]$, such that $H_{0}=\operatorname{id}_{M \times[0,1]}$
and $H_{1}\left(\tau_{i} a\right)=\tau_{i} b$. Call p the first singular point of $\tau_{i} a$ (the one corresponding to τ_{i}), and let $p_{t}=H_{t}(p)$. One has $p_{0}=p_{1}=p$.

Let V be the interior of a sphere of radius ε centered at p. We take ε small enough, such that $V \cap\left(\tau_{i} a\right)$ is as follows:

Denote $s_{t}=H_{t}\left(\tau_{i} a\right)$ and $V_{t}=H_{t}(V)$. We can suppose, without loss of generality, that V_{t} is the interior of the sphere of radius ε centered at p_{t}, and that $V_{t} \cup s_{t}$ is as in the above picture.

Now, for $t \in[0,1]$, denote by \widetilde{s}_{t} the braid which is obtained by modifying s_{t}, only inside V_{t}, as follows:

We observe that $\widetilde{s}_{0}=a$ and $\widetilde{s}_{1}=b$, so H_{t} is an isotopy which transforms a into b. Therefore, $a=b$.

Let us then show that Relations (R1-R12) are sufficient. Let $b, b^{\prime} \in S B_{n}(M)$ be two isotopic singular braids, written in the generators of Theorem 2.1. We must show that we can transform b into b^{\prime} by using Relations (R1-R12).

Being isotopic, both braids have the same number of singular points, say k. If $k=0$, the result follows from G-M, since (R1-R6) are sufficient relations for $B_{n}(M)$.

Suppose that $k>0$, and the result holds for braids with less than k singular points. We can assume that the first letter of b is τ_{i}, for some i (otherwise we can multiply b and b^{\prime} on the left by the greatest nonsingular "prefix" of b). We will show that, using (R1-R12), we can transform b^{\prime} into a braid whose first letter is τ_{i}. The result then follows from Lemma 2.2, and by induction hypothesis.

Let p be the point of b^{\prime} corresponding (via isotopy) to the first singular point of b. This point p must correspond to some τ_{j}, letter of b^{\prime}. By (R10) and the braid relations (R1-R2), we can easily deduce the following:

$$
\tau_{j}=\left\{\begin{array}{lll}
\left(\sigma_{j-1} \sigma_{j-2} \cdots \sigma_{i}\right)\left(\sigma_{j} \sigma_{j-1} \cdots \sigma_{i+1}\right) \tau_{i}\left(\sigma_{i+1}^{-1} \cdots \sigma_{j}^{-1}\right)\left(\sigma_{i}^{-1} \cdots \sigma_{j+1}^{-1}\right) & \text { if } i<j \\
\left(\sigma_{j+1} \sigma_{j+2} \cdots \sigma_{i}\right)\left(\sigma_{j} \sigma_{j+1} \cdots \sigma_{i-1}\right) \tau_{i}\left(\sigma_{i-1}^{-1} \cdots \sigma_{j}^{-1}\right)\left(\sigma_{i}^{-1} \cdots \sigma_{j+1}^{-1}\right) & \text { if } i>j
\end{array}\right.
$$

Hence, we can assume that the letter corresponding to p is τ_{i}.
Let us then write $b^{\prime}=u \tau_{i} v$, where $u, v \in S B_{n}(M)$ and τ_{i} is the above letter. Since b is isotopic to b^{\prime}, we can assume, up to replacing τ_{i} by $\sigma_{i} \tau_{i} \sigma_{i}^{-1}$ (using (R9)), that the i-th string of u ends at the point $\left(P_{i}, s\right)$, for some $s \in[0,1]$. Hence, its canonical projection on M is a loop in M based at P_{i}, which induces an element $\mu \in \pi_{1}\left(M, P_{1}\right)$. This element can be modified as desired: it suffices to use (R11), replacing τ_{i} by $a_{i, r}^{\varepsilon} a_{i+1, r}^{\varepsilon} \tau_{i} a_{i+1, r}^{-\varepsilon} a_{i, r}^{-\varepsilon}(\varepsilon= \pm 1)$, to have μ transformed into $\mu \bar{a}_{i, r}^{\varepsilon}$, where $\bar{a}_{i, r}^{\varepsilon}$ is the projection on M of the i-th string of $a_{i, r}^{\varepsilon}$. Since $\left\{\bar{a}_{i, 1}, \ldots, \bar{a}_{i, 2 g}\right\}$ is a set of generators of $\pi_{1}\left(M, P_{i}\right)$, we can assume that $\mu=1$.

Now notice that u has less than k singular points, hence any braid isotopic to u can be obtained from it by applying (R1-R12), by induction hypothesis. We can then deform u in such a way that its i-th string will not go through the "walls" $\alpha_{1}, \ldots, \alpha_{2 g}$ (we can do this since $\mu=1$).

Let us go back to b, and consider a "band" Γ, determined by the i-th and the $(i+1)$-th strings of b, and which goes from $s=0$ to the first singular point of b, as in the figure below.

Consider also an isotopy H_{t} which transforms b into b^{\prime}. Recall that $b^{\prime}=u \tau_{i} v$, where the i-th string of u does not go through the walls. We can now consider $\Gamma_{1}=H_{1}(\Gamma)$, and deform the $(i+1)$-th string of u along this band, in such a way that it will be as close to the i-th string as desired (recall that we are allowed to deform u). We can then assume that neither the i-th nor the $(i+1)$-th string of u goes through the "walls" of the cylinder $M \times[0,1]$. Moreover, using (R9) we can modify the number of crossings of these two strings, as desired (just replacing τ_{i} by $\sigma_{i}^{r} \tau_{i} \sigma_{i}^{-r}$, $r \in \mathbb{Z}$). Therefore, we can assume that they do not cross, i.e. there is no σ_{j} in u involving the $i-t h$ and the $(i+1)$-th strings.

We can also assume that these two strings are so close that one has the following property: if there is a letter $\sigma_{j}^{\varepsilon}(\varepsilon= \pm 1)$ of u which involves the i-th or the $(i+1)$-th string, then this letter, together with either the previous or the following one, forms a sub-word of u of one of the following four types:

$\sigma_{j} \sigma_{j+1}$

$\sigma_{j+1}^{-1} \sigma_{j}^{-1}$

$\sigma_{j}^{-1} \sigma_{j+1}^{-1}$

$$
\sigma_{j+1} \sigma_{j}
$$

But in this case it is easy to see that, using relations (R7), (R8), (R10) and (R12), we can "raise" the point p, until we get τ_{i} as the first letter of b^{\prime}. So by Lemma 2.2 we can cancel τ_{i}, and by induction hypothesis the resulting braids are equivalent by means of Relations (R1-R12). This ends the proof of Theorem $2.1 \square$

Remark 2.3. There is an analogous presentation of $S B_{n}(M)$, when M is a non-orientable, closed surface. We just need to consider the presentation given in [G-M] for $B_{n}(M)$. Then replace, in the presentation of Theorem 2.1, the generators $a_{1}, \ldots, a_{2 g}$ by the corresponding generators on the non-orientable surface, and Relations (R1-R6) by the relations given in G-M. The same proof remains valid.

Remark 2.4. The presentation given in Theorem 2.1 can be easily simplified. It suffices to eliminate the generators $\tau_{2}, \ldots, \tau_{n-1}$, replacing in the relations τ_{3} by $\left(\sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}\right) \tau_{1}\left(\sigma_{2}^{-1} \sigma_{3}^{-1} \sigma_{1}^{-1} \sigma_{2}^{-1}\right)$, and eliminating all relations containing some $\tau_{j}(j \neq 1,3)$, since they are obtained from the remaining ones. We proposed the presentation above since it is more useful for handling singular braids.

Remark 2.5. We can also replace (R1-R6) by any other set of sufficient relations for the given generators of $B_{n}(M)$.

Remark 2.6. The above proof of Theorem 2.1, after eliminating every allusion to $\pi_{1}(M)$, is a new proof of the validity of the presentation for $S B_{n}$ proposed in B2].

Acknowledgements: I wish to thank Prof. Orlando Neto, for giving me the opportunity to enjoy the excellent working conditions I found at the Centro de Matemática e Aplicaçoes Fundamentais
of the University of Lisbon, where this paper was written down.

References

[A] E. ARTIN, Theory of braids, Annals of Math. 48 (1946) 101-126.
[B] J. S. BIRMAN, "Braids, Links and Mapping Class Groups", Annals of Math. Studies 82, Princeton University Press, 1973.
[B2] J. S. BIRMAN New points of view in knot theory, Bull. Amer. Math. Soc. 28 (1993), no. 2, 253-287.
[G-M] J. GONZÁLEZ-MENESES, New presentations of surface braid groups, J. of Knot Theory and its Ramifiactions. To appear.
[G-MP] J. GONZÁLEZ-MENESES and L. PARIS, Vassiliev invariants of surface braid groups, Preprint.

J. GONZÁLEZ-MENESES
Departamento de Matemática Aplicada I
Escuela Técnica Superior de Arquitectura
Avda. Reina Mercedes, 2
41012-Sevilla (Spain)
meneses@cica.es

[^0]: Keywords: Braid - Singular Braid - Surface - Monoid - Presentation.
 Mathematics Subject Classification: Primary: 20F36. Secondary: 20 F05.
 Partially supported by DGESIC-PB97-0723 and by the european network TMR Sing. Eq. Diff. et Feuill.

