
A Linear-Time Solution to the Knapsack
Problem Using P Systems with Active

Membranes

Mario J. Pérez-Jiménez and Agustin Riscos-Núñez

Abstract. Up to now, P systems dealing with numerical problems have
been rarely considered in the literature. In this paper we present an
effective solution to the Knapsack problem using a family of deterministic
P systems with active membranes using 2-division. We show that the
number of steps of any computation is of linear order, but polynomial
time is required for pre-computing resources.

1 Introduction

Membrane Computing is an emergent branch in the field of Natural Computing.
Since Gh. Păun introduced it (see [3]) much work has been done, with motiva-
tions and tools coming from various directions. Computer scientists, biologists,
formal linguists and complexity theoreticians have contributed enriching the field
with their different points of view.

The present paper is focused on the design of a family of P systems that
solves a numerical NP-complete problem, and on the formal verification of this
solution. The idea is inspired from the solution presented in [5] for the Subset-
Sum problem.

The analysis of the solution presented here will be done from the point of
view of the complexity classes. A complexity class for a model of computation is
a collection of problems that can be solved (or languages that can be decided)
by some devices of this model with similar computational resources.

In this paper we present a polynomial complexity class in cellular computing
with membranes inspired in some ideas of Gh. Păun ([3], section 7.1) discussed
with some members of the Research Group on Natural Computing from the
University of Seville. This class allows us to detect some intrinsic difficulties of
the resolution of a problem in the model above mentioned.

The paper is organized as follows: first a formal definition of recognizer P
systems is given in the next section; then, in section 3 the polynomial complexity
class PMCAM is introduced; in sections 4 and 5 a cellular solution for the
Knapsack problem is presented, together with some comments; a computational
study of the solution is developed in section 6; some consequences of this study
together with the conclusions are given in sections 7 and 8.

2 Preliminaries

Recall that a decision problem, X, is a pair (IX , θX) such that IX is a language
over a finite alphabet (the elements of IX are called instances) and θX is a total
boolean function over IX .

Definition 1. A P system with input is a tuple (Π, Σ, iΠ), where:

– Π is a P system, with working alphabet Γ , with p membranes labelled by
1, . . . , p, and initial multisets M1, . . . ,Mp associated with them.

– Σ is an (input) alphabet strictly contained in Γ .
– The initial multisets are over Γ − Σ.
– iΠ is the label of a distinguished (input) membrane.

Definition 2. Let (Π, Σ, iΠ) be a P system with input. Let Γ be the working
alphabet of Π, µ the membrane structure and M1, . . . ,Mp the initial multisets of
Π. Let m be a multiset over Σ. The initial configuration of (Π, Σ, iΠ) with input
m is (µ0, M0), where µ0 = µ, M0(j) = Mj, for each j �= iΠ , and M0(iΠ) =
MiΠ

∪ m.

Remark 1. We will denote by IΠ the set of all inputs of the P system Π. That
is, IΠ is a collection of multisets over Σ.

The computations of a P system with input m, are defined in a natural way.
The only novelty is that the initial configuration must be the initial configuration
of the system associated with the input multiset m ∈ M(Σ).

In the case of P systems with input and with external output, the concept
of computation is introduced in a similar way but with a slight variant. In the
configurations, we will not work directly with the membrane structure µ but with
another structure associated with it including, in some sense, the environment.

Definition 3. Let µ = (V (µ), E(µ)) be a membrane structure. The membrane
structure with environment associated with µ is the rooted tree Ext(µ) such that:
(a) the root of the tree is a new node that we will denote env; (b) the set of nodes
is V (µ)∪{

env
}
; and (c) the set of edges is E(µ)∪{{env, skin}}

. The node env
is called environment of the structure µ.

Note that we have only included a new node representing the environment
which is only connected with the skin, while the original membrane structure
remains unchanged. In this way, every configuration of the system contains in-
formation about the contents of the environment.

Definition 4. An accepting P system is a P system with input, (Π, Σ, iΠ), and
with external output, such that the output alphabet contains only two elements:
Y es and No.

This definition is stated in a general way, but in this paper P systems with
active membranes will be used. We refer to [3] (see chapter 7) for a detailed
definition of evolution rules, transition steps, and configurations in this model.

Now let us define the Output function for our P systems. Given a compu-
tation C = {Ci}i<r, we denote by M j

env the content of the environment in the
configuration Cj .

Definition 5. The output of a computation C = {Ci}i<r is:

Output(C) =






Y es, if C is halting, Y es ∈ Mr−1
env and No /∈ Mr−1

env ,
No, if C is halting, No ∈ Mr−1

env and Y es /∈ Mr−1
env ,

not defined, otherwise.

If C satisfies any of the two first conditions, then we say that it is a successful
computation.

Definition 6. An accepting P system is said to be valid if for every halting
computation, and only for them, one copy of object Y es or one copy of object
No (but not copies of both) is sent out (and this happens in the last step of the
computation).

Definition 7. We say that C is an accepting computation (respectively, reject-
ing computation) if the object Y es (respectively, No) appears in the environ-
ment associated with the corresponding halting configuration of C, that is, if
Y es = Output(C) (respectively, No = Output(C)).

Definition 8. A recognizer P system is a valid accepting P system such that
all its computations halt.

Such recognizer systems are specially suitable when trying to solve decision
problems.

3 The Complexity Class PMCAM

Roughly speaking, a computational complexity study of a solution for a problem
is an estimation of the resources (time, space, ...) that are required through all
the processes that take place in the way from the bare instance of the problem
up to the final answer.

The first results about “solvability” of NP–complete problems in polynomial
time (even linear) by cellular computing systems with membranes were obtained
using variants of P systems that lack an input membrane. Thus, the constructive
proofs of such results need to design one system for each instance of the problem.

If we would implement such a solution of some decision problem in a labo-
ratory, then we have to cope with the diffficulty that a system constructed to
solve a concrete instance is useless when trying to solve another instance. This
drawback can be easily overtaken if we consider a P system with input. Then,

the same system could solve different instances of the problem, provided that
the corresponding input multisets are introduced in the input membrane.

Instead of looking for a single system that solves a problem, we prefer de-
signing a family of P systems such that each element decides all the instances of
“equivalent size”, in certain sense.

Let us now introduce some basic concepts before the definition of the com-
plexity class itself.

Let us denote by AM the class of language recognizer P systems with active
membranes using 2-division (see [3], section 7.2).

Definition 9. Let L be a language and Π = (Π(t))t∈N a family of P systems
with active membranes using 2-division. A polynomial encoding of L in Π is
a pair (cod, s) of polynomial-time computable functions, cod : L → ⋃

t∈N
IΠ(t),

and s : L → N such that for every u ∈ L we have cod(u) ∈ IΠ(s(u)).

That is, for each word u of the language L, we have a multiset cod(u) and
a number s(u) associated with it such that cod(u) is input multiset for the P
system Π(s(u)).

Lemma 1. Let L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2 be languages. Let Π = (Π(t))t∈N a
family of P systems with active membranes using 2-division. If r : Σ∗

1 → Σ∗
2 is a

polynomial-time reduction from L1 to L2, and (cod, s) is a polynomial encoding
of L2 in Π, then (g ◦ r, h ◦ r) is a polynomial encoding of L1 in Π.

Proof. This result follows directly from the previous definition. For a detailed
proof, we refer the reader to [7]. �

Considering all the definitions already presented, we are now ready to give
the definition of the complexity class PMCAM, which is based on the one given
in [7].

Definition 10. We will say that a decision problem, X = (IX , θX), is solvable
in polynomial time by a family of recognizer P systems with active membranes
using 2-division, and we denote this by X ∈ PMCAM, if there exists a family
of P systems, Π =

(
Π(t)

)
t∈N

, with the following properties:

1. The family Π is consistent with regard to the class AM; that is, ∀t ∈
N (Π(t) ∈ AM).

2. The family Π is polynomially uniform, by Turing machines; that is, there
exists a deterministic Turing machine constructing Π(t) from t in polynomial
time.

3. There exist two functions, cod : IX → ⋃
t∈N

IΠ(t) and s : IX → N
+, com-

putable in polynomial time, such that:
– For every u ∈ IX , cod(u) ∈ IΠ(s(u)).
– The family Π is polynomially bounded with regard to (X, cod, s); that

is, there exists a polynomial function p, such that for each u ∈ IX every
computation of the system Π(s(u)) with input cod(u) is halting and,
moreover, it performs at most p(|u|) steps.

– The family Π is sound with regard to (X, cod, s); that is, for each u ∈ IX

it is verified that if there exists an accepting computation of the system
Π(s(u)) with input cod(u), then θX(u) = 1.

– The family Π is complete with regard to (X, cod, s); that is, for each
u ∈ IX it is verified that if θX(u) = 1, then every computation of the
system Π(s(u)) with input cod(u) is an accepting one.

Remark 2. Note that, as a consequence of the above definition, the complexity
class PMCAM is closed under complement, because recognizer P systems are
being used.

Proposition 1. Let X and Y be decision problems such that X is reducible to
Y in polynomial time. If Y ∈ PMCAM, then X ∈ PMCAM.

That is, the complexity class PMCAM is stable under polynomial-time reduc-
tion. The proof of this result can also be found in [7].

4 Solving the Decision Knapsack Problem
in Linear Time

The decision Knapsack problem (0/1) can be stated as follows:

Given a knapsack of capacity k ∈ N, a set A of n elements, where each
element has a “weight” wi ∈ N and a “value” vi ∈ N, and given a
constant c ∈ N, decide whether or not there exists a subset of A such
that its weight does not exceed k and its value is greater than or equal
to c.

We will represent the instances of the problem using tuples of the form
(n, (w1, . . . , wn), (v1, . . . , vn), k, c), where n is the size of the set A; (w1, . . . , wn)
and (v1, . . . , vn) are the weights and values, respectively, of the elements from A;
moreover, k and c are the constants above mentioned. We can define in a natural
way additive functions w and v that correspond to the data in the instance.

We address the resolution of the problem via a brute force algorithm, in
the framework of recognizer P systems with active membranes using 2-division,
without cooperation nor dissolution nor priority among rules. Our strategy will
consist in:

– Generation stage: membrane division is used until a specific membrane for
each subset of A is obtained.

– Calculation stage: in each membrane the weight and the value of the associ-
ated subset are calculated.

– Checking stage for the “weight” function w: the condition w(B) ≤ k is
checked for every subset B ⊆ A.

– Checking stage for the “value” function v: the condition v(B) ≥ c is checked
for every subset B ⊆ A.

– Output stage: the answer is delivered according to the results of both checking
stages.

Let us consider a polynomial bijection, 〈 〉, between N
3 and N (e.g., 〈x, y, z〉 =

〈〈x, y〉, z〉, induced by the pair function 〈x, y〉 = (x + y) · (x + y + 1)/2 + x).
The family presented here is

Π ={(Π(〈n, k, c〉), Σ(n, k, c), i(n, k, c)) | (n, k, c) ∈ N
3}.

For each element of the family, the input alphabet is Σ(n, k, c) = {x1,
. . . , xn, y1, . . . , yn}, the input membrane is i(n, k, c) = e, and the P system
Π(〈n, k, c〉) = (Γ (n, k, c), {e, s}, µ,Ms,Me, R) is defined as follows:

• Working alphabet:

Γ (n, k, c) = {a0, a, ā0, ā, b0, b, b̄0, b̄, b̂0, b̂, d+, d−, e0, . . . , en, q0, . . . , q2k+1,

q, q̄, q̄0, . . . , q̄2c+1, x0, . . . , xn, y0, . . . , yn, Y es, No, z0, . . . , z2n+2k+2c+6, #}.

• Membrane structure: µ = [s [e]e]s.

• Initial multisets: Ms = z0; Me = e0 āk b̄c.

• The set of evolution rules, R, consists of the following rules:

(a) [eei]0e → [eq]−e [eei]+e , for i = 0, . . . , n.

[eei]+e → [eei+1]0e[eei+1]+e , for i = 0, . . . , n − 1.

The goal of these rules is to generate one membrane for each subset of A.
When an object ei (i < n) is present in a neutrally charged membrane, we pick
the element ai for its associated subset and divide the membrane. In one of
the new membranes the object q appears, and this means that this membrane
leaves the generation stage, no further elements will be added to the subset. But
the other new membrane must generate membranes for other possible subsets
which are obtained by adding elements of index i + 1 or greater.

(b) [ex0 → ā0]0e; [ex0 → ε]+e ; [exi → xi−1]+e , for i = 1, . . . , n.
[ey0 → b̄0]0e; [ey0 → ε]+e ; [eyi → yi−1]+e , for i = 1, . . . , n.

In the beginning, the multiplicity of the object xj and yj (with 1 ≤ j ≤ n)
encodes the weights and the values, respectively, of the corresponding elements
of A. They are not present in the definition of the system, but they are inserted
as input in the membrane labelled by e before starting the computation: for
each aj ∈ A, wj copies of xj and vj copies of yj have to be added to the input
membrane. During the computation, at the same time as elements are added
to the subset associated with a membrane, objects ā0 and b̄0 are generated to
store the weight and the value, respectively, of such subset.

(c) [eq → q̄q0]−e ; [eā0 → a0]−e ; [eā → a]−e .

[eb̄0 → b̂0]−e ; [eb̄ → b̂]−e .

When a membrane gets negatively charged, the two first stages (i.e.,
generation and calculation stages) end, and then some transition rules are
applied. Objects ā and b̄, whose multiplicities encode in the initial multiset
the constants k and c, respectively, as well as objects ā0 and b̄0, are renamed
for the next stage, when the multiplicities of a and a0 are compared. Also an
object q0 appears, that will act as a counter, and objects q̄, b̂0 and b̂ appear as
well, although they will remain inactive all through this stage. If the checking
had an affirmative result, then the membrane would get positively charged.
In this case this stage ends and objects q̄, b̂0 and b̂ are activated for the next one.

(d) [ea0]−e → [e]0e#; [ea]0e → [e]−e #.

These rules implement the comparison above mentioned (that is, they check
whether w(B) ≤ k holds or not). They work as a loop that erases objects a0
and a one by one alternatively, changing the charge of the membrane in each step.

(e) [eq2j → q2j+1]−e , for j = 0, . . . , k.
[eq2j+1 → q2j+2]0e, for j = 0, . . . , k − 1.

A counter that controls the previous loop is described here. The index of qi

and the electric charge of the membrane give enough information to point out
if the number of objects a0 is greater than (less than or equal to) the number
of objects a.

(f) [eq2j+1]−e → [e]+e #, for j = 0, . . . , k.

If a subset B ⊆ A verifies the condition w(B) ≤ k, then inside the relevant
membrane that encodes it (this will be defined later) there will be less objects
a0 than a. This forces the loop described in (e) to halt: the moment will come
when there are no objects a0 left, and then the rule [eq2w(B) → q2w(B)+1]−e will
be applied but it will not be possible to apply the rule [ea0]−e → [e]0e# at the
same time. Thus, an object q2w(B)+1 will be present in the membrane and the
latter will be negatively charged, so the rule (f) will be applied allowing the
checking stage for v to start.

(g) [eq̄ → q̄0]+e ; [eb̂0 → b0]+e ; [eb̂ → b]+e ; [ea → ε]+e .

Just as the rules from (c) did, these rules perform a renaming task before
the checking loop for v begins.

(h) [eb0]+e → [e]0e#; [eb]0e → [e]+e #.

The checking loop for v is designed exactly as the one for w, but the electric
charges involved are now neutral and positive.

(i) [eq̄2j → q̄2j+1]+e for j = 0, . . . , c.
[eq̄2j+1 → q̄2j+2]0e for j = 0, . . . , c − 1.

The counter qi, described in (e), is now replaced by a slightly different one,
q̄i. Both of them behave similarly in the first steps of the checking, but the way
the fourth stage (checking for v) ends is different from the way the third stage

does, because in the case of the checking with respect to v the successful end
will be reached when the multiplicity of b0 is greater than the multiplicity of b.

(j) [eq̄2c+1]+e → [e]0eY es; [eq̄2c+1]0e → [e]0eY es.

As pointed before, if a subset B ⊆ A verifies the condition v(B) ≥ c, then
in the membrane that corresponds to that subset there will be more objects
b0 than b. This causes the rules from (h) to apply c times each, and after that
the index of q̄i will be i = 2c. Then the rule [eq̄2c → q̄2c+1]+e will be applied
(possibly together with [eb0]+e → [e]0e#), and finally one of the rules from (j)
will terminate the stage.

(k) [szi → zi+1]0s, for i = 0, . . . , 2n + 2k + 2c + 5.
[sz2n+2k+2c+6 → d+d−]0s.

Before the answer is sent out, all the membranes should have either ended
their two checking stages successfully or got to a blocking state otherwise. The
counter zj gives enough room to deal even with the worst case. The condition
for the worst case (i.e., the case where the checking stages will last longer) is
that the total set is a solution (i.e., it satisfies the two conditions). The number
of steps will be maximum if the weight of A is exactly k.

Indeed, the membrane associated with the total set is the latter one to be
generated, and it can avoid none of the steps of both checking stages.

(l) [sd+]0s → [s]+s d+; [sd− → No]+s ; [sY es]+s → [s]0sY es; [sNo]+s → [s]0sNo.

Finally, the output process is activated. The skin membrane needs to be
positively charged before the answer is sent out. Object d+ takes care of this
and then, if the answer is affirmative, an object Y es will be sent out recovering
the neutral charge for the skin.

5 An Overview of the Computation

First of all we must define a polynomial encoding of the Knapsack problem in the
family Π in order to study the complexity of the problem with respect to it. Given
an instance u = (n, (w1, . . . , wn), (v1, . . . vn), k, c) of the Knapsack problem, we
define s(u) = 〈n, k, c〉 (recall the bijection mentioned in the previous section)
and cod(u) = xw1

1 . . . xwn
n yv1

1 . . . yvn
n . Now we will informally describe how does

the system Π(s(u)) with input cod(u) work.
In the first step of the computation, the rule [eei]0e → [eq]−e [eei]+e is applied.

Then the generation and calculation stages go on in parallel, following the in-
structions from the rules in (a) and (b). This two stages do not end in a membrane
as long as an object ej (with 0 ≤ j ≤ n) belongs to it and its charge is positive
or neutral. We intend to get a single working membrane for each subset of A
but, as we will see later on, they are not generated altogether simultaneously
(it can be checked that the membrane corresponding to the subset {ai1 , . . . , air}
will arise in the (ir + r + 2)-th step).

Let us introduce the concept of subset associated with an internal membrane
through the following recursive definition:

– The subset associated with the initial membrane is the empty one.
– When an object ej appears in a neutrally charged membrane (with j <

n), then the j-th element of A is selected and added up to the previously
associated subset. Once the stage is over, the associated subset will not be
modified anymore.

– When a division rule is applied, the two newborn membranes inherit the
associated subset from the original membrane.

As we already said, the two first stages are carried out in parallel. Indeed,
there is only a gap of one step of computation between the moment when an
element is added to the associated subset and the moment when the new weight
and value of the subset are updated. For example, for a1, after two steps of com-
putation we can see that there are three inner membranes in the configuration,
and one of them is a neutrally charged membrane where the object e1 occurs
(see Fig. 1). Thus, the element a1 is added to the associated subset. It can be
proved that there are in that moment w1 copies of x0 and v1 copies of y0 in the
membrane. So, in the next step, at the same time as the membrane divides, w1
objects ā0 and v1 objects b̄0 will be generated in the membrane by the rules in
(b). These rules will also modify the indices of all the objects xi and yi, with
i > 0, so that w2 copies of x0 and v2 copies of y0 will be ready in the membrane
in the next step.

After a division rule [eei]0e → [eq]−e [eei]+e is applied, the two new membranes
will behave in a quite different way. On one hand, in the negatively charged
membrane (we have marked such membranes in Fig. 1 with a circle) the two
first stages end, and in the next step the rules in (c) will be applied, renaming
the objects to prepare the third stage. This is a significant moment, so we will
call relevant those membranes that have a negative charge and contain an object
q0. A relevant membrane will not divide anymore during the computation, and
its associated subset will remain unchanged.

On the other hand, the positively charged membrane will continue the gen-
eration stage and it will give rise to membranes associated with subsets that are
obtained adding to the current one elements of index i + 1 or greater. Note that
if i = n, then the membrane can not continue the generation stage, as there
are no rules working for an object en in a positively charged membrane (see
the membranes surrounded by a diamond in Fig. 1). It makes sense that these
membranes get blocked, as it is not possible to add elements of indices greater
than n.

Thus, as the indices of objects ei never decrease, we notice that the relevant
membranes are generated in a kind of “lexicographic order”, in the following
sense: if the j-th element of A has already been added to the associated subset,
then no element with index lower than j will be added later on to the subset as-
sociated with that membrane nor to the subsets associated with its descendants.

The purpose of the rules in (d) is comparing the multiplicities of objects a0
and a (that is, to perform the checking stage for w). Note that to prevent the

Fig. 1. Membrane generation for n = 4

checking rules in (h) from disturbing this stage, the objects b̄ and b̄0 are renamed
as b̂ and b̂0, respectively, and will remain inactive all over this stage. Recall that
the counter qi is the one that controls the result of the checking. Let us briefly
explain how the comparison loop works.

Let B be a subset of a certain weight wB and a certain value vB . Then the
evolution of the relevant membrane associated with it along the third stage is
described in Table 1:

Table 1.

Multiset Charge Parity of qi

q0a
wB
0 ak q̄b̂vB

0 b̂c − EVEN

q1a
wB−1
0 ak q̄b̂vB

0 b̂c 0 ODD

q2a
wB−1
0 ak−1 q̄b̂vB

0 b̂c − EVEN
...

...
...

q2j awB−j
0 ak−j q̄b̂vB

0 b̂c − EVEN

q2j+1 a
wB−(j+1)
0 ak−j q̄b̂vB

0 b̂c 0 ODD
...

...
...

Note 1. Please observe that the index of qi coincides with the total amount of
copies of a and a0 that have already been erased during the comparison.

Note 2. If B = {ai1 , . . . , air} with ir �= n, then some objects xj and yj , for
1 ≤ j ≤ n − ir, will be in the multiset, but they are irrelevant for this stage and
therefore they will be omitted.

If the number wB of objects a0 is less than or equal to the number k of
objects a, then the result of this stage is successful and we can proceed to the
next checking (rules in (f) take care of preparing with an appropriate renaming
the objects that will be compared). This process is described in Table 2.

If the number of objects a0 is greater than k, then every time that the rule
[eq2j → q2j+1]−e is applied (that is, for j = 0, . . . , k), the rule [ea0]−e → [e]0e# will
also be applied. Thus, we can never get to a situation where the index of the
counter qi is an odd number and the charge is negative. That means that the
rule (f) can never be applied, and even more, the membrane gets blocked (it will
not evolve anymore during the computation). See Table 3 for details.

Let us suppose that the third stage has successfully finished in a membrane.
That means that this membrane encodes a subset B ⊆ A such that w(B) ≤ k.
Then, after applying the rule (f), this membrane gets a positive charge. Sub-
sequently, the rules in (g) are applied. That is, a transition step is performed,

Table 2.

Multiset Charge Parity of qi rules

q2wB−1 ak−wB+1 q̄b̂vB
0 b̂c 0 ODD d,e

q2wB ak−wB q̄b̂vB
0 b̂c − EVEN e

q2wB+1 ak−wB q̄b̂vB
0 b̂c − ODD f

ak−wB q̄b̂vB
0 b̂c + ODD g

Table 3.

Multiset Charge Parity of qi

...
...

...

q2k−1 awB−k
0 a q̄b̂vB

0 b̂c 0 ODD

q2k awB−k
0 q̄b̂vB

0 b̂c − EVEN

q2k+1 a
wB−(k+1)
0 q̄b̂vB

0 b̂c 0 ODD

renaming the objects b̂0 and b̂ as b0 and b, respectively, in order to allow the
comparison of their multiplicities. The counter q̄i is initialized to q̄0 and starts
working to control the result of the comparison.

The fourth stage works in fact in a very similar way as the third one. Rules
in (h) and (i) correspond to rules in (d) and (e), respectively, but the end of
the stage is different (see Table 5). The difference lies in the rules in (j). In this
stage, the checking is successful if the number of objects b0 is greater or equal
than the number of objects b (i.e., if v(B) ≥ c) and so, to enter the next stage
the two rules in (h) must have been applied c times each (consequently, rules in
(i) have been applied the same number of times). This condition is guaranteed
by the head of the rule (j). See Table 4 for details.

Finally, rules in (k) and (l) are associated with the skin membrane and take
care of the output stage. The counter zi, described in (k), waits for 2n+2k+2c+7
steps (2n + 2 steps for the first and the second stage, one transition step, 2k + 1
steps for the third one, another transition step, and 2c + 2 for the fourth one).
After all these steps are performed, we are sure that all the inner membranes
have already finished their checking stages (or have already got blocked), and
thus the output process is activated.

In that moment, the skin will be neutrally charged and will contain the
objects d+ and d−. Furthermore, some objects Y es will be present in the skin
if and only if both checking stages have been successful in at least one inner
membrane.

Then the output stage begins. First of all the object d+ is sent out, giving
positive charge to the skin. Then the object d− evolves to No inside the skin
and, simultaneously, if there exists any object Y es present in the skin, it will be

Table 4.

Multiset Charge Parity of qi rules

q̄0b
vB
0 bc + EVEN h,i

q̄1b
vB−1
0 bc 0 ODD h,i
...

...
...

...

q̄2c−1b
vB−c
0 b 0 ODD h,i

q̄2cb
vB−c
0 + EVEN h, i?

q̄2c+1b
vB−(c+1)
0 (if vB > c) 0 ODD j

or q̄2c+1 (if vB = c) + ODD j

b
vB−(c+1)
0 or ∅ +

sent out of the system, giving neutral charge to the skin and making the system
halt (in particular, the further evolution of object No is avoided).

If it is the case that none of the membranes has successfully passed both
checking stages, then there will not be any object Y es present in the skin at the
time when the output stage begins. Thus, after the object No is generated, the
skin will still have a positive charge, so it will be sent out. In that moment the
system halts.

6 Formal Verification

In this section we prove that the family Π of P systems with active membranes
designed in Section 4 provides a polynomial solution for the Knapsack problem,
in the sense given in Definition 10; that is, Knapsack ∈ PMCAM.

First of all, it is obvious that the family of P systems defined is AM-
consistent, because every P system of the family is a recognizer P system with
active membranes using 2-division.

In second place, the family is polynomially uniform by Turing machines. It
can be observed that the definition of the family is done in a recursive manner
from a given instance, in particular from the constants n, k and c. Furthermore,
the necessary resources to build an element of the family are of a linear order
with respect to these constants:

– Size of the alphabet: 5n + 4k + 4c + 28 ∈ O(n + k + c),
– number of membranes: 2 ∈ Θ(1),
– |Me| + |Me| = k + c + 2 ∈ O(k + c),
– sum of the rules’ lengths: 40n + 27k + 20c + 193 ∈ O(n + k + c).

Before going on, let us recall the functions cod : IKnp → ⋃
t∈N

IΠ(t) and
s : IKnp → N defined for an instance u = (n, (w1, . . . , wn), (v1, . . . vn), k, c) as
cod(u) = xw1

1 . . . xwn
n yv1

1 . . . yvn
n , and s(u) = 〈n, k, c〉, respectively.

Both functions are total and polynomially computable. Furthermore, (cod, s)
provides a polynomial encoding of the set of instances of the Knapsack problem
for the family Π of P systems, as we have that, for any instance u, cod(u) is a
valid input for the P system Π(s(u)).

Please note that the instance u = (n, (w1, . . . , wn), (v1, . . . vn), k, c) is intro-
duced in the initial configuration through an input multiset; that is, encoded in
an unary representation and, thus, we have that |u| ∈ O(w1 + · · · + wn + v1 +
· · · + vn + k + c).

To establish the verification we need to prove that every P system of the
family is polynomially bounded and it is sound and complete with respect to
(Knapsack, cod, s).

6.1 Linearly Bounded

To check that Π(s(u)) with input cod(u) is polynomially (in fact, linearly)
bounded, it is enough to identify the step when the computation stops, or at
least an upper bound. Actually, as we are going to see, the number of steps of the
computations of the P systems of the family can be always bounded by a linear
function. However, let us observe that the amount of pre-computed resources for
each instance u is polynomial in the size of the instance, because cod(u), s(u)
need to be calculated and Π(s(u)) need to be constructed.

First comes the generation stage. The rules in (a) are designed in such a way
that a necessary and sufficient condition for a membrane to divide is that either
it has neutral charge and it contains an object ej , with j ∈ {0, 1, . . . , n}, or it
has positive charge and it contains an object ej , with j ∈ {0, 1, . . . , n−1}. In the
first case the result of the division is a membrane with negative charge, where
ej is replaced by q, and a membrane with positive charge where the object ej

remains (if j < n, then the latter membrane is in the second case, and thus it will
divide again). In the second case, one of the membranes obtained has neutral
charge and the other one positive, and in both of them the object ej is replaced
by ej+1. As the index set is finite, the divisions cannot go on indefinitely, thus
the generation stage is a finite process. Furthermore, keeping in mind the fact
that after two consecutive divisions the index of the object ej in the membrane
grows in one unit (if it has not been replaced by q), it can be deduced that after
2n + 1 steps no more membrane divisions will take place.

For the calculation stage we follow a similar reasoning. It suffices to consider
the objects xi and yi and to note how their subscripts decrease in each step (if
i > 0) or how they are removed or renamed (if i = 0). Thus also this stage has
a linear number of steps.

The third stage (checking stage for w) consists basically in a loop made from
the pair of rules [ea0]−e → [e]0e# and [ea]0e → [e]−e #, hence in every lap of the
loop two objects are removed. In parallel with the application of the previous
two rules, the counter qi evolves, and it causes this stage to finish in at most
2k + 1 steps. If the checking is successful (that is, if wB ≤ k, where B is the
associated subset), then the stage will spend 2wB + 1 steps, as we saw in the
previous section; but if the checking is not successful (that is, if wB > k), then

the membrane will get blocked after 2k + 1 steps and will not proceed to the
next stage.

In the case that a membrane successfully passes the third stage, in the next
step the rules in (g) will be applied in such membrane, preparing the objects b
and b0 to compare their multiplicities and initializing the counter q̄0 that controls
the result. As for the function w, the checking stage for v consists basically in
the reiteration of a loop, but in this case the number of steps will be 2c + 2 for
the affirmative case (that is, if v(B) ≥ c) and in the negative case the process
will get blocked after 2vB + 2 steps (if v(B) < c).

We can then conclude that in the inner membranes no rule is applied after
2n + 2k + 2c + 7 steps.

There is only the output stage left. The mechanism is simple: there is a counter
zj in the skin that evolves from z0 to z2n+2k+2c+6, this needs 2n + 2k + 2c + 6
steps in all. Then, z2n+2k+2c+6 evolves producing two objects, d+ and d−, and
after that the rule [sd+]0s → [s]+s d+ is applied, changing the polarity of the skin
to positive. In this moment, if the answer is affirmative, then the object d−
evolves to No inside the skin, and simultaneously an object Y es is sent out, so
the system halts in the (2n+2k +2c+9)-th step. If, on the contrary, the answer
is negative, then the object d− evolves to No inside the skin but no object Y es is
sent out simultaneously, so the skin still has a positive charge in the next step and
consequently the rule [sNo]+s → [s]0sNo is applied, and the system halts in the
(2n+2k+2c+10)-th step. Recall that |u| ∈ O(w1+· · ·+wn+v1+· · ·+vn+k+c).

6.2 Soundess and Completeness

Now the soundness and completeness of the family of P systems Π with regard
to (Knapsack, cod, s) will be established. That is, it will be proved that given
an instance u of the problem, the P system of the family associated with such
instance, Π(s(u)), with input cod(u), answers Y es if and only if the problem has
an affirmative answer for the given instance.

The proof will be made studying the correct functioning of each stage sepa-
rately. For the generation stage, let us consider a subset B = {ai1 , . . . , air

} ⊆ A
(with i1 < i2 < · · · < ir, and r ≤ n); then there must exist a single relevant
membrane that encodes it. Actually, the sequence of membranes that leads to
the latter is:
[ee0]0e ⇒ [ee0]+e ⇒ [ee1]+e ⇒ · · · ⇒ [eei1−1]+e ⇒ [eei1]

0
e ⇒ [eei1]

+
e ⇒ · · · ⇒

⇒ [eei2−1]+e ⇒ [eei2]
0
e ⇒ · · · ⇒ [eeir

]0e ⇒ [eq]−e ⇒ [eq0]−e .
Due to its recursive definition, the associated subset keeps in some sense

track of the history of the membrane. Considering this, it is easy to see that
the sequence sketched above leads actually to a uniquely determined relevant
membrane with B as associated subset.

Next, to be sure that the second stage also works correctly, we will see that
the multiplicities of the objects a0 and b0 in the membrane previously referred
are w(B) and v(B), respectively. Note that to add the weights of the elements of
A immediately after they are selected for the associated subset does not cause
any trouble, because if an element aj belongs to the subset encoded by a certain

membrane, then it will also belong to the subsets encoded by its descendants
and, thus, we can already add the corresponding weight.

Lemma 2. In a positively charged inner membrane where the object ei appears,
for 0 ≤ i ≤ n − 1, the multiplicities of the objects xj and yj correspond exactly
with the weight w(ai+j) and with the value v(ai+j) of the element ai+j ∈ A,
respectively, for every j such that 1 ≤ j ≤ n − i.

Proof. By induction on i.
For the base case, i = 0, we know that the multiset associated with the

membrane e in the initial configuration is e0ā
k b̄cxw1

1 · · ·xwn
n yv1

1 · · · yvn
n . Then the

rule [ee0]0e → [eq]−e [ee0]+e will be applied (actually, it is the only rule that can be
applied in this situation), and the multiset of the positively charged membrane
will remain unchanged. Thus, for every j such that 1 ≤ j ≤ n−i the multiplicities
of the objects xj and yj correspond exactly with the weight and the value of the
element ai+j ∈ A, as we wanted to prove.

For the inductive step, let us suppose that the result holds for i < n − 1.
Let us consider then a positively charged inner membrane where the object ei+1
appears. We will distinguish two cases:

Let us suppose first that the membrane has been obtained through the rule
[eei]+e → [eei+1]0e[eei+1]+e . Then, from the inductive hypothesis we deduce that
the multiplicities of the objects xj and yj in the original membrane correspond
exactly with the weight and the value of the element ai+j ∈ A, for every j such
that 1 ≤ j ≤ n−i. Note that also the rules in (b) (the ones for positively charged
membranes) have been applied, and thus the multiplicities of the objects xj and
yj in the membrane are equal to the multiplicities of the objects xj+1 and yj+1 in
the father membrane, for 0 ≤ j ≤ n−i−1. Then, we come to the conclusion that
the multiplicities of the objects xj and yj correspond exactly with the weight
and the value of the element ai+j+1 ∈ A for 1 ≤ j ≤ n − (i + 1). This completes
the proof.

For the second case let us suppose that the membrane is obtained as the result
of applying the rule [eei+1]0e → [eq]−e [eei+1]+e . Following a reasoning similar to
the previous one for the father membrane (as [eei+1]0e is obtained in its turn
through the rule [eei]+e → [eei+1]0e[eei+1]+e), we come to the conclusion that the
multiplicities of the objects xj and yj in the father membrane correspond exactly
with the weight and the value of the element ai+j ∈ A, for every j such that
1 ≤ j ≤ n − i. Furthermore, the multiplicities of such objects do not change
in the next step, because the only rule that is applied simultaneously to the
division rule is [ex0 → ā0]0e, and this one cannot be applied to objects xj and yj

with j ≥ 1. �

Proposition 2. In a relevant membrane the number of copies of the objects a0
and b̂0 match exactly the weight and the value of the associated subset, respec-
tively.

Proof. Given an arbitrary relevant membrane, let B = {ai1 , . . . , air} be its as-
sociated subset, with i1 < i2 < · · · < ir, and r ≤ n. Then, as we said before,

there is no other relevant membrane along the computation associated with the
same subset.

In the sequence that leads to the relevant membrane there are r + ir + 1
intermediate membranes between the initial one and the relevant one. Among
them there is one that has a neutral charge and contains an object eil

for each
ail

∈ B. In addition, for each j with 0 ≤ j ≤ ir − 1 there is one membrane
positively charged that contains the object ej . Finally, there is also a negatively
charged membrane that contains the object q.

If we apply Lemma 2 choosing i = il − 1 (with 1 ≤ l ≤ r) and j = 1 to all
the membranes that are positively charged and contain an object eil−1, we get
that in each one of them the multiplicities of the objects x1 and y1 are exactly
wil

and vil
(the weight and the value of ail

∈ A, respectively). Since in every
one of them the rules in (b) will be applied in the next step, we deduce that, for
1 ≤ l ≤ r, in the neutrally charged membrane where eil

appears there will be
wil

objects x0 and vil
objects y0. Consequently in the next step wil

copies of ā0
and vil

copies of b̄0 will be generated in the membrane.
This holds for every il with 1 ≤ l ≤ r, that is, for all the elements in B, so

in the negatively charged membrane where q appears, the multiplicities of the
objects ā0 and b̄0 are the sum of the weights and the sum of the values of the
elements in B, respectively. That is, they are the weight and the value of the
subset B. Finally, after applying the rules in (c) in the last step of the sequence,
we come to the desired result. �

Next the checking stages are studied. Let us consider a relevant membrane
whose associated subset is B = {ai1 , . . . , air

}, and let w(B) = wB and v(B) = vB

be the weight and the value, respectively, of such subset. Then the multiset
associated with the membrane is q0q̄a

wB
0 ak b̂vB

0 b̂cx
wir+1
1 · · ·xwn

n−ir
y

vir+1
1 · · · yvn

n−ir
.

The point is to compare the number of objects a with the number of objects
a0 present in the membrane. The object q0 will evolve in parallel with the com-
parison and it controls the end of the stage. The objects b̂0, b̂, and q̄ remain
inactive during this stage, as we already said in the previous section. If any ob-
jects xj or yj , with j > 0, appear inside the membrane, then they do not evolve
in this stage, as the membrane will not get positive charge until the end of the
stage, and only if the checking is successful.

There are two possibilities: either wB ≤ k or wB > k. In the previous section
we discussed what happens in each case. A membrane passes successfully the
third stage if and only if wB ≤ k.

As soon as the third stage ends in a membrane (and it ends successfully) the
membrane gets a positive charge, and thus the objects b̂0, b̂, and q̄ are reactivated
(through the rules in (g)). In addition, objects xj and yj possibly present in the
membrane will also evolve through the rules in (b), but we are not going to pay
attention to them because they do not affect the membrane’s charge nor the
result of the v-checking. The loop formed by the two rules in (h) works just the
same as the loop from the third stage, its goal is to compare the multiplicities
of the objects b and b0, and it does this eliminating such objects one by one
(sending them out of the membrane) and changing the charge every step. As

it was studied in the previous section, in this stage the counter q̄i works in a
different way as qi did, because in this stage a successful result is obtained when
the number of objects b0 is greater than the number of b’s.

An object Y es will be sent out to the skin at the end of this stage if and
only if the counter q̄i does not get blocked before arriving to q̄2c+1. That is, if
and only if the membrane changes its charge every step during 2c steps. This is
equivalent to the condition that one rule from (h) must be applied each one of
the 2c first steps of this stage, and in its turn this is equivalent to asking that
there are at least c copies of b and of b0 as well. We already know that in the
beginning of the stage there are c copies of b in the membrane, so what we are
requiring is the multiplicity of b0 to be greater or equal than c, that is, the value
of the subset is greater or equal than c. Thus, the checking stage for v is well
designed.

Until now, we have proved that for every subset B ⊆ A, a relevant membrane
will appear sooner or later along the computation with B as associated subset
and with exactly wB copies of a0 and vB copies of b̂0 inside it. We have also
proved that a relevant membrane will pass the third and the fourth stage (sending
thus an object Y es to the skin) if and only if wB ≤ k and vB ≥ c hold. Finally,
we must only see that the output stage works correctly too.

This is easily done if we keep in mind that in the moment when objects d+
and d− appear it is granted that all membranes have had enough time to achieve
their two checking stages. That is, either they have successfully passed them and
have sent an object Y es to the skin or they have got blocked. It suffices to note
that the object Y es has some “priority” over the object No to go out.

Indeed, when the object d+ leaves the system and gives a positive charge
to the skin, the object No has not been generated yet. So if the instance has
an affirmative solution, then some objects Y es (at least one) will already be
present in the skin and thus in the following step one of these objects Y es will
be sent out, while the object No is generated inside the skin. In the case of a
negative solution, none of the membranes will sent an object Y es to the skin
and consequently two steps after the moment when d+ is sent out, an object No
will also leave the system and the computation will halt.

7 Main Results

From the discussion in the previous section, and according to Definition 10, we
deduce the following result:

Theorem 1. Knapsack ∈ PMCAM.

Although the next result is a corollary of Theorem 1, we formulate it as
another theorem, in order to stress its relevance.

Theorem 2. NP ⊆ PMCAM.

Proof. It suffices to make the following observations: the Knapsack problem is
NP–complete, Knapsack ∈ PMCAM and the class PMCAM is closed under
polynomial-time reduction. �

This theorem can be extended, if we notice that the class PMCAM is closed
under complement.

Theorem 3. NP ∪ co − NP ⊆ PMCAM.

8 Conclusions

In this paper we have presented a family of recognizer P systems solving the
Knapsack problem in linear time. This has been done in the framework of com-
plexity classes in cellular computing with membranes.

We would like to clarify what does linear time mean. The linear bound is
referred to the number of cellular steps, but we must not forget that a pre-
computation is needed to get g(u), h(u), and Π(h(u)) and this pre-computation
requires a polynomial number of steps (through a conventional computating
model).

The design presented here is very similar to the one given for the Subset-
Sum problem in [5]. The multiple common points allow us to be optimistic
about future adaptations for other relevant numerical problems. For instance,
starting from the skeleton of the design presented in this paper, a solution for
the Partition problem is been developed at the moment, and of course we are
aiming at a solution for the unbounded Knapsack problem.

The Prolog simulator of P systems [1] is a very useful tool that has helped to
debug the design and to understand better how the P systems from the family
Π work.

Acknowledgement. Support this research through the project TIC2002-
04220-C03-01 of the Ministerio de Ciencia y Tecnoloǵıa of Spain, cofinanced
by FEDER funds, is gratefully acknowledged.

References

1. Cordón-Franco, A., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J. Sancho-
Caparrini, F.: A Prolog simulator for deterministic P systems with active mem-
branes, New Generation Computing, to appear.

2. Păun, G.: Computing with membranes, Journal of Computer and System Sciences,
61(1), 2000, 108–143.

3. Păun, G.: Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
4. Păun, G., Rozenberg, G.: A guide to membrane computing, Theoretical Computer

Sciences, 287, 2002, 73–100.
5. Pérez-Jiménez, M.J., Riscos-Núñez, A.: Solving the Subset-Sum problem by active

membranes,New Generation Computing, to appear.
6. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Teoŕıa de la

Complejidad en modelos de computation celular con membranes, Editorial Kro-
nos, Sevilla, 2002.

7. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: A polynomial
complexity class in P systems using membrane division, Proceedings of the 5th
Workshop on Descriptional Complexity of Formal Systems, Budapest, Hungary.

	Introduction
	Preliminaries
	The Complexity Class PMC$_{cal AM}$
	Solving the Decision Knapsack Problem in Linear Time
	An Overview of the Computation
	Formal Verification
	Linearly Bounded
	Soundess and Completeness

	Main Results
	Conclusions

