
entropy

Article

Traceability Analyses between Features and Assets in
Software Product Lines
Ganesh Khandu Narwane 1,∗, José A. Galindo 2,†, Shankara Narayanan Krishna 3,†,
David Benavides 4,†, Jean-Vivien Millo 5,† and S. Ramesh 6,†

1 Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400042, India
2 Inria Rennes—Bretagne Atlantique, Campus de Beaulieu, 263 Av. Général Leclerc, Rennes 35042, France;

jagalindo@inria.fr
3 Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; krishnas@cse.iitb.ac.in
4 Department of Computer Languages and Systems, Escuela Técnica Superior de Ingeniería Informática,

Universidad de Sevilla, Av. Reina Mercedes s/n, Seville 41012, Spain; benavides@us.es
5 Inria Sophia Antipolis—Méditerranée, Route des Lucioles, Valbonne 06902, France; jvmillo@gmail.com
6 General Motors Global R&D, Warren, Michigan 49084, USA; ramesh.s@gm.com
* Correspondence: ganeshk@cse.iitb.ac.in; Tel.: +91-838-482-0575
† These authors contributed equally to this work.

Academic Editors: Raúl Alcaraz Martínez and Kevin H. Knuth
Received: 11 February 2016; Accepted: 4 July 2016; Published: 3 August 2016

Abstract: In a Software Product Line (SPL), the central notion of implementability provides the
requisite connection between specifications and their implementations, leading to the definition of
products. While it appears to be a simple extension of the traceability relation between components
and features, it involves several subtle issues that were overlooked in the existing literature.
In this paper, we have introduced a precise and formal definition of implementability over a fairly
expressive traceability relation. The consequent definition of products in the given SPL naturally
entails a set of useful analysis problems that are either refinements of known problems or are
completely novel. We also propose a new approach to solve these analysis problems by encoding
them as Quantified Boolean Formulae (QBF) and solving them through Quantified Satisfiability
(QSAT) solvers. QBF can represent more complex analysis operations, which cannot be represented
by using propositional formulae. The methodology scales much better than the SAT-based solutions
hinted in the literature and were demonstrated through a tool called SPLAnE (SPL Analysis Engine)
on a large set of SPL models.

Keywords: software product line; feature model; formal methods; QBF; SAT

1. Introduction

Software Product Line Engineering (SPLE) is a software development paradigm supporting
the joint design of closely-related software products in an efficient and cost-effective manner. The
starting point of a Software Product Line (SPL) is the scope, which defines all of the possible features
of the products in the SPL. The scope is said to define the problem space of the SPL, describing the
expectations and objectives of the product line. The description is typically organized as a feature
model [1] that expresses the variability of the SPL in terms of relations or constraints (exclusion,
requires dependency) between the features and defines all of the possible products in the product line.

An important step in SPLE is the development of core assets, a collection of reusable artifacts.
The core assets contains the components, and we use the term component to represent any artifacts
that contribute to product development, like code, design, documents, test plan, hardware, etc.
A component is an abstract concept of any assets used in products. The core assets define the
solution space of the SPL and are developed to meet the expectations outlined in the problem space [2].

Entropy 2016, 18, 269; doi:10.3390/e18080269 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy

Entropy 2016, 18, 269 2 of 31

They are developed for systematic reuse across the different products in the SPL [3,4]. The variability
in core assets across the components is represented by a component model. The components in
a component model may also have exclusions and require dependency constraints, similarly to
feature models.

Given the problem and solution spaces for an SPL, as defined by the scope and the core assets,
the next important step is traceability, which involves relating the elements (features, core assets) at
these two levels [2].

The focus of this work is formal modeling and analysis of traceability in an SPL. There are
many relationships possible; one of the most useful and natural one is the implementability relation
that associates each feature in the scope with a set of core assets that are required for implementing
the feature(s) [5]. Beside implementability, many other notions have been defined, thanks to the
integration of the variabilities of the problem space and the solution space in the proposed framework.
For example, one could be interested in checking whether every product in the problem space has a
correspondence in the solution space, i.e., every product represented in the feature model can be
implemented using the existing assets considering the implementability relation. Another example is
the property to check every asset of an SPL that needs to be maintained not only because it is involved
in some implementations, but the asset is the only option.

Let us consider an example from the cloud computing domain. The company offers a service
to rent computers on a cloud with different possible software configurations using Linux-based
distributions. In the back-end, instead of providing physical machines, the company provides virtual
machines with some software package installed on them. Thus, the configuration of machines can be
generated on demand according to the needs of the users. In order to improve the speed of the creation
of a new machine, there are pre-configured machines ready to launch.

In this example, the possible configurations offered to the users define the problem space.
The set of available Linux packages implementing the features is the core assets. The pre-configured
machines can be seen as another set of assets (limited, but available immediately).

The following are some examples of relevant analyses that could arise in this example:

• Check if at least one of the pre-configured machines covers the needs of a new user configuration.
• Check if at least one of the pre-configured machines realizes (exactly) the needs of a new

user configuration.
• Check if there are dead packages, i.e., packages that cannot be in any of the virtual machines.

In the literature, formal modeling and analysis of variability at the feature model level have
been studied extensively, and several efficient tools have been built to carry out the analyses [6,7].
The main idea behind all of these works is that the variability analysis can be reduced to constraints
and variables modeling the feature level variability [2,8–15]. While there are several recent works on
traceability, most of them have confined themselves to an informal treatment [16–19]. Some works
have chosen a formal approach for representing the traceability and configuration of features [20].

In the past, most of the work [6,7] has encoded variability analysis operations in propositional
formulae. There are various SAT solvers, like SAT4j [21], or MiniSAT [22], or PicoSAT [23], which
can be used to check the satisfiability of a propositional formula. We propose a novel approach for
modeling traceability and other notions relating features and core assets using the Quantified Boolean
Formula (QBF). QBF is a generalization of SAT Boolean formulae in which the variables may be
universally and existentially quantified. The Quantified Satisfiability (QSAT) solver is used to check
the satisfiability of the QBF. In this work, we make use of the well-known QSAT solver, CirQit [24]
and RAReQS-NN [25].

An early version of this work was published [26]. The proposed method has been implemented
in a tool that is integrated with the FaMa framework [27]. This tool, called SPLAnE (SPL Analysis
Engine) [28], can model feature models, core assets (component models) and a traceability relations.
SPLAnE is a feasible solution for the automated analysis of feature models together with asset
relations. We believe that this article opens the opportunity for new forms of analysis involving

Entropy 2016, 18, 269 3 of 31

variability models, assets and traceability relations. The following summarizes the contributions of
this paper:

• A simple and abstract set-theoretic formal semantics of SPL with variability and traceability
constraints is proposed.

• A number of new analysis problems, useful for relating the features and core assets in an SPL,
are described.

• Quantified Boolean Formulae (QBFs) are proposed as a natural and efficient way of modeling
these problems. The evidence of the scalability of QSAT for the analysis problems in large SPLs
(compared to SAT) is also provided.

• We present a tool named SPLAnE that enables SPL developers to perform existing operations in
the literature over feature diagrams [6] and many new operations proposed in this paper. It also
allows one to perform analysis operations on a component model and SPL model. We used
the FaMa framework to develop SPLAnE that makes it flexible to extend with new analyses of
specific needs.

• We experimented on our approach with a number of models, i.e.,: (i) real and large Debian
models; (ii) randomly-generated SPL models from ten features to twenty thousand features with
different levels of cross-tree constraints; and (iii) SPLOTrepository models. The experimental
results also give the comparison across two QSAT solvers (CirQit and RaReQS) and three SAT
solvers (Sat4j, PicoSAT and MiniSAT).

• An example from the cloud computing domain is presented to motivate the practical usefulness of
the proposed approach.

The remainder of the paper is organized as follows: Section 2 shows a motivating scenario
for using SPLAnE ; Section 3 presents the tool SPLAnE , which is implemented based on the
proposed approach; Section 4 describes different analysis operations to extract information by using
the SPLAnE tool; Section 5 analyzes empirical results from experiments that evaluate the scalability
of SPLAnE ; Section 6 compares our approach to related work; and finally, Section 8 presents
concluding remarks.

2. Motivating Example

In this paper, we present cloud computing as a product line. The feature model and the
component model are used to manage the variability across the scope and core assets, respectively.

Feature Models

Feature models have been used to describe the variant and common parts of the product line
since Kang [29] has defined them. The sets of possible valid combinations of those features are
represented by using different constraints among features. The feature model in Figure 1 represents
the features provided by the cloud computing. Two different kinds of relationships are used:
(i) hierarchical relationships, which describe the options for variation points within the product
line; and (ii) cross-tree constraints that represent constraints among any features of the feature
tree. Different notations have been proposed in the literature [6]; however, most of them share the
following relationship flavors:

Four different hierarchical relationships are defined:

• mandatory: this relationship refers to features that have to be in the product if its parent feature is
in the product. Note that a root feature is always mandatory in feature models.

• optional: this relationship states that a child feature is an option if its parent feature is included in
the product.

• alternative: it relates a parent feature and a set of child features. Concretely, it means that exactly
one child feature has to be in the product if the parent feature is included.

Entropy 2016, 18, 269 4 of 31

• or: this relationship refers to the selection of at least one feature among a group of child features,
having a similar meaning to the logical OR.

Later, two kinds of cross-tree relationships are used:

• requires: this relationship implies that if the origin feature is in the product, then the destination
feature should be included.

• excludes: this relationship between two features implies that, only one of the feature can be
present in a product.

Figure 1. Feature model: virtual machine.

Cloud computing technology provides ready to use infrastructure for the clients. The cloud
system reduces the cost of maintaining the hardware and software, and also reduces the time to
build the infrastructure on the client side. The client pays only for the hardware and software used
based on the duration. The feature model for cloud computing is shown in Figure 1. The root
feature VirtualMachine is a mandatory feature by default. The mandatory relationship is present
between the feature VirtualMachine and UserInter f ace, so the feature UserInter f ace has to be present
if feature VirtualMachine is present in the product. The optional relationship is present between the
feature Language and VirtualMachine, so it is optional to have feature Language in the products.
The feature GUI has alternative relationship with its child features {KDE, GNOME, XFCE}. Hence,
if feature GUI is selected in a product, then only one of its child feature has to be present in that
product. The feature Server has or relationship with its child features {Tomcat, Glass f ish, Klone}.
Hence, if feature Server is selected in a product, then at least one of its child feature has to
be present in that product. The feature C++ requires the feature C to be present in a product.
The presence of feature Tomcat in a product does not allow the feature Klone and vice versa.
The client can request for a system with the set of features called a speci f ication. The minimum
set of features in the specification should contain features {VirtualMachine, UserInter f ace, Console}
as they are mandatory features. We can term this as commonality across all the products of an SPL.
The specification F = { VirtualMachine, UserInter f ace, Console, GUI, KDE, Language, C} is valid
for the creation of a virtual machine because it satisfies all the constraints in the feature model.
The specification F = { VirtualMachine, UserInter f ace, Console, GUI, KDE, Language, C++} is not
valid because it contains a feature C++ so it is necessary to select feature C.

Component model: Similar to a feature model, same notations can be used to represent
variability amongst the components present in core assets of an SPL, we call it a Component
Model (CM). The variability amongst the components can also be represented by any other
models like the Orthogonal Variability Model (OVM), Varied Feature Diagram (VFD) and Free
Feature Diagrams (FFDs) [20,30]. The component model in Figure 2 represents the resources

Entropy 2016, 18, 269 5 of 31

available to create a virtual machine. The cloud computing technology will create a virtual
machine that contains a set of components required to implement the features present in the
client speci f ication. Such set of components is called an implementation. The implementation
C = {LinuxCore, IUser, IConsole, Terminal, ILanguage, C-lang, c-lib } is valid because it satisfies
all the constraints on the component model, so a virtual machine can be created with these
components. The implementation C = {LinuxCore, IUser, IConsole, ILanguage, C-lang, c-lib } is
invalid, because the component Terminal or XTerminal or both are required to satisfy the component
model constraints.

Figure 2. Component model: Linux virtual machine-based system.

Table 1 shows the traceability relation between the features and the components. The entry in
the row of feature Glass f ish means the component Glass f ishApp implements the feature Glass f ish.
Similarly, the feature Console can be implemented by the set of components: {IConsole, XTerminal}
or {IConsole, Terminal}. For each feature in the client specification, the traceability relation gives
the required sets of components. In the feature model, the effective features are only the leaf
features. The traceability of a parent feature like the feature GUI can be implemented by the
set of components: {IGUI}. The feature GUI can be abstracted by eliminating all of its child
features {KDE, GNOME, XFCE}; this allows to analyze the SPL at a higher level of abstraction.
Section 3 refers to Columns 3 and 4 from Table 1 to represent the short name for features and
components respectively.

Figure 3 shows the four preconfigured virtual machines. The preconfigured machines show the
set of components from the component model shown in Figure 2.

Software product lines can contain a large set of different products. Therefore, facing the
complexity of the feature models that represent the products within an SPL is hard. To help in such a
difficult task, researchers rely on the computer-aided extraction of information from feature models.
This extraction is usually known as the automated analysis in the area. To reason about those models,
the relationships existing in the feature model are processed through a CSP (Constraint Satisfaction
Problem), SAT, BDD (Binary Decision Diagrams) solver or a specific algorithm. Later, the operation is
used to extract specific information from the model. An SPL with twelve leaf features can result in a
search space of 212 possible products. Analysis of such a huge search space is a non-trivial task. Some
interesting analyses that could performed in this scenario of a Virtual Machine Product Line (VMPL)
are as follows:

1. Check if at least one of the pre-configured machines covers the needs of a new user configuration:
In VMPL, there is always a need to check the existence of any virtual machine as per the
given user specification. For example, the specification F={VirtualMachine, UserInter f ace,
Console, GUI, GNOME} should be first analyzed to check the existence of any implementation
that implements F. The implementation C={LinuxCore, IUser, IConsole, Terminal, IGUI,
GNOMEApp, IServer, TomcatApp} (equivalent to preconfigured Virtual Machine 2 in Figure 3)
provides all the features in the specification F, it means that there exists a pre-configured machine
which covers the user specification F.

Entropy 2016, 18, 269 6 of 31

2. Check if at least one of the pre-configured machines realizes (exactly) the needs of a new user
configuration: Multiple implementations may cover a given user specification F. We can analyze
the VMPL to find the realized implementation for the user specification. For example, the
implementation C={LinuxCore, IUser, IConsole, Terminal, IGUI, GNOMEApp} (equivalent
to preconfigured Virtual Machine 3 in Figure 3) exactly provides all the feature in the
specification F.

3. Check if there are dead packages: Actual VMPLs contain a huge number of components for
Linux systems. The components that are not present in any of the products are termed as dead
elements in the product line. In the given VMPL, none of the components is dead.

Table 1. Traceability relation for the virtual machine.

Feature Components Feature Components

VirtualMachine {{LinuxCore}} f1 {{c1}}

UserInter f ace {{IUser}} f2 {{c2}}

Language {ILanguage} f8 {{c14}}

Server {{IServer}} f12 {{c10}}

Console {{IConsole, XTerminal}, f3 {{c3, c4}, {c3, c5}}{IConsole, Terminal}}

GUI {{IGUI}} f4 {{c6}}

KDE {{KDEApp}} f5 {{c7}}

GNOME {{GNOMEApp}} f6 {{c8}}

XFCE {{XFCEApp}} f7 {{c9}}

C {{C-lang, c-lib}} f9 {{c15, c16, c17}}

C++ {{C-lang, c-lib, gcc, c++ lib}} f10 {{c15, c16, c17, c20}}

Java {{OpenJDK}, {OracleJDK}} f11 {{c18}, {c19}}

Tomcat {{TomcatApp}} f13 {{c11}}

Glass f ish {{Glass f ishApp}} f14 {{c12}}

Klone {{KloneApp}} f15 {{c13}}

Figure 3. Preconfigured virtual machines.

Entropy 2016, 18, 269 7 of 31

3. SPLAnE Framework: Traceability and Implementation

3.1. Specification and Implementation

The set of all features found in any of the products in a product line defines the scope of
the product line. We denote the scope of a product line by F . A scope F consists of a set of
features, denoted by small letters f1, f2 Specifications are subsets of features in the scope and
are denoted by F1, F2, . . . , with possible subscripts. On the other hand, the collection of components
in the product line defines the core assets and is denoted as C. Small letters c1, c2 . . . , etc. represent
components. Implementations (subsets of components) are denoted by capital letters C1, C2 . . . with
possible subscripts. A Product Line (PL) specification is a set of speci f ications in an SPL, denoted as
F ∈ ℘(℘(F)\ {∅}). Similarly, a Product Line (PL) implementation is denoted as C ∈ ℘(℘(C) \ {∅}).
In VMPL, the scope, core assets, specifications and implementations are as follows:

• Scope F = { f1 : VirtualMachine, f2 : UserInter f ace, f3 : Console, f4 : GUI, f5 : KDE, f6 :
GNOME, f7 : XFCE, f8 : Language, f9 : C, f10 : C++, f11 : Java, f12 : Server, f13 : Tomcat,
f14 : Glass f ish, f15 : Klone}

• Core Assets C = {c1 : LinuxCore, c2 : IUser, c3 : IConsole, c4 : XTerminal, c5 : Terminal,
c6 : IGUI, c7 : KDEApp, c8 : GNOMEApp, c9 : XFCEApp, c10 : IServer, c11 : TomcatApp,
c12 : Glass f ishApp, c13 : KloneApp, c14 : ILanguage, c15 : C-lang, c16 : c-lib, c17 : gcc,
c18 : OpenJDK, c19 : OracleJDK, c20 : c++ lib }

• PL Specification F={
F1 : {VirtualMachine, UserInter f ace, Console } or { f1, f2, f3},
F2 : {VirtualMachine, UserInter f ace, Console, GUI, KDE } or { f1, f2, f3, f4, f5 },
F3 : {VirtualMachine, UserInter f ace, Console, Server, Tomcat, Glass f ish } or { f1, f2, f3, f12,
f13, f14 },
F4 : {VirtualMachine, UserInter f ace, Console, GUI, KDE, Server, Tomcat } or { f1, f2, f3, f4, f5,
f12, f13 },
F5 : {VirtualMachine, UserInter f ace, Console, GUI, KDE, Language, Java, Server, Tomcat } or
{ f1, f2, f3, f4, f5, f8, f11, f12, f13 }
}, where F1, F2, F3, F4 and F5 are some specifications.

• PL Implementation C={
C1 : {LinuxCore, IUser, IConsole, XTerminal } or {c1, c2, c3, c4 },
C2 : {LinuxCore, IUser, IConsole, Terminal } or {c1, c2, c3, c5 },
C3 : {LinuxCore, IUser, IConsole, Terminal, IGUI, KDEApp } or {c1, c2, c3, c5, c6, c7 },
C4 : {LinuxCore, IUser, IConsole, Terminal, IServer, TomcatApp, Glass f ishApp } or {c1, c2, c3, c5,
c10, c11, c12 },
C5 : {LinuxCore, IUser, IConsole, Terminal, IGUI, KDEApp, IServer, KloneApp, Glass f ish } or
{c1, c2, c3, c5, c6, c7, c10, c12, c13 },
C6 : {LinuxCore, IUser, IConsole, Terminal, IGUI, KDEApp, IServer, TomcatApp, Glass f ish } or
{c1, c2, c3, c5, c6, c7, c10, c11, c12 },
C7 : {LinuxCore, IUser, IConsole, Terminal, IGUI, KDEApp, ILang, OpenJDK, IServer,
TomcatApp } or {c1, c2, c3, c5, c6, c7, c14, c18, c10, c11 }
}, where C1 to C7 are some implementations.

3.2. Traceability

We present a formalism for two variation of traceability relation: (i) 1 : M mapping and (ii) N : M
mapping. In traceability relation, 1 : M mapping is between a feature and a set of component sets, were
as N : M is a mapping between feature set and a set of component sets.

Traceability with 1 : M mapping: A feature is implemented using a set of non-empty subset
of components in the core asset C. This relationship is modeled by the partial function

Entropy 2016, 18, 269 8 of 31

T : F → ℘(℘(C) \ {∅}). When T (f) = {C1, C2, C3}, we interpret it as the fact that the set of
components C1 (also, C2 and C3) can implement the feature f . When T (f) is not defined, it denotes
that the feature f does not have any components to implement it.

Traceability with N : M mapping: A set of features can be implemented using a set of non-empty
subset of components in the core asset C. This relationship is modeled by the partial function
T : (℘(F) \ {∅})→ ℘(℘(C) \ {∅}). It may happen that, two features f1 and f2 can be implemented
by a single component c1. In this case, T ({ f1, f2}) = {C1}, where C1 = {c1}.

Definition 1 (SPL). An SPL Ψ is defined as a triple 〈F , C, T 〉, where F ∈ ℘(℘(F) \ {∅}) is the PL
specification, C ∈ ℘(℘(C) \ {∅}) is the PL implementation and T is the traceability relation.

3.3. The Implements Relation

A feature is implemented by a set of components C, denoted implements(C, f), if C includes a
non-empty subset of components C′ such that C′ ∈ T (f). It is obvious from the definition that if
T (f) = ∅, then f is not implemented by any set of components. In VMPL, f5 is implemented by
implementations C3, C5, C6 and C7, but not by implementations C1, C2 and C4.

In order to extend the definition to specifications and implementations, we define
a function Provided_by(C) which computes all the features that are implemented by C:
Provided_by(C) = { f ∈ F|implements(C, f)}. In VMPL, Provided_by(C1) = { f1, f2, f3} and
Provided_by(C3) = { f1, f2, f3, f4, f5}. With the basic definitions above, we can now define when
an implementation exactly implements a specification.

Definition 2 (Realizes). Given C ∈ C and F ∈ F , Realizes(C, F) if F = Provided_by(C).

The realizes definition given above is rather strict. Thus, in the above example, the
implementation C3 realizes the specification F2, but it does not realize F1 even though it provides
an implementation of all the features in F1. In many real-life use-cases, due to the constraints on
packaging of components, the exactness may be restrictive. We relax the definition of Realizes in
the following.

Definition 3 (Covers). Given C ∈ C and F ∈ F , Covers(C, F) if F ⊆ Provided_by(C) and
Provided_by(C) ∈ F .

The additional condition (Provided_by(C) ∈ F) is added to address a tricky issue introduced
by the Covers definition. Suppose the scope F consisted of only two specifications { f1} and { f2}.
Let’s say that the two variants (f1 and f2) are mutually exclusive features. The implementation
C = {c1, c2} implements the feature f1, assuming T (f1) = {{c1}} and T (f2) = {{c2}}. Without the
provision, we would have Covers(C, { f1}). However, since Provided_by(C) = { f1, f2}, it actually
implements both the features together, thus violating the requirement of mutual exclusion. In the
VMPL, the implementation C6 covers the specifications F1, F2, F3 and F4. The set of products of
the SPL is now defined as the specifications and the implementations covering them through the
traceability relation.

Definition 4 (SPL Products). Given an SPL Ψ = 〈F , C, T 〉, the products of the SPL, denoted by a function
Prod(Ψ) which generate a set of all specification-implementation pairs 〈F, C〉 where Covers(C, F).

Thus, in the VMPL example, we see that there are many potential products. Valid products are
〈C1, F1〉, 〈C2, F1〉, 〈C3, F1〉, 〈C3, F2〉, 〈C4, F1〉, 〈C4, F3〉

4. Analysis Operations

Given an SPL Ψ = 〈F , C, T 〉, we define the following analysis problems. The problems center
around the new definition of an SPL product.

Entropy 2016, 18, 269 9 of 31

4.1. SPL Model Verification

Questions: Is it a valid SPL model? Is it a void SPL model? Is the SPL model complete?

A given SPL model Ψ = 〈F , C, T 〉 is valid, if there exists a specification and implementation.
Let’s assume a feature model with three features f1, f2 and f3. The feature f1 is the root and the
features f2 and f3 are the mandatory children of f1. An excludes relation exists between f2 and f3.
The feature model cannot have any specification because of excludes relation and such SPL model
is not a valid model. An SPL models should be validated before analyzing any operations over it.
Large and complex SPLs undergoes continuous modification, such SPLs has to be verified for its
validity after every modification. In case of VMPLs, after adding new features, components and
cross-tree constraints, a validity of model should be tested. “Is the virtual machine feature model and
component model valid?”, such questions must be verified before further analysis of VMPL.

If all the features have a traceability relation with the components which implement them, such
a traceability relation is called as complete traceability relation. If there exists a feature which does
not have a traceability relation with any components, then such a traceability relation is called an
incomplete traceability relation. When a SPLs are under development, all the features many not have
its corresponding components developed. The operation complete traceability relation help us to
identify such features and proceed for its components development. The preliminary properties
valid model and complete traceability relation should hold before analyzing any other properties.
Let us assume an SPL model 〈F , C, T 〉 which is a valid model but none of the implementations Ci
cover any of the specification Fj. Such a model is called void product model, i.e., the model is not able
to return a single product. In SPL model, it may happen that a feature model is valid, a component
model is valid and a traceability is also complete, but the SPL model is not able to generate a single
product. This is possible if no specification covers any of the implementation. A question like, “Do a
Virtual Machine Product Line can generate at least one virtual machine ?” is very important to conduct
further analysis of a product line.

4.2. Complete and Sound SPL

Question: Does the SPL model is adequate for all the user specifications? Do all implementation has it
corresponding specification? Which are the useful implementations? Is there at least one implementation which
realizes a given user specification?

The completeness property of the SPL relates to the implementability of a specification.
A specification F is implementable if there is an implementation C such that Covers(C, F).
Completeness determines if the PL implementation (set of implementation variants) is adequate to
provide implementations for all the variant specifications in the PL specification. An SPL 〈F , C, T 〉 is
complete if for every F ∈ F , there is an implementation C ∈ C such that Covers(C, F). The soundness
property relates to the usefulness of an implementation in an SPL. An implementation is said to
be useful if it implements some specification in the scope. An SPL 〈F , C, T 〉 is sound if for every
C ∈ C, there is a specification F ∈ F such that Covers(C, F). The complete and sound are very crucial
properties of any SPLs. Does a VMPL is able to provide a virtual machine for every valid requirements
(specifications) from users?, if YES then the VMPL is complete. If there is some specification which
cannot be implemented by any of the implementation in the PL implementation, then such PL
implementation is not adequate to fill the wish of all the user specifications. In VMPL, there may be
such requirements for which no virtual machine can be generated. In such case, either feature model,
component model or traceability relation should be analyzed to figure out the actual problem. On the
other hand, PL implementation may provide huge set of implementation where as PL specification
may be answered by a subset of PL implementation. In case of VMPL, we may end up with such
virtual machine which may not get covered by any of the user specifications. Such machine should
be removed from the pre-configured machine list.

Entropy 2016, 18, 269 10 of 31

4.3. Product Optimization

Questions: Do the given specification and implementation, forms a product? Is there an implementation
which provide all the features in a given user specification? Is there an implementation exactly meeting a given
user specification? Is there only one implementation for a given specification?

Given a specification, we want to find out all the variant implementations that cover the
specification. This is given by a function FindCovers(F) = {C| Covers(C, F) }. At times,
it is necessary for a premier set of features to be provided exactly for some product variants.
For example, a client company with a critical usage of the product would limit the risk of feature
interaction. In this case, we want to find out if there is an implementation that realizes the specification.
A specification is existentially explicit if there exists an implementation C such that Realizes(C, F).
Dually, it is universally explicit if for all implementations C ∈ C, Covers(C, F) implies Realizes(C, F).
Multiple implementations may implement a given specification. This may be a desirable criterion
of the PL implementation from the perspective of optimization among various choices. Thus, the
specifications which are implemented by only a single implementation are to be identified. F ∈ F
has a unique implementation if |FindCovers(F)| = 1.

Is there a virtual machine which provide all the features as per the client specification? A covers is more
relaxed version where a specification is implemented by an implementation, but the implementation may
contain extra components which may not require to implement any of the features in a specification.
It may happen that, the cloud may have such pre-configured virtual machines which provides all the
features as per user specifications. Furthermore, this pre-configured machines has extra components
which are not required to support any of the features in user specifications. This may results in
redundancy of components in a virtual machine. Is there a virtual machine which provide exactly all the
features as per the client specification? The tighter version of cover is realize, which strictly does not allow
any extra components which are not required for features implementation present in a specification.
A realize is the optimized version of cover operation. Finding the optimized virtual machine on cloud
which match the exact user specifications is achieved by realize. Is there at least one virtual machine
which provides exactly all the features as per the client specification? The existentially explicit operations
guarantee the presence of at least one implementation which is realized by a given specifications.
It means, in VMPL for a user specification there exists at least one virtual machine which realizes
it and this guarantees the presence of at least one optimized configuration. The universally explicit
is the tighter version of existentially explicit, which means all the implementation covers by a given
specification implies that it is an realization. For universally explicit specifications, cloud always
produce the optimized virtual machine. Does a given user specification has only one virtual machine
provided by cloud? In VMPL, there may be some specification which is covered by only one virtual
machine, such implementations are unique.

4.4. SPL Optimization

Questions: Does an element is present across all the products? Does an element is used in at least single
product? Does an element not in use? Which all elements are redundant in a given product? Which are the
extra features provided by a product apart from the given user specification?

Identification of common, live and dead elements in an SPL are some of the basic analyses
operations in the SPL community. We redefine these concepts in terms of our notion of products:
An element e is common if for all 〈F, C〉 ∈ Prod(Ψ), e ∈ F ∪ C. An element e is live if there exists
〈F, C〉 ∈ Prod(Ψ) such that e ∈ F ∪ C. An element e is dead if for all 〈F, C〉 ∈ Prod(Ψ), e 6∈ F ∪ C.
Now a days with the advance in technology, business changes it requirements so quickly that, exiting
products in market get replaced by another advance products in a very short time span. As the SPLs
evolves, new cross-tree constraints get added or removed, this results in change of products. Due to
such modification, few features or components in SPL may become live or dead. Do the component c is
present in at least one virtual machine provided by VMPL? Do the component c is not present in any of the

Entropy 2016, 18, 269 11 of 31

virtual machines provided by VMPL? The common property find all the common elements (features or
components) across all the products. This operation is required to create a common platform for a
SPL. Do the component c is present in all the virtual machines provided by VMPL?

There may be certain implementations that are useful but the implementable specifications
are not affected if these implementations are dropped from the PL implementation.
These implementations are called superfluous. Formally, an implementation C ∈ C is superfluous
if for all F ∈ F such that Covers(C, F), there is a different implementation D ∈ C such that
Covers(D, F). Superfluousness is relative to a given PL implementation. If in an SPL Ψ, F = {{ f }},
C = {{a}, {b}} and T (f) = {{a}, {b}}, then both the implementations {a} and {b} are superfluous
with respect to Ψ, whereas if either {a} or {b} is removed from the PL implementation, the remaining
implementation ({b} or {a}) is not superfluous anymore (with respect to the reduced SPL). The
feature Java in VMPL, can be implemented by component OpenJDK or OracleJDK. Such traceability
results in many superfluous implementations . Superfluousness for a specification guarantees the
presence of alternate implementations.

Which are the components in the virtual machines that can be removed without impacting the
user specification? A component is redundant if it does not contribute to any feature in any
implementation in the SPL. A component c ∈ C is redundant if for every C ∈ C, we have
Provided_by(C) = Provided_by(C \ {c}). An SPL can be optimized by removing the redundant
components without affecting the set of products. Redundant elements may not be dead. Due to
the packaging, redundant elements can be part of useful implementations of the SPL and hence be
live. Do the component c is required for any of the features in a user specification? A component c is
critical for a feature f in the SPL scope F , when the component must be present in an implementation
that implements the feature f : for all implementations C ∈ C, (c 6∈ C =⇒ ¬implements(C, f)).
This definition can be extended to specifications as well: a component c is critical for a specification
F, if for all implementations C ∈ C, (c 6∈ C =⇒ ¬Covers(C, F)). A virtual machine may contain
components which may not be required for any of the features in a user specifications, but it may
remain due to packaging. Such components are redundant but not critical.

Can virtual machine provide more features with the same set of components? When a specification
is covered (but not realized) by an implementation, there may be extra features (other than those
in the specification) provided by the implementation. These extra features are called extraneous
features of the implementation. Since there can be multiple covering implementations for the
same specification, we get different choices of implementation and extraneous features pairs:
Extra(F) ≡ {〈C, Provided_by(C) \ F〉|Covers(C, F)}. User may demand for virtual machines
with some specification. The available pre-configured machine provide all the features in user
specification, and also provide few more features which are extraneous.

4.5. Generalization and Specialization in SPL

Questions: Do the union of two or more products result in a new product? What is the difference between
two products?

In an SPL, sometimes there is a need to check the aggregation relationship between the
specifications, implementations or products. Is there a virtual machine which has features provided by a
given set of virtual machines? The union property on two specifications will result in a new specification
which has features of both the specifications. Let’s say specification F1 has features { f1, f2, f3} and
specification F2 has features { f2, f5, f7}. The union property will check for some specification F
which has features of specifications F1 and F2, so F should have features { f1, f2, f3, f5, f7}. Assume an
excludes relation between features f3 and f5, then the union property will return FALSE. In VMPL,
the user always demand a virtual machines which has equivalent features of two or more machines.
The union property is used to verify the combination of two or more virtual machines is valid.
Similar to specifications, this property can be applied on implementations or products.

Entropy 2016, 18, 269 12 of 31

In an SPL, most of the time there is a need to distinguish between the multiple specifications or
implementations or products. Is there a virtual machine those features are present in all virtual machines
in a given set? The intersection property on multiple specifications will check the existence of any
specification which is common to those specifications. Let’s say specification F1 = { f1, f2, f3} and
F2 = { f1, f2, f7}, then the intersection property applied on specification F1 and F2 will result in
specification F = { f1, f2}. The distinguishable features or variants between F1 and F2 are obtained
as F1 \ F = { f3} and F2 \ F = { f7}. A specification which is contained in all the specifications of an
SPL is called core speci f ication. The intersection property applied on a given SPL model will result
in a core speci f ication. Similar to specifications, this property can be applied to implementations
or products.

In the literature, different analysis problems in SPLs are usually encoded as satisfiability
problems for propositional constraints [31] and SAT solvers such as Yices [32] or Bddsolve [33] are
used to solve them. As it has been noted in [20], it is not possible to cast certain problems such
as completeness and soundness as a single propositional constraint. However, we observe that
these problems need quantification over propositional variables encoding features and components.
The most expressive logic formalism, Quantified Boolean Formula (QBF), is necessary to encode such
analysis problems. The Boolean satisfiability problem for a propositional formula is then naturally
extended to a QBF satisfiability problem (QSAT).

The tool SPLAnE provide analysis operations: valid model, complete traceability, void product
model, implements, covers, realizes, soundness, completeness, existentially explicit, universally
explicit, unique implementation, common, live, dead superfluous, redundant, critical, union and
intersection. SPLAnE encode each analysis operation in single QBF. The tool FaMa provide analysis
operations—commonality, core features, dead feature, detect error, explain error, filter question,
unique feature, variability question, valid configuration, variant feature and valid product [6].
FaMa encode each analysis operation in single propositional formula. Every analysis operation of
FaMa can be encoded in QBF and can be solved by SPLAnE , where as the formula like soundness
cannot be encoded in a single SAT formula. To compare our QSAT approach with SAT approach we
implemented analysis operation provided by SPLAnE on FaMa. There are few analysis operations
provided by SPLAnE like valid model, complete traceability, void product model, implements,
covers, realizes and live which uses only one existential quantifiers or universal quantifier, and can be
encoded in SAT and executed with FaMa. The operations like soundness, completeness, existentially
explicit and universally explicit cannot be encoded in single SAT, so for experimental comparison
such formula is executed with FaMa in iteration.

In SPLs, the complexity of analysis operations, like valid model or void product model which can
be represented using propositional logic belongs to ∑P

1 = ∃P(Φ), where p is the class of all feasibly
decidable languages [34]. We found few analysis operations discussed in this paper like soundness or
completeness that cannot be encoded using SAT formulae, but easily by using QBFs. The complexity of
the soundness and completeness operations belongs to the class ΠP

2 = ∀P ∑P
1 . More complex analysis

operations, like universally explicit, unique implementation belongs to the class ∑P
3 = ∃PΠP

2 [34].
Similarly, QBF can be easily used to represent formula belonging to more complex classes.

Let C = {c1, . . . , cn} be the core assets and let F = { f1, . . . , fm} be the scope of the SPL.
Each feature and component x is encoded as a propositional variable px. Given an implementation
C, Ĉ denotes the formula

∧
ci∈C pci , and C̄ denotes a bit vector where C̄[i] = 1 (TRUE) if ci ∈ C and 0

(FALSE) otherwise. Similarly, for a specification F, we have F̂ and F̄.
Let CONF and CONI denote the set of constraints over the propositional variables capturing

the PL specification and PL implementation respectively. Given the PL specification and PL
implementations as sets, it is straightforward to get these constraints. When one uses richer notations,
like feature models, one can extract these constraints following [31]. For the traceability, the encoding
CONT is as follows. Let f be a feature and let T (f) = {C1, C2 . . . , Ck}. We define f ormula_T (f) as∨

j=1..k
∧

ci∈Cj
pci . If the set T (f) is undefined(empty), then f ormula_T (f) is set to FALSE. CONT is

Entropy 2016, 18, 269 13 of 31

then defined as
∧

fi∈F [f ormula_T (fi) =⇒ p fi
] for the features fi for which T (fi) is defined and

FALSE if T (.) is not defined for any feature.
The implementation question whether implements(C, f) is now answered by asking whether

the formula Ĉ for the set of components C along with the traceability constraints CONT can
derive the feature f . This is equivalent to asking whether Ĉ ∧ CONT ∧ (¬p f) is UNSAT. Since it
is evident that only T (f) is used for the implementation of f , this can further be optimized to
Ĉ ∧ (f ormula_T (f) ⇒ p f) ∧ (¬p f). However, as we will see later, since implements(., .) is used as
an auxiliary function in the other analyses, we want to encode it as a formula with free variables.
Thus, f orm_implements f (x1, . . . , xn) is a formula which takes n Boolean values (0 or 1) as arguments,
corresponding to the bit vector C̄ of an implementation C and evaluates to either TRUE or FALSE.

f orm_implements f (x1, . . . , xn) = ∀pc1 . . . pcn {[
∧n

i=1(xi ⇒ pci)]⇒ f ormula_T (f)}

This forms the core of encoding for all the other analyses. Hence, the correctness of this
construction is crucial. Lemma 1 states the correctness result. The proof is given in [35].

Lemma 1. (Implements) Given an SPL, a set of components C, and a feature f ,implements (C, f) iff
f orm_implements f (v1, . . . , vn), where C̄ = 〈v1, . . . , vn〉, evaluates to TRUE.

In order to extend the construction to encode Covers, we construct a formula f _covers (x1, . . . ,
xn, y1, . . . , ym) where, the first n Boolean values encode an implementation C and the subsequent m
Boolean values encode a specification F. The formula evaluates to TRUE iff Covers(C, F) holds.

f _covers(x1, . . . , xn, y1, . . . , ym) =
∧m

i=1[yi ⇒ f orm_implements fi
(x1, . . . , xn)]

Similarly, we have encoded Realizes in a Quantified Boolean Formula as below. Notice the
replacement of “⇒” in f _covers(..) by “⇔” in f _realizes(..).

f _realizes(x1, . . . , xn, y1, . . . , ym) =
∧m

i=1[yi ⇔ f orm_implements fi
(x1, . . . , xn)]

In VMPL, we ask whether Covers(C2, F1). Since there are 20 components {c1 . . . c20} and
15 features { f1 . . . f15}, this translates to the formula f _covers(1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). For each feature in the specification F1, simplification
boils down to f orm_implements f1(1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), similarly for f2

to f15. Since f ormula_T (f1) = pc1 , after simplification we get ∀pc1 . . . pc20 {(1 ⇒ pc1 ∧ 1 ⇒ pc2 ∧
1 ⇒ pc3 ∧ 0 ⇒ pc4 ∧ 1 ⇒ pc5 ∧ 0 ⇒ pc6 ∧ 0 ⇒ pc7 ∧ 0 ⇒ pc8 ∧ 0 ⇒ pc9 ∧ 0 ⇒ pc10 ∧ 0 ⇒ pc11 ∧
0 ⇒ pc12 ∧ 0 ⇒ pc13 ∧ 0 ⇒ pc14 ∧ 0 ⇒ pc15 ∧ 0 ⇒ pc16 ∧ 0 ⇒ pc17 ∧ 0 ⇒ pc18 ∧ 0 ⇒ pc19 ∧ 0 ⇒ pc20)

⇒ (pc1)}. The formula f orm_implements f1 holds true, so we check the formula f orm_implements fi
for

remaining features in the specification F1. Since it is true for all the features, the Covers(C2, F1) holds.
In order to demonstrate a negative example, we ask whether Covers(C2, F2). We simplify the

encoded formula f _covers(1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0), with f ormula_T (f4) = pc6 . This yields f orm_implements f4(1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0) and at last, ∀pc1 . . . pc20 {(1⇒ pc1 ∧ 1⇒ pc2 ∧ 1⇒ pc3 ∧ 0⇒ pc4 ∧ 1⇒ pc5 ∧ 0⇒ pc6 ∧
0 ⇒ pc7 ∧ 0 ⇒ pc8 ∧ 0 ⇒ pc9 ∧ 0 ⇒ pc10 ∧ 0 ⇒ pc11 ∧ 0 ⇒ pc12 ∧ 0 ⇒ pc13 ∧ 0 ⇒ pc14 ∧ 0 ⇒ pc15 ∧
0 ⇒ pc16 ∧ 0 ⇒ pc17 ∧ 0 ⇒ pc18 ∧ 0 ⇒ pc19 ∧ 0 ⇒ pc20)⇒ (pc6)}. Since this is FALSE, we conclude
correctly that Covers(C2, F2) does not hold.

We encode the other analysis problems as QBF formulae as shown in Table 2. The Theorem 5
asserts the correctness of the encoding. In the theorem, for the constraint CONI , CONI [qc1 , . . . , qcn]

denotes the same constraint where each propositional variable pci has been replaced by a new
propositional variable qci .

Entropy 2016, 18, 269 14 of 31

Theorem 5. Given an SPL Ψ, each of the properties listed in Table 2 holds if and only if the corresponding
formula evaluates to true.

Proof. The proof can be seen in [35].

Table 2. Properties and formulae.

Properties Formula

Valid Model ∃p f1
. . . p fm∃pc1 . . . pcn [CONI] ∧ [CONF]

Complete Traceability ∃pc1 . . . pcn{(T (p f1
) ∧ · · · ∧ T (p fm)) =⇒ (pc1 ∨ pc2 ∨ · · · ∨ pcn)}

Void Product Model ∃p f1
. . . p fm ∃pc1 . . . pcn [CONI] ∧ [CONF] ∧

¬ f _covers(pc1 , . . . , pcn , p f1
, . . . , p fm)

Implements(C, f) f orm_implements f (v1, . . . , vn)C̄ = (v1, . . . , vn)

Covers(C, F)
f _covers(v1, . . . , vn, u1, . . . , um)Realizes(C, F)
f _realizes(v1, . . . , vn, u1, . . . , um)C̄ = (v1, . . . , vn),

F̄ = (u1, . . . , um)

Ψ complete ∀p f1
. . . p fm{CONF ⇒

∃pc1 . . . pcn [CONI ∧ f _covers(pc1 , . . . , pcn , p f1
, . . . , p fm)]}

Ψ sound ∀pc1 . . . pcn {CONI ⇒∃p f1
. . . p fm

[CONF ∧ f _covers (pc1 , . . . , pcn , p f1
, . . . , p fm)]}

F existentially explicit ∃pc1 . . . pcn{CONI ∧ f _realizes(pc1 , . . . , pcn , u1, . . . , um)}F̄ = (u1, . . . , um)

F universally explicit ∃pc1 . . . pcn{CONI ∧ f _realizes(pc1 , . . . , pcn , u1, . . . , um)} ∧

F̄ = (u1, . . . , um)
∀pc1 . . . pcn {[(CONI ∧ f _covers(pc1 , . . . , pcn , u1, . . . , um)]⇒
f _realizes(pc1 , . . . , pcn , u1, . . . , um)}.

F has unique implementation ∃pc1 . . . pcn [CONI ∧ f _covers(pc1 , . . . , pcn , u1, . . . , um)]∧

F̄ = (u1, . . . , um)
∀qc1 . . . qcn ((CONI [qc1 . . . qcn] ∧ f _covers(qc1 , . . . , qcn , u1, . . . , um))
⇒ (∧n

l=1 (pcl ⇔ qcl)))]

ci common ∀pc1 . . . pcn p f1
. . . p fm {(CONI ∧CONF ∧

f _covers(pc1 , . . . , pcn , p f1
, . . . , p fm)) ⇒ pci}

ci live ∃pc1 . . . pcn , p f1
. . . p fm {(CONI ∧CONF∧

f _covers(pc1 , . . . , pcn , p f1
, . . . , p fm)) ∧ pci}

c dead ∀pc1 . . . pcn p f1
. . . p fm{(CONI ∧CONF∧

f _covers(pc1 , . . . , pcn , p f1
, . . . , p fm)) ⇒ ¬pci}

C superfluous ∀p f1
. . . p fm [(CONF ∧ f _covers(v1, . . . , vn, p f1

, . . . , p fm))⇒

C̄ = (v1, . . . , vn)
∃pc1 . . . pcn (CONI ∧ ∨i=1..n(pci 6= vi)∧
f _covers(pc1 , . . . , pcn , p f1

, . . . , p fm))]

ci redundant
∀pc1 . . . pcn p f1

. . . p fm{(pci ∧CONI ∧CONF∧
f _covers(pc1 , . . . , pcn , p f1

, . . . , p fm))⇒
f _covers(pc1 , . . . ,¬pci , . . . , pcn , p f1

, . . . , p fm)}

ci critical for f j ∀pc1 . . . pcn [f orm_implements f j
(pc1 . . . pcn)⇒ pcj]

Union ∃p f11
, . . . , p f1n ∃p f21

, . . . , p f2n ∃ f1, . . . fn { f1 ⇔ (p f11
∨p f21

) . . . fn ⇔
(p f1n ∨p f2n) ∧ [CONF]}

Intersection ∃p f11
, . . . , p f1n ∃p f21

, . . . , p f2n ∃ f1, . . . fn { f1 ⇔ (p f11
∧ p f21

) . . . fn ⇔
(p f1n ∧ p f2n) ∧[CONF]}

Entropy 2016, 18, 269 15 of 31

5. Validation

In order to validate the approach presented in this paper, a tool SPLAnE for the automated
analysis of SPL models has been developed. SPL models consists of feature models with traceability
relationships to the component models (Core assets). The Virtual Machine Product Line (VMPL) case
study based on cloud computing concepts is presented and analyzed.

5.1. SPLAnE

SPLAnE (Software Product Line Analysis Engine) is designed and developed to analyze the
traceability between the features and implementation assets. Nowadays, there is the large set of tools
that enable the reasoning over feature models. However, none of them is capable of reasoning over
the feature model and a set of implementations as described throughout this paper. For the sake
of reusability and because it has been proven to be easily extensible [36,37], we chose to use the
FaMa framework [27] as the base for SPLAnE . The FaMa framework provides a basic architecture for
building FM analysis tools while defining interfaces and standard implementation for existing FM
operations in the literature such as Valid Model or Void Product Model.

On the one hand, SPLAnE benefits from being a FaMa extension in different ways. For example,
SPLAnE can read a large set of different file formats used to describe feature models. It is also
possible to perform some of the existing operations in the literature to the feature model prior to
executing the reasoning over the component layer. On the other hand, FaMa was not designed for
reasoning over more than one model. Therefore, different modifications have been addressed to fill
this gap. Namely, (i) we modified the architecture to enable this new extension point into the FaMa
architecture; (ii) created a new reasoner for a new set of operations; (iii) implemented the operations,
and (iv) defined two new file formats to store and input traceability relationships and component
models in SPLAnE .

The reasoning process performed by SPLAnE is shown in the Figure 4. First, SPLAnE takes
as input a feature model, a traceability relationship and a component model. The SPLAnE parser
creates the SPL model from this input files. Second, SPLAnE constructs the QBF/QCIR formula
based on the selected analysis operations. QBF is further encoded in qpro format, this is done by
SPLAnE translator. qpro [38] and QCIR [39] format is a standard input file format in non-prenex,
non-CNF form. Later, SPLAnE invokes the QSAT solver CirQit [24] or RaReQS [25] in the back-end
to check the satisfiability of the generated QBFs in qpro/QCIR format. The choice of the tool is based
upon its performance: CirQit has solved the most number of problems in the non-prenex, non-CNF
track of QBFEval’10 [40]. RaReQS [25] is a Recursive Abstraction Refinement QBF Solver. Table 2
shows the analysis operations provided by SPLAnE .

The design of SPLAnE makes it possible to use different QSAT solvers. Furthermore,
SPLAnE can now work hand in hand with other products based on FaMa such as Betty [27], which
enables the testing of feature models. SPLAnE is now available for download with its detailed
documentation from the website [28].

Entropy 2016, 18, 269 16 of 31

Figure 4. SPLAnE reasoning process.

5.2. Experimentation

In this section, we go through the different experiments executed to validate our approach.
The experiments was conducted with (i) Real Debian models, (ii) Randomly generated models and
(iii) SPLOT (Software Product Line Online Tools) Repository models. Each analysis operation was
executed with two QSAT solver (CirQit and RaReQS) and three SAT solver (Sat4j, PicoSAT and
MiniSAT). All experiments was run on a 3.2 GHz i7 processor (Intel Corporation, Santa Clara, CA,
USA) machine with 16 GB RAM. The experimentation results are plotted in graph with log scale.
Furthermore, on the graph plot, solver names are denoted as {qcir: CirQit, qrare: RaReQS, psat:
PicoSAT, msat: MiniSAT}. Table 3 shows the hypothesis and the variables used when conducting
this experimentation.

Table 3. Hypotheses and design of experiments.

Hypotheses of Experiment 1

Null Hypothesis (H0) SPLAnE does not scale when coping with SPLOT model repository.

Alt. Hypothesis (H1) SPLAnE does scale when coping with SPLOT model repository.

Models used as input
Feature Model for TPL, MPPL and ESPL were taken from [41]. ECPL is taken from [26].
VMPL is presented in current paper. SPLOT repository. The 69,800 SPL models were generated
from 698 SPLOT Models.

Blocking variables
For each SPLOT model, we used 10 different topology and 10 level of cross-tree constraints
to get 100 SPL models. Percentages of cross-tree constraints were 5%, 10%, 15%, 20%, 25%,
30%, 35%, 40%, 45% and 50%.

Hypotheses of Experiment 2

Null Hypothesis (H0) SPLAnE does not scale when coping with randomly generated SPL models.

Alt. Hypothesis (H1) SPLAnE does scale when coping with randomly generated SPL models.

Model used as input 1000 Randomly generated SPL Models.

Blocking variables

We generated 10 random feature models with the number of features as 10, 50, 100, 500,
1000, 3000, 5000, 10,000, 15,000 and 20,000. For each feature model, 100 SPL models
were generated by changing it to 10 different topology across 10 different cross tree
constraints. Number of components in each model were three-times the number of features.
Percentages of cross-tree constraints: 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%
and 50%.

Entropy 2016, 18, 269 17 of 31

Table 3. Cont.

Hypotheses of Experiment 3

Null Hypothesis (H0) The use of SPLAnE will not result in a faster executions of operations than
SAT-based techniques in front of a real very-large SPL models.

Alt. Hypothesis (H1) The use of SPLAnE will result in a faster executions of operations than SAT-based
techniques in front of a real very-large SPL models.

Model used as input We used as input the Debian variability model extracted from [37] that you can find
at [28]

Hypotheses of Experiment 4

Null Hypothesis (H0) The use of SPLAnE will not result in a faster executions of operations than
SAT-based techniques in front of randomly generated SPL models.

Alt. Hypothesis (H1) The use of SPLAnE will result in a faster executions of operations than SAT-based
techniques in front of randomly generated SPL models.

Model used as input We used as input random models varying from ten features to twenty thousand features.

Hypotheses of Experiment 5

Null Hypothesis (H0) The QSAT based reasoning technique is not faster as compare to SAT based
technique for operations like completeness and soundness.

Alt. Hypothesis (H1) The QSAT based reasoning technique is faster as compare to SAT based technique
for operations like completeness and soundness.

Model used as input We used as input random models varying from ten features to twenty thousand features
and SPLOT repository models.

Constants

QSAT and SAT solvers CirQit solver [24], RaReQS solver [25], Sat4j [21], PicoSAT [23] and MiniSAT [22]

Heuristic for variable
selection in the QSAT
and SAT solver

Default

Alt.: Alternative; TPL: Tablet Product Line; MPPL: Mobile Phone Product Line; ESPL: Electronic Shopping
Product Line; ECPL: Entry Control Product Line.

5.2.1. Experiment 1: Validating SPLAnE with Feature Models from the SPLOT Repository

To illustrate the SPL analysis method described in the paper, we considered case studies of
various sizes. Concretely, the following SPLs were used: Entry Control Product Line (ECPL), Virtual
Machine Product Line (VMPL), Mobile Phone Product Line (MPPL), Tablet Product Line (TPL) and
Electronic Shopping Product Line (ESPL). The TPL, MPPL, and ESPL models were taken from the
SPLOT repository [41]. More details of the ECPL models can be found at [26]. Table 4 gives the
number of features, components in each SPL model, and the execution time taken by various analysis
operations on SPLAnE reasoner: CirQit.

The SPLOT repository is a common place where a practitioners store feature models for the
sake of reuse and communication. The SPLOT repository contains small and medium size feature
models, most of it are conceptual and few are realistic. We extracted 698 feature models from the
SPLOT repository. These feature models were given as an input to extended Betty tool to generate
corresponding SPL models. Usually, components models which represent the solution space of
SPLs are larger in size. So, the generated component models contain three-times more components
then the number of features present in the corresponding feature model. SPLAnE generated the
random traceability relation between feature model and component model to generate a complete
SPL model. Further, to increase the complexity of experiments, each SPL model is generated
using 10 different topologies and 10 different level of cross-tree constraints with percentage as
{5, 10, 15, 20, 25, 30, 35, 40, 45, 50}, resulting in a total of 100 SPL models per SPLOT model. So from
698 SPLOT models, we got 69800 SPL models. The percentage of cross-tree constraint is defined by

Entropy 2016, 18, 269 18 of 31

the percentage of constraints over the number of features. Basically it is the number of constraints
depending on the number of features. For example, if we specify a 50% percentage over a model with
10 features, then we have five cross-tree constraints.

Table 4. Time complexity for properties and formulae with SPLAnE reasoner: CirQit. (# means the
“Number” of features and components.)

SPL name ECPL VMPL MPPL TPL ESPL

#Features 8 15 25 34 290
#Components 12 20 41 40 290

Analysis Operations Time (ms) Time (ms) Time (ms) Time (ms) Time (ms)

Valid Feature Model 10 14 14 20 35
Valid Component Model 12 15 13 12 37
Valid SPL Model 14 16 15 28 40
Void Product Model 18 25 23 29 55
Valid Speci f ication 7 13 11 17 45
Valid Implementation 9 15 13 12 48
Complete Traceability 0 1 0 1 1
Implements 8 10 9 10 22
Realizes 10 26 24 14 78
Covers 12 13 10 14 74
Completeness 18 30 26 284 2135
Soundness 350 2120 1323 730 6550
Common 15 22 19 28 74
Live 18 45 61 25 82
Dead 11 20 18 27 65
Redundant 14 24 19 21 38
Critical 10 14 15 19 34
Union over Speci f ications 14 18 16 26 45
Union over Implementations 18 30 25 35 37
Union over Products 18 24 20 32 48
Intersection over Speci f ications 9 14 11 22 37
Intersection over Implementations 11 17 16 28 28
Intersection over Products 15 20 21 19 46

The tool SPLAnE was executed with 69800 SPL models to verify the QSAT scalability when
applying it to feature modeling. SPLAnE provide an option to select any one of the two QSAT
reasoners (CirQit and RaReQS). Figure 5 shows the box plot, representing the QSAT behavior with
increase in cross-tree constraints for few analysis operations on real models taken from the SPLOT
repository. This experiment was executed with the QSAT reasoner CirQit. The results for experiment
1 (Section 5.2.1) shows that for the small and medium size real models, all analysis operations does
not take much execution time which motivated us to experiments with large size models. The
overall results for experiment 1 (Section 5.2.1) point out that the null hypothesis H0 was wrong, thus,
resulting in the acceptance of the alternative hypothesis H1.

Entropy 2016, 18, 269 19 of 31

COMMON COMPLETENESS COVERS CRITICAL IMPLEMENTS

LIVE NOTCRITICAL SOUNDNESS VALIDMODEL VOIDPRODUCTMODEL

0

500

1000

1500

2000

2500

3000

3500

4000

0

500

1000

1500

2000

2500

3000

3500

4000

R
E

A
L−

F
M

−
1.

xm
l

R
E

A
L−

F
M

−
10

.x
m

l
R

E
A

L−
F

M
−

11
.x

m
l

R
E

A
L−

F
M

−
12

.x
m

l
R

E
A

L−
F

M
−

13
.x

m
l

R
E

A
L−

F
M

−
14

.x
m

l
R

E
A

L−
F

M
−

15
.x

m
l

R
E

A
L−

F
M

−
16

.x
m

l
R

E
A

L−
F

M
−

17
.x

m
l

R
E

A
L−

F
M

−
18

.x
m

l
R

E
A

L−
F

M
−

19
.x

m
l

R
E

A
L−

F
M

−
2.

xm
l

R
E

A
L−

F
M

−
20

.x
m

l
R

E
A

L−
F

M
−

3.
xm

l
R

E
A

L−
F

M
−

4.
xm

l
R

E
A

L−
F

M
−

5.
xm

l
R

E
A

L−
F

M
−

6.
xm

l
R

E
A

L−
F

M
−

7.
xm

l
R

E
A

L−
F

M
−

8.
xm

l
R

E
A

L−
F

M
−

9.
xm

l

R
E

A
L−

F
M

−
1.

xm
l

R
E

A
L−

F
M

−
10

.x
m

l
R

E
A

L−
F

M
−

11
.x

m
l

R
E

A
L−

F
M

−
12

.x
m

l
R

E
A

L−
F

M
−

13
.x

m
l

R
E

A
L−

F
M

−
14

.x
m

l
R

E
A

L−
F

M
−

15
.x

m
l

R
E

A
L−

F
M

−
16

.x
m

l
R

E
A

L−
F

M
−

17
.x

m
l

R
E

A
L−

F
M

−
18

.x
m

l
R

E
A

L−
F

M
−

19
.x

m
l

R
E

A
L−

F
M

−
2.

xm
l

R
E

A
L−

F
M

−
20

.x
m

l
R

E
A

L−
F

M
−

3.
xm

l
R

E
A

L−
F

M
−

4.
xm

l
R

E
A

L−
F

M
−

5.
xm

l
R

E
A

L−
F

M
−

6.
xm

l
R

E
A

L−
F

M
−

7.
xm

l
R

E
A

L−
F

M
−

8.
xm

l
R

E
A

L−
F

M
−

9.
xm

l

R
E

A
L−

F
M

−
1.

xm
l

R
E

A
L−

F
M

−
10

.x
m

l
R

E
A

L−
F

M
−

11
.x

m
l

R
E

A
L−

F
M

−
12

.x
m

l
R

E
A

L−
F

M
−

13
.x

m
l

R
E

A
L−

F
M

−
14

.x
m

l
R

E
A

L−
F

M
−

15
.x

m
l

R
E

A
L−

F
M

−
16

.x
m

l
R

E
A

L−
F

M
−

17
.x

m
l

R
E

A
L−

F
M

−
18

.x
m

l
R

E
A

L−
F

M
−

19
.x

m
l

R
E

A
L−

F
M

−
2.

xm
l

R
E

A
L−

F
M

−
20

.x
m

l
R

E
A

L−
F

M
−

3.
xm

l
R

E
A

L−
F

M
−

4.
xm

l
R

E
A

L−
F

M
−

5.
xm

l
R

E
A

L−
F

M
−

6.
xm

l
R

E
A

L−
F

M
−

7.
xm

l
R

E
A

L−
F

M
−

8.
xm

l
R

E
A

L−
F

M
−

9.
xm

l

R
E

A
L−

F
M

−
1.

xm
l

R
E

A
L−

F
M

−
10

.x
m

l
R

E
A

L−
F

M
−

11
.x

m
l

R
E

A
L−

F
M

−
12

.x
m

l
R

E
A

L−
F

M
−

13
.x

m
l

R
E

A
L−

F
M

−
14

.x
m

l
R

E
A

L−
F

M
−

15
.x

m
l

R
E

A
L−

F
M

−
16

.x
m

l
R

E
A

L−
F

M
−

17
.x

m
l

R
E

A
L−

F
M

−
18

.x
m

l
R

E
A

L−
F

M
−

19
.x

m
l

R
E

A
L−

F
M

−
2.

xm
l

R
E

A
L−

F
M

−
20

.x
m

l
R

E
A

L−
F

M
−

3.
xm

l
R

E
A

L−
F

M
−

4.
xm

l
R

E
A

L−
F

M
−

5.
xm

l
R

E
A

L−
F

M
−

6.
xm

l
R

E
A

L−
F

M
−

7.
xm

l
R

E
A

L−
F

M
−

8.
xm

l
R

E
A

L−
F

M
−

9.
xm

l

R
E

A
L−

F
M

−
1.

xm
l

R
E

A
L−

F
M

−
10

.x
m

l
R

E
A

L−
F

M
−

11
.x

m
l

R
E

A
L−

F
M

−
12

.x
m

l
R

E
A

L−
F

M
−

13
.x

m
l

R
E

A
L−

F
M

−
14

.x
m

l
R

E
A

L−
F

M
−

15
.x

m
l

R
E

A
L−

F
M

−
16

.x
m

l
R

E
A

L−
F

M
−

17
.x

m
l

R
E

A
L−

F
M

−
18

.x
m

l
R

E
A

L−
F

M
−

19
.x

m
l

R
E

A
L−

F
M

−
2.

xm
l

R
E

A
L−

F
M

−
20

.x
m

l
R

E
A

L−
F

M
−

3.
xm

l
R

E
A

L−
F

M
−

4.
xm

l
R

E
A

L−
F

M
−

5.
xm

l
R

E
A

L−
F

M
−

6.
xm

l
R

E
A

L−
F

M
−

7.
xm

l
R

E
A

L−
F

M
−

8.
xm

l
R

E
A

L−
F

M
−

9.
xm

l

Input model

T
im

e
in

 m
ill

is
ec

on
ds

Figure 5. Impact on QSAT scalability on Real SPLOT models with the increment in Cross Tree
Constraints (CTC) levels.

5.2.2. Experiment 2: Validating SPLAnE with Randomly Generated Large Size SPL Models

In this experiment we have compared scalability of SPLAnE and FaMa based analysis
techniques over a large size randomly generated SPL models. The Betty tool suite [42] is used to
generate random feature models relying on the approach of Thüm et al. [43]. SPLAnE extended
the Betty tool suite to generate a set of random SPL models. Those models were generated
for a number of features ranging from ten features to twenty thousand features. Concretely,
{10, 50, 100, 500, 1000, 3000, 5000, 10, 000, 15, 000, 20, 000} features with three-times larger size of each
component models. For each SPL model, 10 different topologies were generated to avoid the threats
to internal validity. Further, to increase the complexity of experiments, 10 different levels of cross-tree
constraints {5, 10, 15, 20, 25, 30, 35, 40, 45, 50} were added. Each randomly generated SPL models
consists of a feature model, a component model and a traceability relation. Note that, for model with
20,000 features there are 60,000 components in component model, which result in 80,000 variables
in a generated SPL model. For each model, 10 different topologies and 10 levels of cross-tree
constraints will result in 100 random SPL models, so in total 1000 SPL model were generated. The tool
SPLAnE was executed against randomly generated 1000 SPL models to check the scalability of our
approach with all analysis operations. Figure 6 shows the box plot for randomly generated large size
SPL models. For data clarity we plotted only eight analysis operations for all models (except models
with 50 features) and {10, 20, 30, 40, 50} cross-tree levels of constraints. The experiment 2 (Section 5.2.2
was executed with SPLAnE reasoner: RaReQS. The plot clearly shows the QSAT approach is more
scalable even with 80,000 variables in a SPL model with maximum 50% constraints. The Figure 6
show that the execution time for all analysis operation grows with the increase in number of features.

Entropy 2016, 18, 269 20 of 31

Figure 7 shows the graph plot for the same results, which help to clearly distinguish the behavior
of each analysis operations against the Cross Tree Constraints (CTC) levels. From the graphs we
observed that, the number of features in a model has more impact on the execution time than the
different levels of CTC. The levels of CTC has very less impact on the execution time. The operation
soundness take more time as it check for all implementations there exist a specification and the number
of components are three times more than the number of features. The operation completeness take
less time as compared to soundness, but take more time compared to all remaining operations. In
completeness we check for all specifications there exist an implementation, here the number of
features are less compared to the number of components. So the completeness requires less execution
time compare to soundness. The results for experiments 2 (Section 5.2.2) shows that, SPLAnE can
scale up to 80,000 variables size models and this rule out the hypothesis H0 with no option to accept
the alternative hypothesis H1.

●

●
●
● ●

●
●

●

●

●

COMMON COMPLETENESS COVERS CRITICAL

IMPLEMENTATION LIVE SOUNDNESS VOIDPRODUCTMODEL

20000

40000
60000
80000

100000120000140000160000

20000

40000
60000
80000

100000120000140000160000

10 10
0

50
0

10
00

30
00

50
00

10
00

0

15
00

0

20
00

0 10 10
0

50
0

10
00

30
00

50
00

10
00

0

15
00

0

20
00

0 10 10
0

50
0

10
00

30
00

50
00

10
00

0

15
00

0

20
00

0 10 10
0

50
0

10
00

30
00

50
00

10
00

0

15
00

0

20
00

0

Number of features

T
im

e
in

 m
ill

is
ec

on
ds

 (
lo

g1
0

sc
al

e)

Figure 6. Boxplot for QSAT scalability on large random SPL models with the increment in CTC levels.

Entropy 2016, 18, 269 21 of 31

10 20 30 40 45 50

100

10000

100

10000

100

10000

100

10000

100

10000

100

10000

100

10000

100

10000

C
O

M
M

O
N

C
O

M
P

LE
T

E
N

E
S

S
C

O
V

E
R

S
C

R
IT

IC
A

L
IM

P
LE

M
E

N
TAT

IO
N

LIV
E

S
O

U
N

D
N

E
S

S
V

O
ID

P
R

O
D

U
C

T
M

O
D

E
L

10 50 10
0

50
0

10
00

30
00

50
00

10
00

0
15

00
0

20
00

0 10 50 10
0

50
0

10
00

30
00

50
00

10
00

0
15

00
0

20
00

0 10 50 10
0

50
0

10
00

30
00

50
00

10
00

0
15

00
0

20
00

0 10 50 10
0

50
0

10
00

30
00

50
00

10
00

0
15

00
0

20
00

0 10 50 10
0

50
0

10
00

30
00

50
00

10
00

0
15

00
0

20
00

0 10 50 10
0

50
0

10
00

30
00

50
00

10
00

0
15

00
0

20
00

0

Number of features

T
im

e
in

 m
ill

is
ec

on
ds

 (
lo

g
sc

al
e)

Figure 7. QSAT scalability on large random SPL models with the increment in CTC levels.

5.2.3. Experiment 3: Comparing SPLAnE and FaMa Approach in Front of Real and Large
Debian Models

This experiment checks the behavior of SPLAnE reasoners (CirQit and RaReQS) and FaMa
reasoners (Sat4j, PicoSAT and MiniSAT) on real and large Debian models with the analysis operation
presented in the paper. We used the feature model extracted from Debian distributions [37].
This model encodes the variability present in the Ubuntu 10.04 distribution packaging system.
We used four initial models containing the data from the repositories: main (7065 features), restricted
(7098 features), multiverse (8122 features) and universe (26,338 features). To generate the SPL model
from this real feature model, we used the same actual models as component models and linked each
feature with component by naming with require relationships doubling than the number of variables
within the model. Consider, the universe Debian model with 26,338 features then its corresponding
SPL model will contain 52,676 variables.

Figure 8 shows the performance of SPLAnE reasoners (CirQit and RaReQS) and FaMa reasoners
(Sat4j, PicoSAT and MiniSAT) against the proposed analysis operations. We see that both approaches
scale for all operations in first three Debian models except the completeness and soundness where
QSAT is clearly more efficient. For completeness and soundness operations, FaMa reasoners was not
able to solve even a single instance of the Debian models. For the fourth model, i.e., universe Debian
model, FaMa reasoners was not able to solve any of the analysis operations. Whereas QSAT reasoners
against completeness and soundness operations, was able to solve first three Debian models (main,
restricted, multiverse), but was not able to solve the huge universe Debian model (26,338 features) in
the given timeout (two hours). Overall, for the operations where both approaches scale up, QSAT is
faster than SAT. This experiments clearly accepts the hypothesis H1.

Entropy 2016, 18, 269 22 of 31

COMMON COMPLETENESS COVERS IMPLEMENTATION

LIVE SOUNDNESS VALIDMODEL VOIDPRODUCTMODEL

16

1024

65536

4194304

16

1024

65536

4194304

m
ai

n

m
ai

n−
re

st
ric

te
d

m
ai

n−
re

st
ric

te
d−

m
ul

tiv
er

se

m
ai

n−
re

st
ric

te
d−

m
ul

tiv
er

se
−

un
iv

er
se

m
ai

n

m
ai

n−
re

st
ric

te
d

m
ai

n−
re

st
ric

te
d−

m
ul

tiv
er

se

m
ai

n−
re

st
ric

te
d−

m
ul

tiv
er

se
−

un
iv

er
se

m
ai

n

m
ai

n−
re

st
ric

te
d

m
ai

n−
re

st
ric

te
d−

m
ul

tiv
er

se

m
ai

n−
re

st
ric

te
d−

m
ul

tiv
er

se
−

un
iv

er
se

m
ai

n

m
ai

n−
re

st
ric

te
d

m
ai

n−
re

st
ric

te
d−

m
ul

tiv
er

se

m
ai

n−
re

st
ric

te
d−

m
ul

tiv
er

se
−

un
iv

er
se

Repositories used

T
im

e
in

 m
ill

is
ec

on
ds

 (
lo

g
sc

al
e)

solver msat psat qcir qrare Sat4j

Figure 8. SPLAnE required time vs. FaMarequired time in front of real and large Debian based
feature models.

5.2.4. Experiment 4: Comparing SPLAnE and FaMa Scalability in Front of Randomly Generated
Large Size Models

In this experiment, we checked the behavior of SPLAnE reasoners (CirQit and RaReQS) and
FaMa reasoners (Sat4j, PicoSAT and MiniSAT) on randomly generated SPL models taken from
experiments 2 (Section 5.2.2). Figure 9 shows the scalability of SPLAnE reasoners and FaMa reasoners
against randomly generated models. The results are only shown for large models from 1000 features
to 20,000 features with 50% cross-tree constraints. Here, the feature model with 10,000 features means
its corresponding SPL model contains 40,000 variables with 50% CTC. The results clearly shows
that, the SAT reasoners are not able to solve any analysis operations after getting a models of size
10,000 features or more. For completeness and soundness operations, SAT reasoners was not able
to solve any SPL models after 1000 features. The QSAT reasoners were able to solve all analysis
operations on the random SPL models. The results deny the hypothesis H0 with an option left to
accept the hypothesis H1.

Entropy 2016, 18, 269 23 of 31

COMMON COMPLETENESS COVERS CRITICAL

LIVE SOUNDNESS VALIDMODEL VOIDPRODUCTMODEL

16

512

16384

524288

16

512

16384

524288

R
M

−
01

00
0

R
M

−
03

00
0

R
M

−
05

00
0

R
M

−
10

00
0

R
M

−
15

00
0

R
M

−
20

00
0

R
M

−
01

00
0

R
M

−
03

00
0

R
M

−
05

00
0

R
M

−
10

00
0

R
M

−
15

00
0

R
M

−
20

00
0

R
M

−
01

00
0

R
M

−
03

00
0

R
M

−
05

00
0

R
M

−
10

00
0

R
M

−
15

00
0

R
M

−
20

00
0

R
M

−
01

00
0

R
M

−
03

00
0

R
M

−
05

00
0

R
M

−
10

00
0

R
M

−
15

00
0

R
M

−
20

00
0

Repositories used

T
im

e
in

 m
ill

is
ec

on
ds

 (
lo

g
sc

al
e)

solver msat psat qcir qrare Sat4j

Figure 9. SPLAnE required time vs. FaMa required time in front of random and large SPL models.

5.2.5. Experiment 5: Comparing SPLAnE with FaMa based Reasoning Techniques

The tool SPLAnE improves the performance with the set of models obtained from SPLOT
and random SPL models. In this experiment, we are comparing QSAT based technique with SAT
based techniques over the analysis operations. From the SPLOT models used in the experiment
1 (Section 5.2.1) we took those marked as realistic. FaMa supports analysis operations expressed
using propositional formulae. We acknowledge that there are analysis operations such as completeness
and soundness that cannot be expressed using propositional formulae. So, for comparing QSAT
vs. SAT reasoning, such operations where written in the FaMa tool suite with loop statements
(for or while) for traversing the whole set of solutions. Here, the loop allows us to express such
operations (completeness, soundness, etc.) to its equivalent QSAT formula but note that, the complete
operations cannot be expressed using standalone propositional formula. Later, we executed the
analysis operations with SPLAnE reasoner (CirQit and the FaMa reasoner) Sat4j.

Figure 10 shows the results for QSAT vs. SAT based reasoning for few analysis operations
on real models taken from the SPLOT repository. QSAT defeat SAT encoded formulae for every
analysis operations. The execution of all models is available on website at [44] as well as the scripts
used to generate this data. The first noticeable results are that SPLAnE overtakes all executions of
all operations when comparing to the standard FaMa version (which is using Sat4j as a solver).
Moreover, we see improvements of more than 70% (note the log scale) when talking about the
soundness operation. Therefore, after trying to refute the null hypothesis H0 (for experiment 5
(Section 5.2.5)) with no luck, we have to accept the alternative hypothesis H1 which states that
SPLAnE is faster and scalable than previously standard SAT-based techniques.

Entropy 2016, 18, 269 24 of 31

COMPLETENESS COVERS CRITICAL IMPLEMENTS

NOTCRITICAL SOUNDNESS VALIDMODEL VOIDPRODUCTMODEL

10000

20000

30000
40000
50000
60000
70000

10000

20000

30000
40000
50000
60000
70000

R
E

A
L−

F
M

−
10

R
E

A
L−

F
M

−
11

R
E

A
L−

F
M

−
12

R
E

A
L−

F
M

−
13

R
E

A
L−

F
M

−
14

R
E

A
L−

F
M

−
15

R
E

A
L−

F
M

−
16

R
E

A
L−

F
M

−
17

R
E

A
L−

F
M

−
18

R
E

A
L−

F
M

−
19

R
E

A
L−

F
M

−
2

R
E

A
L−

F
M

−
20

R
E

A
L−

F
M

−
3

R
E

A
L−

F
M

−
4

R
E

A
L−

F
M

−
5

R
E

A
L−

F
M

−
6

R
E

A
L−

F
M

−
7

R
E

A
L−

F
M

−
8

R
E

A
L−

F
M

−
10

R
E

A
L−

F
M

−
11

R
E

A
L−

F
M

−
12

R
E

A
L−

F
M

−
13

R
E

A
L−

F
M

−
14

R
E

A
L−

F
M

−
15

R
E

A
L−

F
M

−
16

R
E

A
L−

F
M

−
17

R
E

A
L−

F
M

−
18

R
E

A
L−

F
M

−
19

R
E

A
L−

F
M

−
2

R
E

A
L−

F
M

−
20

R
E

A
L−

F
M

−
3

R
E

A
L−

F
M

−
4

R
E

A
L−

F
M

−
5

R
E

A
L−

F
M

−
6

R
E

A
L−

F
M

−
7

R
E

A
L−

F
M

−
8

R
E

A
L−

F
M

−
10

R
E

A
L−

F
M

−
11

R
E

A
L−

F
M

−
12

R
E

A
L−

F
M

−
13

R
E

A
L−

F
M

−
14

R
E

A
L−

F
M

−
15

R
E

A
L−

F
M

−
16

R
E

A
L−

F
M

−
17

R
E

A
L−

F
M

−
18

R
E

A
L−

F
M

−
19

R
E

A
L−

F
M

−
2

R
E

A
L−

F
M

−
20

R
E

A
L−

F
M

−
3

R
E

A
L−

F
M

−
4

R
E

A
L−

F
M

−
5

R
E

A
L−

F
M

−
6

R
E

A
L−

F
M

−
7

R
E

A
L−

F
M

−
8

R
E

A
L−

F
M

−
10

R
E

A
L−

F
M

−
11

R
E

A
L−

F
M

−
12

R
E

A
L−

F
M

−
13

R
E

A
L−

F
M

−
14

R
E

A
L−

F
M

−
15

R
E

A
L−

F
M

−
16

R
E

A
L−

F
M

−
17

R
E

A
L−

F
M

−
18

R
E

A
L−

F
M

−
19

R
E

A
L−

F
M

−
2

R
E

A
L−

F
M

−
20

R
E

A
L−

F
M

−
3

R
E

A
L−

F
M

−
4

R
E

A
L−

F
M

−
5

R
E

A
L−

F
M

−
6

R
E

A
L−

F
M

−
7

R
E

A
L−

F
M

−
8

Input model

T
im

e
in

 m
ill

is
ec

on
ds

 (
lo

g
sc

al
e)

Solver qcir Sat4j

Figure 10. SPLAnE required time vs. FaMa required time.

5.3. Threats to Validity

Even though the experiments presented in this paper provide evidence that the solution
proposed is valid, there are some conditions that may affect their validity. In this section, we discuss
the different threats to validity that affect the evaluation.

External Validity: The inputs used for the experiments presented in this paper try to mimic
realistic feature models. However, SPLOT models are not necessarily realistic. To ease off this threat
we decide to used feature models based on the Debian repository. Furthermore, the random feature
models may not reflect the same structure as other realistic models. The major threats to the external
validity are:

• Population validity, the models may not be realistic. To reduce these threats, we generated the
models as in [43] and implemented in the Betty tool [42]. We also, used model coming out the
Debian repositories to provide more realistic topologies.

• Ecological validity: While external validity, in general comes with the generalization of the results
to other contexts (e.g., using other models), the ecological validity faces the threats affecting the
experiment materials and tools. To prevent the threats of third party threads running on the
machines, SPLAnE analyses were executed 10 times and then averaged.

Internal validity: The CPU capabilities required when analyzing an SPL model depend on the
number of features, components and percentage of cross-tree constraints. However, there might
be some variables affecting the performance, such as the topology, so we generated 10 different
topologies for each SPL model.

Construct validity: The results look promising in terms of time required to solve problems related
to the feature model. However, we can not grant its validity with models more than 20,000 features.

Entropy 2016, 18, 269 25 of 31

6. Related Work

Automated Analysis of Feature Models. The automated analysis of feature models has been around
for more than 20 years [6]. Up to 30 different analysis operations have been presented. However, there
is a lack of support for implementation assets and their relations with the variability management.
In this paper, we extend the variability management analysis with the automated analysis of feature
models among the implementation of the different features. White et al. [45] presented an approach to
automate the configuration in SPLs by transforming feature model and configurations in Constraint
Satisfaction Problem (CSP). The CSP are used to diagnose errors in the selected features. In the case
of invalid configuration, it repairs the selected features. Authors also verified their approach on the
feature models in the rang of 100 to 5000 features. Bagheri et al. shows the approach to construct
feature models with its constraints using a propositional formulae [46]. They also explained the
formalism to configure a semi-automated feature model. Soltani et al. gives the configurations
process based on artificial intelligence planning technique to derive product from a feature model
automatically according to the stakeholders requirements, were the stakeholders may have diverse
business and limited resources [47].

Traceability in SPLs. While there is a fairly large body of work in the literature on different facets
of SPL, in the following we mention only those which address traceability as a primary aspect. Four
important characteristics of a variability model, namely, consistency, visualization, scalability and
traceability are defined in [9]. A variability management model that focuses on the traceability aspect
of the notion of problem and solution spaces is presented in [2]. Anquetil et al. [8] formalize the
traceability relations across the problem and solution space and also across domain and product
engineering. In [12], the notion of product maps is defined which is a matrix giving the relation between
features and products. Consistency analysis of product maps is presented in [13]. Zhu et al. [15]
define a traceability relation from requirements to features and also from features to architectures,
with consistency analysis. Reference [14] lpresents a method to identify the traceability between
feature model and architecture model. The Czarnecki’s work [3,10,11] on giving semantics to features
in feature models by mapping them to other models has been found useful at the requirements level.
However, none of the works mentioned above present the formal approach for analyses operations,
nor it address the role of traceability in the implementability aspect of SPLs.

Implementation derivation. Borba et al. [48] build on the idea of automatic generation of products
from assets by relying on feature diagrams and configuration knowledge (CK) [3]. A CK relates
features to assets specifying that assets implement possible feature combinations. The reference [48]
lays theoretical foundations on refining and evolving SPLs. The notion of traceability in [48] is
general; however, unlike the reference [48], the focus of our paper is on the implementability of SPLs.

Template-based traceability. In [10,11], the authors propose a template-based approach for
mapping feature models to annotated models expressed in Unified Modeling Language (UML) or
a domain-specific modeling language. Based on a particular configuration of features, an instance
of the template is created by evaluating presence conditions in the model. The reference [11] gives
a verification procedure which establishes that no ill-formed template instances will be produced
given a correct configuration of the feature model. The procedure takes a feature model and an
annotated template, which is an instance of a class model (like UML) and a set of OCL (Object
Constraint Language) rules. The rules are written with respect to the class model, and each OCL
constraint is an invariant on some class c. The final verification is done by checking the validity of a
propositional formula. Our notion of traceability is more general than instantiating a template based
on the presence of a set of features; moreover, our analysis operations require an encoding into QSAT
and we have experimental evidence to suggest that the QSAT encoding performs well over SAT-based
procedures (Figure 10).

Variability Management. The paper that is the closest to our work is that by Metzger et al. [20]
and deserves a detailed comparison. In this paper, PL variability refers to the variations in the
features of the system and software variability refers to the variations among the software system

Entropy 2016, 18, 269 26 of 31

artifacts. In our paper, we follow a different terminology to bring out the product line hierarchy
clearly (shown in Figure 11): a scope consists of all the features, a variant specification (referred
to as just “specification”) is a subset of features, product line specification (PL specification) is
a set of variant specifications. On the other hand, core assets comprise all the components, a
variant implementation (referred to as just “implementation”) is a subset of components, product
line implementation (PL implementation) is a set of variant implementations. The PL variability
of Metzger et al. is analogous to PL specifications and software variability is analogous to PL
implementations. In Metzger et al., PL variability is represented as OVM (Orthogonal Variability
Model) and software variability is represented as FD (Feature Diagrams). In our paper, we give
set-theoretic semantics to SPLs in lieu of the visually appealing notations such as FD, VFD and
OVM. The advantage is that in these semantics the core concepts, analysis problems, and the solution
methods can be expressed in a clearer and more concise manner.

Figure 11. Product line hierarchy.

The traceability among PL and software variability is represented in Metzger et al. using X-links.
One type of X-links is of the form f ⇔ V1∨V2∨ ∨ . . . Vn which says a feature f is present iff at least
one of the variations Vi is present in the software variability. However, it cannot capture the fact that
a feature may be implemented by different sets of software artifacts which may require constraints of
the form f ⇔ (c11 ∧ c12 ∧ c13)∨(c21 ∧ c22 . . .)∨ The other type of traceability constraints suggested
in Metzger et al. is simple propositional formulae. However, not all propositional constraints provide
the intuitive and strong implementability relations between the implementations and specifications.
The definition of traceability in our paper captures the above-mentioned class of constraints and is
used to define a reasonable notion of a relation between implementations and specifications.

Marcilio et al. presented the experimental results to prove the SAT-based approach to analyze a
variability models like feature model is easy [49]. Authors have used feature models with maximum
of 10,000 feature. To increase the hardness, feature models where added with 10%, 20% and 30% of
cross-tree constraints (CTC). They found that realistic feature models are not difficult for SAT solvers.

Steven et al. present the heuristic to generate a feature model from an existing system using
reverse engineering [50]. They used three real system as Linux, eCos and FreeBSD. The Linux has a
variability model represented by Kconfig Language and eCos has Component Definition Language,
where as FreeBSD has a list of features. The approach was able to successfully generate the feature
model from Linux, eCos and FreeBSD systems.

Mikolás et al. presents a meta model which is mechanically formalized from the feature
models in the literature [51]. This meta model is used for feature modeling and reasoning about
it. Larger size SPLs development involves manipulating many parts in FMs. The paper [52] propose
an compositional approach to develop complex SPLs with the help of complimentary operators like

Entropy 2016, 18, 269 27 of 31

aggregate, merge and slice. Along with reasoning, the paper present methods for correction of
anomalies, update and extraction and reconciliation of FMs.

The SAT-based definition of products in Metzger et al. allows causally unrelated components
and features as products of the SPL. At other times, it is too restrictive in that it does not allow
additional components in an implementation which do not provide any feature, but are forced to be
with other components because of, say, packaging restrictions. It seems necessary to strike the right
balance between the strictness of X-links and the general propositional constraints for a reasonable
definition of implementability. This is provided by the definition of the relation Covers in our paper.

Metzger et al. propose a number of analysis problems; in the terminology of that paper, they
are realizability, internal competition, usefulness, flexibility and common and dead elements. We have
redefined these in our paper from the perspective of the new implements relation. Moreover, we have
described some new and useful SPL analysis problems (superfluous, redundancy, critical component,
extraneous features). In Metzger et al., it was noted that the satisfiability-based formulation needed
to enumerate and check all the implementations and specifications in order to solve certain analysis
problems. Hence, the cumulative complexity of satisfiability checking may be prohibitive for large
SPLs. The QSAT based formulation proposed in our paper obviates this problem and gives efficient
solution methods scalable to large, real-life case studies. Figure 10 gives a comparison of SAT and
QSAT approaches for the analysis operation soundness and completeness. The time complexity shown
in the figure shows the superiority of the QSAT approach over SAT-based approaches for some
analysis problems. On a bigger case study (ESPL in Section 5), which had 290 features and an equal
number of components, the SAT-based approach failed to solve any of the analysis problems.

7. Future Work

In future work, we plan to focus on the following extension aspects of this paper:

• More solvers: Currently, we have implemented SPLANE analysis operations using a reduced
number of QSAT and SAT solvers. In the future we plan to add some SMT (Satisfiability Modulo
Theories) solvers to this list and proceed with comparative study detecting the pros and cons of
each approach.

• Granularity: In this paper we have considered that the traceability relation exists at the level of
features and components. However, A traceability relation can be extended to map a feature
with a part of components or a component can be decompose into sub-component to perform a
granular mapping or multi-level mapping.

• Logic paradigms: We have focused on SAT solving techniques, however, there are some other
approaches such as BDD that are appealing for the same usage. In the future, we plan to do a
comparison between a QSAT approach presented in paper and quantification over BDD with the
implementation across all the analysis operation.

• Experimentation: In this paper, we have evaluated our approach in a diverse set of scenarios
however, we focused in examples containing only 1:m relationships. In the future work we plan
to extend the experimentation to n:m relationships to see if this has implications in the scalability
of our solution.

8. Conclusions

In this paper, we stress the need to jointly analyze the specification and the implementation
of SPLs. Thus, we have started from a formal definition of the notion of traceability and a set
theoretical-based framework. We imported existing analyses and propose new analyses, such as
superfluousness, explicitness, redundant, union, intersection, valid model, void product model,
complete traceability, etc. The analysis problems have been translated into Quantified Boolean
Formula and solved efficiently using a QBF solver. The approach is supported by a software
tool called SPLAnE and integrated with the existing FaMa framework. We conducted a detailed
experimentation with SPLAnE on: (i) large Debian models; (ii) randomly-generated models; and

Entropy 2016, 18, 269 28 of 31

(iii) SPLOT models. We executed all analysis operations with five solvers, i.e., two QSAT solvers
(CirQit and RaReQS) and three SAT solvers (Sat4j, PicoSAT and MiniSAT). Further, we experimented
SPLAnE for scalability. The experiments are also conducted on the QSAT approach vs. the SAT
approach. For scalability, we took the extended Betty tool and generated a random set of SPL
models ranging from five to 50 percent of cross-tree constraints, with 10 different topology and
from 10 features to 20,000 features. The scalability result shows that the tool SPLAnE was able to
analyze such huge SPL models. The comparison between SAT vs. QSAT results clearly shows that our
approach improved the performance by 70% over the SAT-based approach for the analysis operations,
like soundness and completeness.

Acknowledgments: The tool SPLAnE and experimentation data are available for download from the
website [28]. This work has been partially supported by the European Commission (FEDER), the Spanish and the
Andalusian R&D&I programs under Grants TIN2015-70560-R (BELI), P12-TIC-1867 (COPAS) and P10-TIC-5906
(THEOS).

Author Contributions: Ganesh Khandu Narwane is responsible for writing the formal framework for SPL. He
also worked on implementation of tool SPLEnD and performed experimentation across various case studies.
José Á. Galindo has contributed with the experimentation section as well as discussing with all authors the
construction and readability of the paper. Shankara Narayanan Krishna is responsible for writing formal
definition and proofs for various analysis operations. She also contributed in motivating analysis operations
and related work. David Benavides Cuevas has contributed by providing useful remarks and the design of the
experiments. Jean-Vivien Millo contributed in initial tool design and development, introduction and related
work section. Ramesh Sethu is responsible for providing technical leadership for research and development in
several areas related to Electronics, Control & Software processes, methods, and tools. All authors have read and
aprroved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SPL: Software Product Line
QBF: Quantified Boolean Formulae
QSAT: Quantified Satisfiability
SPLE: Software Product Line Engineering
GUI: Graphical User Interface
KDE: K desktop environment
GNOME: GNU Network Object Model Environment
XFCE: XForms Common Environment
CSP: Constraint Satisfaction Problem
BDD: Binary Decision Diagrams
CM: Component Model
FM: Feature Model
QCIR: Quantified CIRcuit
SPLOT: Software Product Line Online Tools
CTC: Cross Tree Constraints

References

1. Czarnecki, K.; Wasowski, A. Feature diagrams and logics: There and back again. In Proceedings of the
11th International Software Product Line Conference (SPLC 2007), Kyoto, Japan, 10–14 September 2007;
pp. 23–34.

Entropy 2016, 18, 269 29 of 31

2. Berg, K.; Bishop, J.; Muthig, D. Tracing software product line variability: From problem to solution space.
In Proceedings of the 2005 Annual Research Conference of the South African Institute of Computer Scientists
and Information Technologists on IT Research in Developing Countries, White River, South Africa, 20–22
September 2005; pp. 182–191.

3. Czarnecki, K.; Eisenecker, U.W. Generative Programming: Methods, Tools, and Applications; Addison-Wesley
Publishing: New York, NY, USA, 2000.

4. Pohl, K.; Böckle, G.; van der Linden, F.J. Software Product Line Engineering—Foundations, Principles, and
Techniques; Springer: Berlin/Heidelberg, Germany, 2005.

5. Clements, P.C.; Northrop, L.M. Software Product Lines: Practices and Patterns; Addison-Wesley: Boston, MA,
USA, 2001.

6. Benavides, D.; Segura, S.; Cortés, A.R. Automated analysis of feature models 20 years later: A literature
review. Inf. Syst. 2010, 35, 615–636.

7. Pohl, K.; Metzger, A. Variability management in software product line engineering. In Proceedings
of the 28th International Conference on Software Engineering, Shanghai, China, 20–28 May 2006; ACM:
New York, NY, USA, 2006; pp. 1049–1050.

8. Anquetil, N.; Grammel, B.; Galvao Lourenco da Silva, I.; Noppen, J.A.R.; Shakil Khan, S.; Arboleda, H.;
Rashid, A.; Garcia, A. Traceability for model driven, software product line engineering. In Proceedings of
the ECMDA Traceability Workshop, Berlin, Germany, 12 June 2008; pp. 77–86.

9. Beuche, D.; Papajewski, H.; Schröder-Preikschat, W. Variability management with feature models.
Sci. Comput. Program. 2004, 53, 333–352.

10. Czarnecki, K.; Antkiewicz, M. Mapping features to models: A template approach based on superimposed
variants. In Proceedings of the 4th International Conference on Generative Programming and Component
Engineering, Tallinn, Estonia, 29 September–1 October 2005; Springer: Berlin/Heidelberg, Germany, 2005;
pp. 422–437.

11. Czarnecki, K.; Pietroszek, K. Verifying feature-based model templates against well-formedness
OCL constraints. In Proceedings of the 5th International Conference on Generative Programming and
Component Engineering, Portland, OR, USA, 22–26 October 2006; ACM: New York, NY, USA, 2006;
pp. 211–220.

12. DeBaud, J.M.; Schmid, K. A systematic approach to derive the scope of software product lines.
In Proceedings of the 21st International Conference on Software Engineering, Los Angeles, CA, USA,
16–22 May 1999; ACM: New York, NY, USA, 1999; pp. 34–43.

13. Eisenbarth, T.; Koschke, R.; Simon, D. A formal method for the analysis of product maps. In Proceedings
of the Requirements Engineering for Product Lines Workshop, Essen, Germany, 9–13 September 2002.

14. Satyananda, T.K.; Lee, D.; Kang, S.; Hashmi, S.I. Identifying traceability between feature model and
software architecture in software product line using formal concept analysis. In Proceedings of the
International Conference on Computational Science and its Applications (ICCSA 2007), Kuala Lumpur,
Malaysia, 26–29 August 2007; pp. 380–388.

15. Zhu, C.; Lee, Y.; Zhao, W.; Zhang, J. A feature oriented approach to mapping from domain requirements
to product line architecture. In Proceedings of the 2006 International Conference on Software Engineering
Research and Practice, Las Vegas, NV, USA, 26–29 June 2006; pp. 219–225.

16. Anquetil, N.; Kulesza, U.; Mitschke, R.; Moreira, A.; Royer, J.C.; Rummler, A.; Sousa, A. A model-driven
traceability framework for software product lines. Softw. Syst. Model. 2010, 9, 427–451.

17. Cavalcanti, Y.A.C.; do Carmo Machado, I.; da Mota, P.A.; Neto, S.; Lobato, L.L.; de Almeida, E.S.;
de Lemos Meira, S.R. Towards Metamodel Support for Variability and Traceability in Software Product
Lines. In Proceedings of the 5th Workshop on Variability Modeling of Software-Intensive Systems, Namur,
Belgium, 27–29 January 2011; ACM: New York, NY, USA, 2011; pp. 49–57.

18. Ghanam, Y.; Maurer, F. Extreme product line engineering: Managing variability and traceability via
executable specifications. In Proceedings of the 2009 Agile Conference, Chicago, IL, USA, 24–28 August
2009; pp. 41–48.

19. Riebisch, M.; Brcina, R. Optimizing design for variability using traceability links. In Proceedings of the
15th Annual IEEE International Conference and Workshop on the Engineering of Computer Based Systems,
Belfast, Northern Ireland, 31 March–4 April 2008; IEEE: Washington, DC, USA, 2008; pp. 235–244.

Entropy 2016, 18, 269 30 of 31

20. Metzger, A.; Heymans, P.; Pohl, K.; Schobbens, P.Y.; Saval, G. Disambiguating the documentation of
variability in software product lines: A separation of concerns, formalization and automated analysis.
In Proceedings of the 15th IEEE International Requirements Engineering Conference (RE 2007), Delhi, India,
15–19 October 2007; pp. 243–253.

21. SAT4J-Solver. Available online: http://www.sat4j.org/ (accessed on 7 July 2016).
22. MiniSAT-Solver. Available online: http://minisat.se/ (accessed on 7 July 2016).
23. PicoSAT. Available online: http://fmv.jku.at/picosat/ (accessed on 7 July 2016).
24. CirQit. Available online: http://www.cs.utoronto.ca/~alexia/cirqit/ (accessed on 7 July 2016).
25. RAReQS-NN. Available online: http://sat.inesc-id.pt/~mikolas/sw/rareqs-nn/ (accessed on 7 July 2016).
26. Mohalik, S.; Ramesh, S.; Millo, J.V.; Krishna, S.N.; Narwane, G.K. Tracing SPLs precisely and efficiently.

In Proceedings of the 16th International Software Product Line Conference–Volume 1, Salvador, Brazil,
2–7 September 2012; pp. 186–195.

27. Benavides, D.; Segura, S.; Trinidad, P.; Cortés, A.R. FAMA: Tooling a framework for the automated
analysis of feature models. In Proceedings of the First International Workshop on Variability Modelling of
Softwareintensive Systems, Limerick, Ireland, 16–18 January 2007; pp. 129–134.

28. SPLAnE. Available online: http://www.cse.iitb.ac.in/~splane/ (accessed on 7 July 2016).
29. Kang, K.C.; Cohen, S.G.; Hess, J.A.; Novak, W.E.; Peterson, A.S. Feature-Oriented Domain Analysis (FODA)

Feasibility Study; Technical Report CMU/SEI-90-TR-21; Software Engineering Institute of Carnegie Mellon
University: Pittsburgh, PA, USA, 1990.

30. Schobbens, P.Y.; Heymans, P.; Trigaux, J.C.; Bontemps, Y. Generic semantics of feature diagrams.
Comput. Netw. 2007, 51, 456–479.

31. Batory, D. Feature models, grammars, and propositional formulas. In Proceedings of the 9th International
Conference on Software Product Lines, Rennes, France, 26–29 September 2005; pp. 7–20.

32. The Yices SMT Solver. Available online: http://yices.csl.sri.com/ (accessed on 7 July 2016).
33. BDDSolve. Available online: http://www.win.tue.nl/~wieger/bddsolve/ (accessed on 7 July 2016).
34. Stockmeyer, L.J. The polynomial-time hierarchy. Theor. Comput. Sci. 1976, 3, 1–22, doi:10.1016/

0304-3975(76)90061-X.
35. SPLAnE-TR. Available online: http://www.cse.iitb.ac.in/~krishnas/tr2012.pdf, (accessed on 7 July 2016).
36. Roos-Frantz, F.; Galindo, J.A.; Benavides, D.; Ruiz-Cortés, A. FaMa-OVM: A tool for the automated analysis

of OVMs. In Proceedings of the 16th International Software Product Line Conference, Salvador, Brazil,
2–7 September 2012; pp. 250–254.

37. Galindo, J.A.; Benavides, D.; Segura, S. Debian packages repositories as software product line models.
Towards automated analysis. In Proceedings of the 1st International Workshop on Automated Configuration
and Tailoring of Applications, Antwerp, Belgium, 20 September 2010; pp. 29–34.

38. Seidl, M. The qpro Input Format: A Textual Syntax for QBFs in Negation Normal Form. Available online:
http://qbf.satisfiability.org/gallery/qpro.pdf (accessed on 7 July 2016).

39. Gallery, Q. QCIR-G14: A Non-Prenex Non-CNF Format for Quantified Boolean Formulas. Available online:
http://qbf.satisfiability.org/gallery/qcir-gallery14.pdf (accessed on 7 July 2016).

40. Peschiera, C.; Pulina, L.; Tacchella, A.; Bubeck, U.; Kullmann, O.; Lynce, I. The Seventh QBF Solvers
Evaluation (QBFEVAL’10). In Proceedings of the 13th International Conference (SAT 2010), Edinburgh,
UK, 11–14 July 2010; pp. 237–250.

41. Mendonca, M.; Branco, M.; Cowan, D. SPLOT: Software product lines online tools. In Proceedings of the
24th ACM SIGPLAN Conference Companion on Object Oriented Programming Systems Languages and
Applications, Orlando, FL, USA, 25–29 October 2009; ACM: New York, NY, USA, 2009; pp. 761–762.

42. Segura, S.; Galindo, J.A.; Benavides, D.; Parejo, J.A.; Ruiz-Cortés, A. BeTTy: Benchmarking and testing on
the automated analysis of feature models. In Proceedings of the Sixth International Workshop on Variability
Modeling of Software-Intensive Systems, Leipzig, Germany, 25–27 January, 2012; pp. 63–71.

43. Thüm, T.; Batory, D.S.; Kästner, C. Reasoning about edits to feature models. In Proceedings of the 31st
International Conference on Software Engineering (ICSE 2009), Vancouver, BC, Canada, 16–24 May 2009;
pp. 254–264.

44. SPLAnE. Available online: http://www.cse.iitb.ac.in\~splane (accessed on 7 July 2016).
45. White, J.; Benavides, D.; Schmidt, D.; Trinidad, P.; Dougherty, B.; Ruiz-Cortes, A. Automated diagnosis of

feature model configurations. J. Syst. Softw. 2010, 83, 1094–1107.

http://www.sat4j.org/
http://minisat.se/
http://fmv.jku.at/picosat/
http://www.cs.utoronto.ca/~alexia/cirqit/
http://sat.inesc-id.pt/~mikolas/sw/rareqs-nn/
http://www.cse.iitb.ac.in/~splane/
http://yices.csl.sri.com/
http://www.win.tue.nl/~wieger/bddsolve/
http://www.cse.iitb.ac.in/~krishnas/tr2012.pdf
http://qbf.satisfiability.org/gallery/qpro.pdf
http://qbf.satisfiability.org/gallery/qcir-gallery14.pdf
http://www.cse.iitb.ac.in\~splane

Entropy 2016, 18, 269 31 of 31

46. Bagheri, E.; di Noia, T.; Ragone, A.; Gasevic, D. Configuring software product line feature models based on
stakeholders’ soft and hard requirements. In Proceedings of the 14th International Conference on Software
Product Lines: Going Beyond, Jeju Island, Korea, 13–17 September 2010; pp. 16–31.

47. Soltani, S.; Asadi, M.; Hatala, M.; Gasević, D.; Bagheri, E. Automated planning for feature model
configuration based on stakeholders’ business concerns. In Proceedings of the 26th IEEE/ACM International
Conference on Automated Software Engineering, Lawrence, KS, USA, 6–10 November 2011; pp. 536–539.

48. Borba, P.; Teixeira, L.; Gheyi, R. A theory of software product line refinement. Theor. Comput. Sci. 2012,
455, 2–30.

49. Mendonca, M.; Wasowski, A.; Czarnecki, K. SAT-based analysis of feature models is easy. In Proceedings
of the 13th International Software Product Lines (SPLC 2009), San Francisco, CA, USA, 24–28 August 2009;
pp. 231–240.

50. She, S.; Lotufo, R.; Berger, T.; Wasowski, A.; Czarnecki, K. Reverse engineering feature models.
In Proceedings of the 33rd International Conference on Software Engineering (ICSE 2011), Waikiki, HI,
USA, 21–28 May 2011; pp. 461–470.

51. Janota, M.; Kiniry, J. Reasoning about feature models in higher-order logic. In Proceedings of the 11th
International Software Product Lines (SPLC 2007), Kyoto, Japan, 10–14 September 2007; pp. 13–22.

52. Acher, M.; Collet, P.; Lahire, P.; France, R.B. Separation of concerns in feature modeling: Support and
applications. In Proceedings of the 11th International Conference on Aspect-Oriented Software Development
(AOSD 2012), Potsdam, Germany, 25–30 March 2012; pp. 1–12.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Motivating Example
	SPLAnE Framework: Traceability and Implementation
	Specification and Implementation
	Traceability
	The Implements Relation

	Analysis Operations
	SPL Model Verification
	Complete and Sound SPL
	Product Optimization
	SPL Optimization
	Generalization and Specialization in SPL

	Validation
	SPLAnE
	Experimentation
	Experiment 1: Validating SPLAnE with Feature Models from the SPLOT Repository
	Experiment 2: Validating SPLAnE with Randomly Generated Large Size SPL Models
	Experiment 3: Comparing SPLAnE and FaMa Approach in Front of Real and Large Debian Models
	Experiment 4: Comparing SPLAnE and FaMa Scalability in Front of Randomly Generated Large Size Models
	Experiment 5: Comparing SPLAnE with FaMa based Reasoning Techniques

	Threats to Validity

	Related Work
	Future Work
	Conclusions

