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EQUATIONS WITH NONLOCAL SPATIAL TERMS∗
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Abstract. In this paper, we study the null controllability of linear heat and wave equations with
spatial nonlocal integral terms. Under some analyticity assumptions on the corresponding kernel, we
show that the equations are controllable. We employ compactness-uniqueness arguments in a suitable
functional setting, an argument that is harder to apply for heat equations because of its very strong
time irreversibility. Some possible extensions and open problems concerning other nonlocal systems
are presented.
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1. Introduction and statement of the problems. Let Ω ⊂ RN be a bounded
domain (N ≥ 1 is an integer), with boundary ∂Ω of class C2. We fix T > 0 and set
Q := Ω × (0, T ) and Σ := Γ × (0, T ). We also consider a nonempty (small) open set
ω ⊂ Ω. As usual, 1ω denotes the characteristic function of ω.

Let K = K(x, ξ) belong to L2(Ω×Ω). In this paper, we will consider the following
controlled heat and wave equations involving nonlocal in space terms:

(1)


yt −∆y +

∫
Ω

K(x, ξ)y(ξ, t) dξ = v1ω in Q,

y = 0 on Σ,
y(x, 0) = y0(x) in Ω

and

(2)


ytt −∆y +

∫
Ω

K(x, ξ)y(ξ, t) dξ = v1ω in Q,

y = 0 on Σ,
y(x, 0) = z0(x), yt(x, 0) = z1(x) in Ω.

In (1) (resp. (2)), v is a distributed control acting only on the set ω × (0, T ), and y
(resp. (y, yt)) is the state.
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If y0 ∈ L2(Ω) and v ∈ L2(ω × (0, T )), then (1) possesses a unique weak solu-
tion y, with y ∈ L2(0, T ;H1

0 (Ω)) ∩ C0([0, T ];L2(Ω)) and satisfies classical “energy”
estimates; actually, this remains true if v1ω is replaced by a general right-hand-
side f ∈ L2(0, T ;H−1(Ω)).

On the other hand, if (z0, z1) ∈ H1
0 (Ω) × L2(Ω) and v ∈ L2(ω × (0, T )), (2) also

possesses a unique weak solution y, with (y, yt) ∈ C0([0, T ];H1
0 (Ω)× L2(Ω)).

This paper is mainly devoted to the analysis of the controllability properties of (1)
and (2).

Definition 1. It will be said that (1) is null-controllable at time T if for any
y0 ∈ L2(Ω), there exist controls v ∈ L2(ω × (0, T )) such that the associated states
satisfy

y(x, T ) = 0 in Ω.

Similarly, (2) is null-controllable at time T if for any (z0, z1) ∈ H1
0 (Ω)×L2(Ω), there

exist controls v ∈ L2(ω × (0, T )) such that the associated states satisfy

y(x, T ) = 0, yt(x, T ) = 0 in Ω.

Since (2) is linear and reversible in time, it is null-controllable if and only if it is
exactly controllable, i.e. if and only if, for any (z0, z1) and (w0, w1) in H1

0 (Ω)×L2(Ω),
there always exist controls v ∈ L2(ω×(0, T )) such that the associated solutions satisfy

y(x, T ) = w0(x), yt(x, T ) = w1(x) in Ω.

The study of the controllabilty of (1) and (2) is motivated by many relevant appli-
cations from physics and biology; see, for instance, [8, 9]. However, to our knowledge,
very few results are available. As far as we know, [4] is the unique published work on
this subject; it concerns the exact controllability of the Schrödinger equation with a
nonlocal term.

Before presenting the main results of this paper, we introduce some notation and
the main conditions that the kernel K will be required to fulfill.

Throughout the paper, C denotes a generic positive constant depending on Ω, ω
and maybe other data, which may vary from line to line (unless otherwise stated).
Sometimes, we will emphasize the fact that C depends on (say) T by writing C(T ).
For all m ≥ 1, the inner product and norm in L2(Ω)m will be respectively denoted
by (· , ·) and ‖ · ‖; on the other hand, | · | will stand for the Euclidean norm in Rm.

We will denote by λ1, λ2, . . . (resp. φ1, φ2, . . . ) the eigenvalues (resp. the unit L2

norm eigenfunctions) of the Dirichlet Laplacian in Ω. Recall that 0 < λ1 < λ2 ≤
λ3 ≤ · · · , λm ∼ m2/N as m→ +∞ and φ1 > 0 in Ω.

We impose the following conditions on the kernel K:

(3) K ∈ L2(Ω× Ω), x 7→
∫

Ω

K(ξ, x)f(ξ) dξ is analytic for all f ∈ L2(Ω).

This is an analyticity assumption in the second variable. It will play a key role
when proving unique continuation properties for the adjoint system when deriving
observability inequalities. Indeed, as in the context of linear PDEs, the problem of
controllability under consideration is equivalent to a suitable observability inequal-
ity for the corresponding adjoint system. The main argument we shall employ to
derive these observability inequalities will be of a perturbation nature, the so-called
compactness-uniqueness argument, that will allow us to transfer known observability

D
ow

nl
oa

de
d 

11
/1

4/
16

 to
 1

50
.2

14
.1

82
.1

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONTROLLABILITY AND NONLOCAL TERMS IN SPACE 2011

inequalities for the heat and wave equations into the corresponding nonlocal prob-
lems. For this argument to be applied one needs a unique continuation property to be
proved. In the context of classical PDEs models this unique continuation is achieved
by means of Holmgren’s Uniqueness Theorem or Carleman inequalities. But these
techniques do not apply directly for PDE involving nonlocal terms. This is why we
require the strong analyticity condition (3).

In the context of the wave equation, this compactness-uniqueness argument can
be applied in the energy space and the analyticity condition above, together with the
classical geometric control condition (GCC) ensuring the controllability of the wave
equation, suffices for the result to hold for the nonlocal model.

The argument is more subtle for the heat equation. Indeed, in this case, due to
the very strong time irreversibility, the observability inequality holds only in a very
weak space involving a weighted norm of the initial data with weights that decay
exponentially at high frequencies. Accordingly, further technical assumptions on the
kernel K will be needed so that the perturbation argument can be applied in these
weak spaces.

The rest of the paper is organized as follows. In section 2, we analyze in detail the
heat equation, establish the corresponding controllability result, and give its proof,
following the lines indicated above. Section 3 is devoted to the wave equation. Finally,
some additional comments, open questions and further applications are indicated
in section 4.

2. The nonlocal heat equation. In order to indicate the assumptions that,
together with (3), must be satisfied by the kernel K, we recall the following spectral
observability inequality (see [6, Remark 6.1]), that plays a key role in the analysis
of the null controllability of heat equations with time-independent coefficients that
permit a Fourier series representation.

Lemma 2. There exist R(Ω, ω, T ), C(Ω, ω) > 0 such that, for all f ∈ L2(Ω), one
has

(4)
∑
j≥1

e−2R
√
λj |(f, φj)|2 ≤ C

∫∫
ω×(0,T )

∣∣∣∑
j≥1

(f, φj)e
−λj(t−T )φj(x)

∣∣∣2 dx dt.
Our first main result deals with the null controllability of the nonlocal system (1).

It is the following.

Theorem 3. Assume that (3) holds. Furthermore, assume that

(5)


K(x, ξ) =

∑
m,j≥1

kmjφm(x)φj(ξ) in L2(Ω× Ω) with

‖K‖2R :=
∑
m≥1

∑
j≥1

λ−1
j |kmj |

2

λ−1
m e2R

√
λm < +∞,

where R is the constant in Lemma 2. Then the system (1) is null-controllable.

As already mentioned, for the proof, the null controllability of (1) is reformulated
in terms of the observability of the adjoint system, which is given by

(6)


−ϕt −∆ϕ+

∫
Ω

K(ξ, x)ϕ(ξ, t) dξ = 0 in Q,

ϕ = 0 on Σ,

ϕ(x, T ) = ϕT (x) in Ω.
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In other words, the main task reduces to prove the estimate

(7) ‖ϕ(· , 0)‖2 ≤ C
∫∫
ω×(0,T )

|ϕ|2 dx dt ∀ϕT ∈ L2(Ω)

for the solutions of the adjoint system (6).
Of course, the main difficulty in establishing this property is the presence of the

nonlocal term.

Remark 4. Recall that the classical way to establish an estimate of this kind is
to start from a global Carleman inequality of the form

(8)

∫∫
Q

ρ−2|ϕ|2 dx dt ≤ C
∫∫
ω×(0,T )

ρ−2|ϕ|2 dx dt,

where C is independent of ϕT and ρ = ρ(x, t) is an appropriate weight function that
blows up as t→ T ; see the related results in [7, 6]. However, it is not clear whether an
approach of this kind can work in this framework, due to the presence of the nonlocal
term. The reason is that the classical Carleman estimates for parabolic PDEs gives

(9)

∫∫
Q

ρ−2|ϕ|2 dx dt ≤ C(ε)

∫∫
ω×(0,T )

ρ−2|ϕ|2 dx dt

+ ε

∫∫
Ω×(0,T )

ρ−2
∣∣∣ ∫

Ω

K(ξ, x)ϕ(ξ, t)
∣∣∣2 dx dt.

Here, ε > 0 can be chosen arbitrarily small, but the second term in the right-hand side
of (9) cannot be absorbed by the left-hand side, due to its nonlocal nature, contrary
to what happens for classical pointwise lower order perturbations.

Remark 5. Note that, under the assumption (5), the kernel K = K(x, ξ) also
satisfies the following analyticity property in the first variable:

(10) x 7→
∫

Ω

K(x, ξ)f(ξ) dξ is analytic for all f ∈ H1
0 (Ω).

Indeed, let f ∈ H1
0 (Ω) be given and let us set Am(f) :=

∑
j≥1 kmj(φj , f). Then

(11)

∫
Ω

K(x, ξ)f(ξ) dξ =
∑
m≥1

Am(f)φm(x).

For all m ≥ 1 and any x ∈ Ω, we have

|Am(f)φm(x)| ≤

∑
j≥1

|kmj | |(φj , f)|

 |φm(x)|

≤

∑
j≥1

λ−1
j |kmj |

2

1/2∑
j≥1

λj |(φj , f)|2
1/2 ‖φm‖L∞(Ω)

≤ C(N, ε)‖f‖H1
0 (Ω)

∑
j≥1

λ−1
j |kmj |

2

1/2 λN/2+ε
m

for any small ε > 0. In view of (5), the series in (11) converges uniformly in Ω.
Consequently, (10) holds.
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Let us prove the observability estimate (7).
For any ϕT ∈ L2(Ω), denote by ϕ the solution to (6) and write

ϕ = p+ ζ,

where p is the unique solution to

(12)


−pt −∆p = 0 in Q,
p = 0 on Σ,

p(x, T ) = ϕT (x) in Ω.

Obviously, one has

(13)


−ζt −∆ζ +

∫
Ω

K(ξ, x)ζ(ξ, t) dξ = −
∫

Ω

K(ξ, x)p(ξ, t) dξ in Q,

ζ = 0 on Σ,
ζ(x, T ) = 0 in Ω.

It is well known that the mapping

ϕT 7→ ‖ϕT ‖h :=

(∫∫
ω×(0,T )

|p|2 dx dt

)1/2

is a norm in L2(Ω) and, also, that there exist constants C0(Ω, ω, T ) and C1(Ω, ω) such
that

(14)

∫∫
Q

e−2C0/(T−t)|p|2 dx dt ≤ C1‖ϕT ‖2h ∀ϕT ∈ L2(Ω).

This is an immediate consequence of the global Carleman estimate that can be de-
duced for the solution to (12) (see [7] for details). Taking into account that

p(x, t) =
∑
j≥1

e−λj(T−t) (ϕT , φj)φj(x) in L2(Q),

we see from Lemma 2 that

(15)
∑
j≥1

e−2R
√
λj |(ϕT , φj)|2 ≤ C‖ϕT ‖2h ∀ϕT ∈ L2(Ω).

The inequality (7) will be a consequence of the following two estimates:

(16) ‖ϕT ‖2h ≤ C
∫∫
ω×(0,T )

|ϕ|2 dx dt ∀ϕT ∈ L2(Ω)

and

(17) ‖ϕ(· , 0)‖2 ≤ C‖ϕT ‖2h ∀ϕT ∈ L2(Ω).

Let us give their proofs.

Proof of (16). Here, we argue by contradiction and we employ a compactness-
uniqueness method.
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Let us assume that (16) does not hold. Then, for every n ∈ N, we can find
functions ϕTn ∈ L2(Ω) such that

(18) 1 = ‖ϕTn‖2h > n

∫∫
ω×(0,T )

|ϕn|2 dx dt,

where ϕn is the solution to (6) associated to ϕTn .
Denote by pn (resp. ζn) the solution to (12) corresponding to ϕT = ϕTn (resp. the

solution to (13) for p = pn). Let us see that, at least for a subsequence, one must
have

(19) ζn → 0 strongly in L2(Q).

This will lead to a contradiction, since we will then have

1 = ‖ϕTn‖2h =

∫∫
ω×(0,T )

|pn|2 dx dt ≤ 2

∫∫
ω×(0,T )

|ϕn|2 dx dt+ 2

∫∫
ω×(0,T )

|ζn|2 dx dt

and both terms in the right-hand side go to zero.
In order to prove (19), let us first check that

(20)
∥∥∥ ∫

Ω

K(ξ, ·)pn(ξ, ·) dξ
∥∥∥
L2(0,T ;H−1(Ω))

≤ C ∀n ∈ N.

This is implied by (15) and the assumption (5) on K as follows:
(21)∥∥∥ ∫

Ω

K(ξ, ·)pn(ξ, ·) dξ
∥∥∥2

L2(0,T ;H−1(Ω))

=

∫ T

0

(∑
`≥1

λ−1
`

∣∣∣( ∫
Ω

K(ξ, ·)pn(ξ, t) dξ, φ`

)∣∣∣2) dt
=

∫ T

0

(∑
`≥1

λ−1
`

∣∣∣∑
m≥1

km,`e
−λm(T−t)(ϕTn , φm)

∣∣∣2) dt
≤
∑
`≥1

λ−1
`

(∑
m≥1

|km,`|2
∫ T

0

e2R
√
λm−2λm(T−t) dt

)(∑
m≥1

|(ϕTn , φm)|2e−2R
√
λm

)
≤ C1

2

∑
`≥1

λ−1
`

(∑
m≥1

|km,`|2e2R
√
λmλ−1

m

)
‖ϕTn‖2h

=
C1

2
‖K‖2R.

Hence, it can be assumed that ζn converges strongly in L2(Q).
Now, let us see that, at least for a subsequence, one has

(22) ϕn → 0 weakly in L2(Ω× (0, T − δ)) ∀δ > 0.

Indeed, the sequence {ϕn} can be assumed to converge to some ϕ weakly in L2(Ω×
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(0, T − δ)) for all δ > 0, since we have the estimates∫∫
Ω×(0,T−δ)

|ϕn|2 dx dt ≤ 2

∫∫
Ω×(0,T−δ)

|pn|2 dx dt+ 2

∫∫
Ω×(0,T−δ)

|ζn|2 dx dt

≤ Cδ
∫∫
Q

e−2C0/(T−t)|pn|2 dx dt+ C

≤ CδC1 ‖ϕTn‖2h + C

= CδC1 + C.

Here, we have used (14). Obviously, ϕ solves in Q the PDE

−ϕt −∆ϕ+

∫
Ω

K(ξ, x)ϕ(ξ, t) dξ = 0

and ϕ(x, t) = 0 in ω × (0, T ); but this yields ϕ ≡ 0. Indeed, for t a.e. in (0, T ), the
function

x 7→
∫

Ω

K(ξ, x)ϕ(ξ, t) dξ

is analytic in Ω and vanishes in ω, whence it vanishes everywhere; therefore, ϕ is in
fact a solution to the classical heat equation in Q and, since it vanishes in ω× (0, T ),
it is identically zero. This proves (22).

From (20), the fact that ζn is bounded in L2(Q) and (22), we deduce that∫
Ω

K(ξ, ·)ϕn(ξ, ·) dξ → 0 weakly in L2(0, T ;H−1(Ω))

and, consequently, (19) holds.

Proof of (17). We will use the energy and observability estimates satisfied by p
and the energy estimates satisfied by ζ.

More precisely, we see from (12) that

‖p(· , 0)‖2 ≤ ‖p(· , t)‖2 ∀t ∈ (0, T ).

Using (14), we find that

(23) ‖p(· , 0)‖2 ≤ C
∫ 3T/4

T/4

‖p(· , t)‖2 dt ≤ C‖ϕT ‖2h.

On the other hand, from (13) we have that

‖ζ(· , 0)‖2 ≤ C
∥∥∥∫

Ω

K(ξ, ·)p(ξ, ·) dξ
∥∥∥2

L2(0,T ;H−1(Ω))

and, arguing as in (21), the following is found:

(24) ‖ζ(· , 0)‖2 ≤ C‖K‖2R‖ϕT ‖2h.

Finally, noting that ϕ = p + ζ and putting together (23) and (24), we get (17).
This ends the proof of Theorem 3.
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Remark 6. Note that under the assumption (3), (1) is approximately controllable,
that is, for any y0, yT ∈ L2(Ω) and any ε > 0, there exist controls v ∈ L2(ω × (0, T ))
such that the corresponding solutions to (1) satisfy

‖y(· , T )− yT ‖ ≤ ε.

This is a consequence, via a well known argument, of the unique continuation property
of the solutions to the adjoint systems (6). On the other hand, in view of the regularity
of the solution to (1) outside ω × (0, T ), the exact controllability is obviously out of
reach.

3. The nonlocal wave equation. Now, let us consider the hyperbolic sys-
tem (2). Our second main result is the following.

Theorem 7. Assume that (3) holds and that the domain Ω, the control subdo-
main ω, and the time T > 0 satisfy the classical GCC ensuring the observability and
controllability properties of the linear wave equation:

(25)

{
∂Ω is of class C3 and
(ω, T ) satisfies the usual GCC in Ω.

Then, the linear system (2) is null-controllable.

Recall that, roughly speaking, (ω, T ) satisfies the GCC in Ω if every ray of ge-
ometric optics that starts at any point x0 ∈ Ω at time t = 0 and travels with unit
speed meets ω at a time t < T ; see [2] and see also [3], where it is shown that the C3

regularity of ∂Ω suffices to prove that GCC implies exact controllability.
The proof of Theorem 7 is similar to that of Theorem 3. Now, the adjoint system

is

(26)


ψtt −∆ψ +

∫
Ω

K(ξ, x)ψ(ξ, t) dξ = 0 in Q,

ψ = 0 on Σ,

ψ(x, T ) = ψT1 (x), ψt(x, T ) = ψT2 (x) in Ω

and the observability estimate that we have to prove is

(27) ‖(ψ,ψt)(· , 0)‖2L2×H−1 ≤ C
∫∫
ω×(0,T )

|ψ|2 dx dt ∀(ψT1 , ψT2 ) ∈ L2(Ω)×H−1(Ω).

Again, the main difficulty comes from the presence of the nonlocal term in the
adjoint equation. However, in this case, this term is compact with respect to the
natural L2×H−1 norm of (ψT1 , ψ

T
2 ) and this makes the argument easier to implement

without requiring extra assumptions on the kernel K.
Assume that the hypotheses in Theorem 7 are satisfied. We will prove the esti-

mate (27).
For any (ψT1 , ψ

T
2 ) ∈ L2(Ω)×H−1(Ω), we denote by ψ the solution to (26) and we

write
ψ = q + η,

where q is the solution to

(28)


qtt −∆q = 0 in Q,
q = 0 on Σ,

q(x, T ) = ψT1 (x), qt(x, T ) = ψT2 (x) in Ω
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and, consequently,

(29)


ηtt −∆η +

∫
Ω

K(ξ, x)η(ξ, t) dξ = −
∫

Ω

K(ξ, x)q(ξ, t) dξ in Q,

η = 0 on Σ,
η(x, T ) = 0, ηt(x, T ) = 0 in Ω.

Thanks to (25), the mapping

(ψT1 , ψ
T
2 ) 7→ ‖(ψT1 , ψT2 )‖w :=

(∫∫
ω×(0,T )

|q|2 dx dt

)1/2

is a norm in L2(Ω)×H−1(Ω) and, moreover, there exists a constant C2(Ω, ω, T ) such
that

‖(ψT1 , ψT2 )‖2L2×H−1 ≤ C2‖(ψT1 , ψT2 )‖2w ∀(ψT1 , ψT2 ) ∈ L2(Ω)×H−1(Ω).

This is proved and explained in detail in [3].
As in the parabolic case, the inequality (7) will be a consequence of two estimates:

(30) ‖(ψT1 , ψT2 )‖2w ≤ C
∫∫
ω×(0,T )

|ψ|2 dx dt ∀(ψT1 , ψT2 ) ∈ L2(Ω)×H−1(Ω)

and

(31) ‖(ψ,ψt)(· , 0)‖2L2×H−1 ≤ C‖(ψT1 , ψT2 )‖2w ∀(ψT1 , ψT2 ) ∈ L2(Ω)×H−1(Ω).

Proof of (30). Again, we argue by contradiction. Thus, let us assume that (30)
does not hold and let the sequence {(ψT1,n, ψT2,n)} satisfy

(32) 1 = ‖(ψT1,n, ψT2,n)‖2w > n

∫∫
ω×(0,T )

|ψn|2 dx dt ∀n ∈ N,

where ψn is the solution to (26) corresponding to the final data (ψT1,n, ψ
T
2,n).

Let us denote by qn (resp. ηn) the solution to (28) associated to (ψT1,n, ψ
T
2,n)

(resp. the solution to (29) with q replaced by qn). Let us show that, at least for a
subsequence, again denoted by {ψn}, one has

(33) ψn → 0 weakly-∗ in L∞(0, T ;L2(Ω))

and

(34) ηn → 0 strongly in L2(Q).

The (ψT1,n, ψ
T
2,n) are uniformly bounded in L2(Ω)×H−1(Ω), whence

(35) ‖(qn, qn,t)‖C0([0,T ];L2(Ω)×H−1(Ω)) ≤ C ∀n ∈ N.

Therefore, the right-hand sides of the PDEs satisfied by the ηn are uniformly bounded
in C0([0, T ];L2(Ω)) and

(36) ‖(ηn, ηn,t)‖C0([0,T ];H1
0 (Ω)×L2(Ω)) ≤ C ∀n ∈ N.
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From (35) and (36), we see that ψn is uniformly bounded in C0([0, T ];L2(Ω))
and we can assume that ψn converges weakly-∗ in L∞(0, T ;L2(Ω)) to a function ψ.
Clearly, ψ solves in Q the PDE

ψtt −∆ψ +

∫
Ω

K(ξ, x)ψ(ξ, t) dξ = 0

and ψ(x, t) = 0 in ω× (0, T ). But this implies ψ ≡ 0, in view of the analyticity of the
function

x 7→
∫

Ω

K(ξ, x)ψ(ξ, t) dξ

and the GCC satisfied by (ω, T ). Hence, (33) holds.
In order to prove (34), it suffices to check that ηn belongs to a compact set

of L2(Q). But this is evident, in view of (36) and a standard application of the
Aubin–Lions Lemma.

We find a contradiction: (32) and (34) are not compatible with the fact that
‖(ψT1,n, ψT2,n)‖w = 1 for all n, since

‖(ψT1,n, ψT2,n)‖2w=

∫∫
ω×(0,T )

|qn|2 dx dt≤2

∫∫
ω×(0,T )

|ψn|2 dx dt+2

∫∫
ω×(0,T )

|ηn|2 dx dt.

Proof of (31). This is easy since, for any (ψT1 , ψ
T
2 ) ∈ L2(Ω)×H−1(Ω), one has

‖(ψ,ψt)(· , 0)‖2L2×H−1 ≤ 2‖(q, qt)(· , 0)‖2L2×H−1 + 2‖(η, ηt)(· , 0)‖2L2×H−1

≤ 2‖(ψT1 , ψT2 )‖2L2×H−1 + C

∫∫
Q

|q|2 dx dt

≤ C
∫∫
ω×(0,T )

|q|2 dx dt

= C‖(ψ,ψt)(· , 0)‖2w.

From (30) and (31), we deduce (27). This ends the proof of Theorem 7.

4. Some additional comments and questions. In this paper, we have only
considered some very simple models. There are many interesting and challenging
related problems for equations with nonlocal terms to be investigated. Some of them
are mentioned below.

• Can the analyticity assumption on K be removed?
Note that the analyticity assumption is doubly needed for the heat equation
in order to implement the compactness-uniqueness argument. But, at the
level of unique continuation, whether this analyticity assumption is needed
for the heat and wave equations (6) and (26) is an interesting open problem.

• Can one employ Carleman inequalities to prove the observability estimate of
equations with nonlocal terms?
To our best knowledge, until now, there has been no direct proof of the
observability estimate for equations with nonlocal terms achieved by means
of Carleman-type inequality. The main difficulty, as we said in Remark 4, is
that, in (9), terms like

ε

∫∫
Ω×(0,T )

ρ−2
∣∣∣ ∫

Ω

K(ξ, x)ϕ(ξ, t)
∣∣∣2 dx dtD
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cannot be absorbed by the terms in the left-hand side. It would be interest-
ing to analyze whether one can choose suitable weight functions to establish
Carleman inequalities adapted to deal with nonlocal terms.

• Boundary control systems.
Whether the results of this paper can be extended to boundary control prob-
lems is also an interesting open problem.
For both the wave and the heat equation involving nonlocal terms it is unclear
whether the compactness-uniqueness argument can be applied. Note that the
unique continuation argument we have employed, based on the analyticity of
the kernel with respect to x, does not hold.
In particular, is it true that for the solutions of the nonlocal adjoint heat
equation (6) the fact that the normal derivative of the solution vanishes on the
boundary implies that the solution vanishes everywhere? The same question
can be formulated for the wave equation.

• Systems with nonlocal terms of higher order.
We can also consider systems of the form

(37)


yt −

∫
Ω

K(x, ξ)∆y(ξ, t) dξ = v1ω in Q,

y = 0 on Σ,
y(x, 0) = y0(x) in Ω

involving nonlocal terms in the principal part of the heat operator, under ade-
quate hypotheses on K. This is a model with interesting physical applications
(see [1] for an introduction to this topic). But, obviously, the compactness-
uniqueness argument employed in this paper cannot be directly applied or
adapted to establish the null controllability of (37).
It would be interesting to explore the class of nonlocal coefficients for which
null controllability holds for this model.

• Nonlinear control problems.
The results in this paper could also be seen as a first step to handle models
involving nonlocal nonlinear terms. But significant further developments are
needed in this direction.
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