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Abstract. We investigate the effects of dimensionality reduction using
different techniques and different dimensions on six two-class data sets
with numerical attributes as pre-processing for two classification algo-
rithms. Besides reducing the dimensionality with the use of principal
components and linear discriminants, we also introduce four new tech-
niques. After this dimensionality reduction two algorithms are applied.
The first algorithm takes advantage of the reduced dimensionality itself
while the second one directly exploits the dimensional ranking. We ob-
serve that neither a single superior dimensionality reduction technique
nor a straightforward way to select the optimal dimension can be iden-
tified. On the other hand we show that a good choice of technique and
dimension can have a major impact on the classification power, gen-
erating classifiers that can rival industry standards. We conclude that
dimensionality reduction should not only be used for visualisation or as
pre-processing on very high dimensional data, but also as a general pre-
processing technique on numerical data to raise the classification power.
The difficult choice of both the dimensionality reduction technique and
the reduced dimension however, should be directly based on the effects
on the classification power.

1 Introduction

Dimensionality reduction of the feature space has long been used in data min-
ing. So is principal component analysis, first introduced in [3], often used as a
pre-processing step for problems with an extreme high dimensionality. Linear
discriminant analysis, first introduced in [2], on the other hand, while sharing
many properties, is used to solve the problem immediately by reducing the di-
mensionality of the feature space to one. The optimal number of dimensions for
principal component analysis has been investigated many times [6], but with the
goal of finding the number of non-trivial components. We on the other hand use
another criterion, namely maximization of the 10-fold cross validation results of
the classifiers yielded by the algorithms. The optima for both these criteria do
not necessarily coincide.
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We start by defining the different techniques we use. Some of them are stan-
dard techniques while others are new. Later we compare them to see which one
delivers superior results.

To evaluate the effect of the dimensionality reduction, we use two-class data
sets on which we apply two classification algorithms. The first one is an algorithm
that normally functions in the original feature space and we are interested to
see if the reduction of the dimensionality can have positive effects nonetheless.
The second algorithm is a new algorithm that directly uses the properties of
the new feature space introduced by the transformation and reduction of the
dimensionality.

A full overview of each possible combination of dimensionality reduction
technique, dimension choice and algorithm is presented and analysed.

2 Dimensionality Reduction Techniques

The reduction of the dimension of the attribute vector is executed in three steps.
First, we compute a square transformation matrix of dimension the number of
attributes. Second, the attribute vectors are transformed by multiplying them
with this matrix. Finally, the actual reduction consists of keeping a fixed number
of the most discriminating new attributes (features).

Several techniques to compute an effective transformation matrix are eval-
uated. Principal components and linear discriminants are selected as standard
solutions. The principal components orientate the data so that the variance is
maximized firstly along the first axis, secondly along the second axis etc. Prin-
cipal components ignore the existence of multiple classes. Linear discriminants
however take into account the existence of multiple groups by trying to find ori-
entations that favour a high spread of the total data while avoiding those yielding
a high spread within the different homogenous groups. These two techniques are
complemented by four new ones. The first one, which we named principal separa-
tion, is by idea similar to linear discriminants but looks for orientations in which
pairs of instances of different classes lie far apart. The three final approaches
exploit the fact that only two groups exist and that a straightforward candidate
for the first orientation can be defined by the means of the two groups. Since
this does not yield a complete transformation matrix, it is complemented by
orientations computed using each of the aforementioned techniques.

2.1 Notations

For a general matrix M ∈ Rd×pM

– d : the original dimension of the data (number of attributes)
– Mean(M) ∈ Rd×1 : the mean of the instances of M
– Cov(M) ∈ Rd×d : the covariance matrix of M
– Mom(M) ∈ Rd×d : the matrix of second moments (around the origin) of M
– Eig(M) ∈ Rd×d : the matrix of eigenvectors of M

Note: Cov(M) = Mom(M)−Mean(M).Mean(M)t



2.2 Data

– A : the matrix of pA columns representing the instances of the first set
– B : the matrix of pB columns representing the instances of the second set
– T = [A,B] : the matrix of pT = pA + pB columns representing the instances

of both sets

2.3 Reduction operation

– R : the transformation matrix
– n < d : the dimension after reduction

R is assumed to be ordered row-wise. Usually the rows of R are the eigenvectors
of some matrix, ordered by decreasing eigenvalues.

The dimension reduction consists of calculating RT and dropping all rows
except the first n. The result is a new feature space.

2.4 Principal Components

We define the transformation matrix based on principal components as

R = Eig(Cov(T ))

2.5 Linear Discriminants

Let

SW =
pACov(A) + pBCov(B)

pT

SB = Cov(T )− SW
Then we define the transformation matrix based on linear discriminants as

R = Eig(S−1

WSB)

2.6 Principal Separation Components

Define the d× (pApB) matrix A	B, as consisting of all d-vectors a− b for any
pair of d-vectors a ∈ A and b ∈ B.

We want to keep the ‘spread’ ∑
a−b∈A	B

‖a− b‖2

as high as possible after reduction. In a way similar to principal components
analysis, this is obtained using transformation matrix

R = Eig(Mom(A	B))

Since the complexity of calculating Mom(M) is in general O(pMd2) the cal-
culation of Mom(A	B) seems at first glance to be an ominous O(pApBd2). This
complexity is however strongly reduced to O((pA + pB)d2) = O(pT d2) thanks to
the following result.



Theorem 1 Mom(A 	 B) = Mom(A) + Mom(B) − Mean(A)Mean(B)t −
Mean(B)Mean(A)t

Proof
For any 1 ≤ i, j ≤ d we have:

Mom(A	B)ij =
1

pApB

∑
a∈A

∑
b∈B

(ai − bi)(aj − bj)

=
1

pApB

∑
a∈A

∑
b∈B

(aiaj − biaj − aibj + bibj)

=
1
pA

∑
a∈A

aiaj +
1

pB

∑
b∈B

bibj −
1

pApB

∑
a∈A

∑
b∈B

aibj −
1

pApB

∑
a∈A

∑
b∈B

biaj

=
1
pA

∑
a∈A

aiaj +
1

pB

∑
b∈B

bibj − (
1
pA

∑
a∈A

ai)(
1

pB

∑
b∈B

bj)− (
1

pB

∑
b∈B

bi)(
1
pA

∑
a∈A

aj)

= Mom(A)ij + Mom(B)ij −Mean(A)iMean(B)t
j −Mean(B)iMean(A)t

j
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2.7 Mean Component Methods

Let
p = Mean(A)−Mean(B)

We define the first row of the transformation matrix based on means as

R1 =
p

||p||

We define the remaining rows R2..n as the n−1 first rows of the aforementioned
techniques after projection of the instances on the hyperplane perpendicular on
R1. This yields the following three variants:

– principal mean components
– linear mean discriminants
– principal mean separation components

3 Classification Algorithms

3.1 Optimal Distance Separating Hyperplane

Here we use a linear classifier, chosen so as to minimize sum of the euclidean
distances of misclassified instances to the separating hyperplane as proposed in
[5]. By reducing the dimension, we hope not only to solve the problem of the
high complexity the algorithms have concerning the dimensionality of the feature
space [4, 7], but also hope to reduce overfitting. The classifier is obtained by way
of the Grid-Cell VNS algorithm as was proposed in [7].



3.2 Eigenvalue-based Classification Tree

Since the ranking of RT indicates the importance of the features of the new
feature space, it is straightforward to make a selection for a split in a hierarchical
structure. We therefore we propose a new kind of classification tree in which the
split in the top node is done based on the first feature, in the nodes on the
second level the splits are done based on the second feature etc. The split value
is calculated by taking that midpoint between two consecutive instances that
minimizes the number of misclassifieds. The expansion of the tree ends either
when only instances of one class remain for the given node or when the level
of the node equals the reduced dimension n. Note that no feature is used more
than once in each branch.

4 Computational Results

Table 1 shows the best average results of ten 10-fold cross validations on six data
sets from the UCI [8] database when applying all six reduction techniques and
varying dimensionality. As a reference, the results of some industry standards
such as support vector machines with linear kernels (SVM) and C4.5 classifi-
cation trees (C4.5), as well as a 1-dimensional principal component (PCA) or
a linear discriminant analysis (LDA) are also presented. We can see that, com-
bined with a good dimensionality reduction, our new algorithms (Best ODSH,
Best EVCT) can compete with these standards.

Table 2 shows the optimal dimensionalities and reduction techniques for each
pair of algorithm and data set. No dimensionality reduction technique seems
superior or inferior to the others, which makes a selection difficult. Although
severe dimensionality reductions often yield good results, finding a pattern for
an effective selection is difficult. It should also be noted that no clear correlation
was found between the results and the eigenvalues yielded by the dimensionality
reduction techniques.

Full results can be found in the figures below. Although an optimal selection
is difficult without full results, the impact of good pre-processing can be clearly
seen here. A reduction to one dimension can give good results, but in many cases
a reduction of this magnitude seems too drastic and moving up to two or three
dimensions can result in a very significant improvement. On the other hand, the
results can decrease rapidly when choosing a higher dimensionality, although
for some sets, there seems little gain in reducing the dimensionality at all. The
optimality of the dimension seems to be mainly determined by the structure of
the data and the fact that the goal is classification and less by the algorithm
and the reduction technique.



Table 1. Cross Validations

Data set d pT Best ODSH Best EVCT SVM C4.5 PCA LDA

Cancer 9 683 96.8% 97.5% 97.0% 95.4% 97.5% 97.1%
Diabetes 8 768 76.1% 75.6% 76.8% 74.4% 68.1% 75.6%
Echocardiogram 7 74 76.5% 73.4% 70.9% 70.9% 65.2% 67.5%
Glass windows 9 214 93.7% 96.1% 92.2% 93.3% 92.2% 93.2%
Hepatitis 16 150 83.6% 84.5% 84.6% 77.6% 80.9% 84.5%
Housing 13 506 86.8% 81.7% 86.4% 81.9% 77.1% 79.9%

Table 2. Optimal Dimension Reduction

Data Set d pT ODSH EVCT

Best Tech Best Dim Best Tech Best Dim

Cancer 9 683 LD 1 PC/PSC 1
Diabetes 8 768 PMC 6 LD 1
Echocardiogram 7 74 PSC 2 PMSC 2
Glass windows 9 214 PMC 2 PMC 2
Hepatitis 16 150 PC 1 LD 1
Housing 13 506 PMSC 10 PSC 6

Fig. 1. Cancer set cross validations

Fig. 2. Diabetes set cross validations



Fig. 3. Echocardiogram set cross validations

Fig. 4. Glass windows set cross validations

Fig. 5. Hepatitis set cross validations

Fig. 6. Housing set cross validations



5 Conclusions

We showed that a good choice of technique and dimension can have a major im-
pact on the classification power. Lowering the dimensionality often significantly
reduces the overfitting by an algorithm. On the other hand, one should be care-
ful not to lower the dimensionality too much as the information loss can then
rapidly overtake the reduction in overfitting. However, we observe that neither
a single superior dimensionality reduction technique nor a straightforward way
to select the optimal dimension can be identified.

We conclude that dimensionality reduction should not only be used for visu-
alisation or as pre-processing on very high dimensional data, but also as a general
pre-processing technique on numerical data to raise the classification power. The
difficult choice of both the dimensionality reduction technique and the reduced
dimension however, should be directly based on the effects on the classification
power. We are currently researching methods to incorporate the choice of the
dimensionality reduction into the algorithm itself [1].

Many of these findings can also be extended to problems with more than two
classes or can be used in combination with kernels.
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