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Abstract. In this paper, we introduce the contact Whitney sphere as an imbedding of the
n–dimensional unit sphere as an integral submanifold of the standard contact structure on
R

2n+1. We obtain a general inequality for integral submanifolds in R
2n+1, involving both the

scalar curvature and the mean curvature, and we use the equality case in order to characterize
the contact Whitney sphere. We also study a similar problem for anti-invariant submanifolds
of R

2n+1, tangent to the structure vector field.
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Introduction

One of the most interesting topics in contact geometry is the study of integral
submanifolds, i.e., submanifolds immersed in a contact manifold, such that the
contact form restricted to the submanifold vanishes. In particular, 1–dimensional
integral submanifolds are called Legendre curves.

A well-known property of Legendre curves of the standard contact structure
dz − ydx on R

3 is that the projection γ̄ of a closed Legendre curve γ in R
3

to the xy-plane must have self-intersections and algebraic (signed) area zero.
On the other hand, we can think of the pair of γ and its projection γ̄ in the
following terms. Suppose that γ itself does not have self-intersections and regard
γ̄ as a Lagrangian submanifold in C ∼= R

2 with self-intersections; then think of
going from γ̄ to γ as a way of removing the singularity but preserving the
“Lagrangian-Legendre” property.

A generalization of this can be done with the Whitney spheres. The Whitney
spheres are usually defined as a family of Lagrangian immersions of the unit
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sphere S
n, centered at the origin of R

n+1, into C
n ∼= R

2n given by

(u0, u1, . . . , un) → r

1 + u2
0

(u1, . . . , un, u0u1, . . . , u0un) +B, (1)

where r is a positive number and B is a vector of C
n. The number r and the

vector B are called the radius and the center of the Whitney sphere, respectively.
From a topological point of view, it is well-known that the sphere can not be
imbedded in C

n as a Lagrangian submanifold. The Whitney spheres have the
best possible behaviour, because they have only one double point at the poles
of S

n.
In the contact manifold R

2n+1 with its usual contact metric structure, we
have the following presentation of the Whitney spheres as a family of imbedded
spheres and integral submanifolds of the contact structure

(u0, u1, . . . , un) → r

1 + u2
0

(u0u1, . . . , u0un, u1, . . . , un,
ru0

1 + u2
0

+ C(1 + u2
0)) +B,

where r is a positive number, B is a vector of R
2n+1 and C is a real constant.

We refer to these spheres as the contact Whitney spheres. Therefore, with this
presentation we have removed the previous singularity at the poles of S

n.
On the other hand, the Whitney spheres in C

n have an interesting geomet-
ric property. It was proven by Borrelli, Chen and Morvan [3] and independently
by Ros and Urbano [6] that if Mn is a Lagrangian submanifold of C

n, with

mean curvature vector H and scalar curvature τ , then |H|2 ≥ 2(n+ 2)
n2(n− 1)

τ , with

equality if and only if M is either totally geodesic or a (piece of a) Whitney
sphere. Moreover, in [4], Castro constructs a one-parameter family of Lagrangian
spheres including the Whitney sphere, such that they satisfy a geometric equal-
ity of type τ = µ|H|2, with µ > 0.

In this paper, we establish an analogue of the above result for integral sub-
manifolds in R

2n+1 with its standard Sasakian structure, such that the equality
case holds for the contact Whitney spheres. We also give a characterization by
the second fundamental form, similar to that of Ros and Urbano in [6].

Finally, we study the same problem for anti-invariant submanifolds tangent
to the structure vector field on R

2n+1 and obtain the corresponding results.

1 Preliminaries.

Let (R2n+1, φ, ξ, η, g) denote the manifold R
2n+1 with its usual Sasakian

structure given by

η =
1
2
(dz −

n∑
i=1

yidxi), ξ = 2
∂

∂z
,
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g = η ⊗ η +
1
4

n∑
i=1

(dxi ⊗ dxi + dyi ⊗ dyi),

φ(
n∑

i=1

(Xi
∂

∂xi
+ Yi

∂

∂yi
) + Z

∂

∂z
) =

n∑
i=1

(Yi
∂

∂xi
−Xi

∂

∂yi
) +

n∑
i=1

Yiyi
∂

∂z
,

where (xi, yi, z), i = 1 . . . n are the cartesian coordinates.
It is well-known that (R2n+1, φ, ξ, η, g) is a Sasakian-space-form, with con-

stant φ–sectional curvature equal to −3. Hence, its curvature tensor R̃ is given
by

R̃(X,Y )Z = −η(X)η(Z)Y + η(Y )η(Z)X − g(X,Z)η(Y )ξ+

+g(Y, Z)η(X)ξ − g(Z, φY )φX + g(Z, φX)φY − 2g(X,φY )φZ, (2)

for any vector fields X,Y, Z. For more details and background, we refer to [2].
Let M be an n-dimensional Riemannian manifold isometrically immersed in

the Sasakian-space-form R
2n+1. We also denote by g the metric on M .

Let ∇ (resp. ∇̃) be the Levi–Civita connection of M (resp. R
2n+1). Then,

the Gauss–Weingarten formulas are given by

∇̃XY = ∇XY + σ(X,Y ), ∇̃XV = −AVX +DXV,

for any tangent vector fields X and Y and any normal vector field V , where
D is the connection in the normal bundle, σ is the second fundamental form
of M and A is the shape operator. The mean curvature vector H is defined by
H = (1/n) trace σ.

A submanifold M is called an integral submanifold if η restricted to M
vanishes. It is well-known that the contact subbundle {η = 0} admits integral
submanifolds up to and including dimension n, but of no higher dimension, see
e.g. [2]. A direct consequence of this definition is that φX is a normal vector
field, for any tangent vector field X, i.e., M is an anti-invariant submanifold of
R

2n+1. Hence, in a neighborhood of every point p ∈M , we can consider a local
orthonormal frame {e1, . . . , en, e1∗, . . . , en∗, ξ}, such that e1, . . . , en are tangent
to M and ei∗ = φei, for any i = 1, . . . , n. Such a frame is called a Legendre
frame. If we put σk

ij = g(σ(ei, ej), ek∗), it can be proved that

σi
jk = σk

ji = σj
ik, (3)

for any i, j, k = 1, . . . , n.
On the other hand, we have [2, p. 128]

Aξ = 0, (4)

equivalently σ(X,Y ) is perpendicular to ξ, for any tangent vector fields X and
Y .



128 D. E. Blair, A. Carriazo

2 Characterizing the Contact Whitney Sphere

LetM be an n–dimensional submanifold of R
2n+1. Given a tangent orthonor-

mal frame {e1, . . . , en}, the scalar curvature τ of M is defined by

τ =
∑
i<j

K(ei ∧ ej),

where K(ei ∧ ej) is the sectional curvature of the plane section spanned by ei
and ej .

By following the same steps as in the proof of Lemma 1 of [3], and by virtue
of (2), (3) and (4), we obtain the following inequality for integral submanifolds,
involving both curvatures |H| and τ :

Proposition 1. Let Mn be an integral submanifold of R
2n+1. Then, the

square of its mean curvature |H|2 and its scalar curvature τ satisfy at each
point the following inequality:

|H|2 ≥ 2(n+ 2)
n2(n− 1)

τ. (5)

The equality holds if and only if there exists a real function λ defined on M ,
such that the second fundamental form σ of M satisfies

σ(e1, e1) = 3λe1∗, σ(e2, e2) = . . . = σ(en, en) = λe1∗,
σ(e1, ej) = λej∗, σ(ej , ek) = 0, 2 ≤ j 	= k ≤ n,

(6)

where {e1, . . . , en, e1∗, . . . , en∗, ξ} is a Legendre frame such that e1∗ is parallel to
H.

On the other hand, we can also characterize the equality case of the above
inequality by the behavior of the second fundamental form of the submanifold.
We obtain a formula similar to that of [6]:

Proposition 2. Let Mn be an integral submanifold of R
2n+1. Then, M

satisfies the equality case of (5) at every point, if and only if

σ(X,Y ) =
n

n+ 2
{g(X,Y )H + g(φX,H)φY + g(φY,H)φX} , (7)

for any tangent vector fields X and Y .
Proof. If the equality case of (5) holds for every p ∈M , then, in a neigh-

borhood of every point, we can find a Legendre frame with e1∗ parallel to H and
such that it satisfies (6), with λ =

n

n+ 2
|H|. Hence, it follows that (7) holds for

any tangent vector fieldsX and Y . The converse can be verified directly. QED
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We now proceed to show that the only non-trivial example of an integral sub-
manifold satisfying the equality in (5), is the contact Whitney sphere. First, we
state the following two lemmas. The first one can be easily proved by straight-
forward computation.

Lemma 1. Let π : R
2n+1 → C

n be the differential map given by:

π(x1, . . . , xn, y1, . . . , yn, z) =
1
2
(y1, . . . , yn, x1, . . . , xn). (8)

Then, π : (R2n+1, φ, ξ, η, g) → (Cn, J,G) is a Riemannian submersion, where we
denote by (Cn, J,G) the usual Kaehlerian structure on C

n. Moreover, it satisfies
the following conditions:

i) The vertical subspace Vp of the submersion at p ∈ R
2n+1 is equal to the

span of ξp;

ii) g = π∗G+ η ⊗ η;

iii) φX = (Jπ∗X)∗, for any vector field X on R
2n+1, where ∗ denotes the

horizontal lift with respect to η.

Lemma 2 (Uniqueness of the lift of the Whitney sphere). Let π :
R

2n+1 → C
n be the Riemannian submersion given by (8), and w : S

n → C
n a

Whitney immersion given by (1). If ψ : S
n → R

2n+1 is an integral immersion,
such that π ◦ ψ = w, then ψ is the contact Whitney immersion given by

ψ(u0, u1, . . . , un) =
2r

1 + u2
0

(u0u1, . . . , u0un, u1, . . . , un,
2ru0

1 + u2
0

+C(1+u2
0))+B̃,

where C is a constant and B̃ is a vector of R
2n+1 such that π(B̃) = B.

Proof. Since π ◦ ψ = w and
∑n

i=0 u
2
i = 1, we can write ψ as

ψ(u0, u1, . . . , un) =
2r

1 + u2
0

(u0u1, . . . , u0un, u1, . . . , un, f(u1, . . . , un))+ B̃, (9)

for any constant vector B̃ such that π(B̃) = B.
Then, differentiating (9), we obtain, for any i = 1, . . . , n:

∂

∂ui
= 2r


u2

0(1 + u2
0) − u2

i (1 − u2
0)

u0(1 + u2
0)2

∂

∂xi
−

∑
j �=i

uiuj(1 − u2
0)

u0(1 + u2
0)2

∂

∂xj
+

+
1 + u2

0 + 2u2
i

(1 + u2
0)2

∂

∂yi
+ 2

∑
j �=i

uiuj

(1 + u2
0)2

∂

∂yj
+

2uif + (1 + u2
0)
∂f

∂ui

(1 + u2
0)2

∂

∂z


 . (10)
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Since ψ is an integral immersion in R
2n+1, we have η( ∂

∂ui
) = 0, for any

i = 1, . . . , n, where η is the contact form on R
2n+1. Hence, it follows from (10)

that the function f must satisfy the system of partial differential equations

∂

∂ui
(

f

1 + u2
0

) =
2rui(3u2

0 − 1)
u0(1 + u2

0)3
, i = 1, . . . , n,

which implies that

f =
2ru0

1 + u2
0

+ C(1 + u2
0),

where C is a real constant. QED

We can now state the main theorem:
Theorem 1. Let Mn be an integral submanifold of the standard contact

structure on R
2n+1. Then, the equality case of (5) holds at every point p ∈ M ,

if and only if either M is a totally geodesic submanifold or it is a portion of a
contact Whitney sphere.

Proof. Let ψ : M → R
2n+1 be an integral immersion and put ψ̂ = π ◦ ψ.

Then, it follows from Lemma 1 that ψ̂ : M → C
n is a Lagrangian immersion,

and that the metrics induced on M by both ψ and ψ̂ agree.
Denote by σ̂ and ∇ the second fundamental form of ψ̂ and the Levi–Civita

connection of C
n, respectively. Then, it follows from the well-known O’Neill

equations [5], that

∇̃X∗Y ∗ = (∇XY )∗ +
1
2
η([X∗, Y ∗])ξ

for any vector fields X,Y on C
n tangent to M . Since M is normal to ξ, we have

η([X∗, Y ∗]) = 0, and therefore

σ(X,Y ) = (σ̂(X,Y ))∗ and Ĥ∗ = H, (11)

where Ĥ is the mean curvature vector of ψ̂.
Suppose that the equality case of (5) holds for any p ∈ M . Then, Proposi-

tion 2 implies that σ satisfies (7). Hence, by virtue of (11), we have that

σ̂(X,Y ) =
n

n+ 2

{
G(X,Y )Ĥ +G(JX, Ĥ)JY +G(JY, Ĥ)JX

}

for any vector fields X,Y on C
n tangent to M . Therefore, it follows from [6,

Theorem 2], that either ψ̂ is totally geodesic or ψ̂(M) is an open portion of a
Whitney sphere.

If the first case holds, (11) implies that ψ is also totally geodesic. On the
other hand, if ψ̂(M) is a portion of a Whitney sphere, Lemma 2 implies that
ψ(M) must be a portion of a corresponding contact Whitney sphere.

The converse can be proved by straightforward computation. QED
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3 Anti-invariant Submanifolds.

We now consider an (n + 1)–dimensional anti-invariant submanifold Mn+1

of R
2n+1; such a submanifold is tangent to the structure vector field ξ. In par-

ticular, from the Sasakian condition on R
2n+1, ∇̃Xξ = −φX, and therefore

σ(X, ξ) = −φX, (12)

for any vector field X tangent to M .
In this case, it is possible to state an inequality similar to (5):
Proposition 3. Let Mn+1 be an (n + 1)–dimensional anti-invariant sub-

manifold of R
2n+1. Then, the square of its mean curvature |H|2 and its scalar

curvature τ satisfy at each point the following inequality:

|H|2 ≥ 2(n+ 2)
(n+ 1)2(n− 1)

τ. (13)

The equality holds if and only if there exists a real function λ defined on M ,
such that the second fundamental form σ of M satisfies

σ(e1, e1) = 3λe1∗, σ(e2, e2) = . . . = σ(en, en) = λe1∗,
σ(e1, ej) = λej∗, σ(ej , ek) = 0, 2 ≤ j 	= k ≤ n,

where {e1, . . . , en, ξ, e1∗, . . . , en∗} is a local orthonormal frame such that e1, . . . ,
en, ξ are tangent to M , ei∗ = φei, for any i = 1, . . . , n, and e1∗ is parallel to H.

We can also describe the second fundamental form of the submanifolds sat-
isfying the equality case of (13) at every point:

Proposition 4. Let Mn+1 be an (n + 1)–dimensional anti-invariant sub-
manifold of R

2n+1. Then, M satisfies the equality case of (13) at every point,
if and only if

σ(X,Y ) =
n+ 1
n+ 2

{(g(X,Y ) − η(X)η(Y ))H+

+(g(φX,H) − n+ 2
n+ 1

η(X))φY + (g(φY,H) − n+ 2
n+ 1

η(Y ))φX}, (14)

for any tangent vector fields X and Y .
A submanifold M of R

2n+1, tangent to ξ, is said to be totally contact
geodesic [1, p.110] if

σ(X,Y ) = η(X)σ(Y, ξ) + η(Y )σ(X, ξ), (15)

for any tangent vector fields X and Y . It is clear that every totally contact
geodesic submanifold is minimal. Then, it follows from (12), (14) and (15) that
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every anti-invariant totally contact geodesic submanifold satisfies the equality
case of (13). With an additional condition, we can characterize the non-trivial
anti-invariant submanifolds satisfying that equality.

Let π : R
2n+1 → C

n be the Riemannian submersion given by (8), and
suppose that there exists a Lagrangian submanifold N of C

n, such that the
following diagram commutes

M −→ R
2n+1

↓ ↓ π
N −→ C

n,

where M is the set of fibres over N . Now, we state the following theorem:
Theorem 2. Under the above conditions, the equality case of (13) holds for

any p ∈M , if and only if either M is a totally contact geodesic submanifold or
is locally isometric to the Riemannian product of a portion of a Whitney sphere
and R.

Proof. As in the proof of Theorem 1, it follows from the O’Neill equations
of the Riemannian submersion π that

σ(X∗, Y ∗) = (σ̂(X,Y ))∗ and Ĥ∗ =
n+ 1
n

H, (16)

where σ̂ and Ĥ are the second fundamental form and the mean curvature vector
of N , respectively. On the other hand, we also know that

η(∇X∗Y ∗) = −g(∇X∗ξ, Y ∗) = g(φX∗, Y ∗) = 0,

since M is anti-invariant. This implies that M is locally isometric to the Rie-
mannian product of N and R.

Suppose now that the equality case of (13) holds for any p ∈ M . Then,
Proposition 4 implies that σ satisfies (14). Hence, it follows from (11) that σ̂
satisfies the equation of [6, Theorem 2], and so, either N is totally geodesic or
is a portion of a Whitney sphere.

Finally, it only remains to remark that, if N is totally geodesic, then, we
obtain from (16) that σ(X,Y ) = 0, for any tangent vector fields X and Y ,
perpendicular to ξ, and therefore, M is totally contact geodesic.

The converse can be proved by straightforward computation. QED
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