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Abstract

Karlsson and Margulis [10] proved in the setting of uniformly convex
geodesic spaces, which additionally satisfy a nonpositive curvature con-
dition, an ergodic theorem that focuses on the asymptotic behavior of
integrable cocycles of nonexpansive mappings over an ergodic measure-
preserving transformation. In this note we show that this result holds
true when assuming a weaker notion of uniform convexity.
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1 Introduction

One recent research direction in ergodic theory consists in generalizing classi-
cal ergodic theorems to the setting of geodesic spaces with a sufficiently rich
geometry. Let Y be a geodesic space and D ⊆ Y . Consider S a semigroup
of nonexpansive (i.e. 1-Lipschitz) self-mappings defined on D and endow S
with the Borel σ-algebra induced by the compact-open topology on S. Assume
that (X,µ) is a probability measure space, T : X → X is an ergodic measure-
preserving transformation and w : X → S is a measurable map. Define the
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cocycle
an(x) = w(x)w(Tx) · · ·w(T n−1x).

Fix y ∈ D and suppose that

∫

X

d(y, a1(x)y)dµ(x) < ∞. One can easily see

that the sequence

(
∫

X

d(y, an(x)y)dµ(x)

)

is subadditive and so, by Fekete’s

subadditive lemma [4], the following limit exists

0 ≤ A = lim
n→∞

1

n

∫

X

d(y, an(x)y)dµ(x) = inf
n

1

n

∫

X

d(y, an(x)y)dµ(x) < ∞.

As an immediate application of Kingman’s subadditive ergodic theorem [12] one

gets that for almost every x ∈ X , lim
n→∞

1

n
d(y, an(x)y) = A.

Karlsson and Margulis [10] proved that if Y is a complete Busemann convex
geodesic space satisfying a uniform convexity condition (see Section 2, (i) for the
precise definition), the following holds: if A > 0, then for almost every x ∈ X ,
there exists a unique geodesic ray γ in Y starting at y and depending on x such

that lim
n→∞

1

n
d(γ(An), an(x)y) = 0. Thus, instead of the convergence of averages

as in classical ergodic results, one basically obtains for almost every x ∈ X the
existence of a geodesic ray that issues at y such that, as n → ∞, the values
of the cocycles an(x) at y are ‘close’ to this geodesic ray, a property which is
referred to in [9] as ray approximation.

This result generalizes the multiplicative ergodic theorem of Oseledec [18]
(see also [10, 9, 8]). A discussion on the asymptotic behavior of ergodic products
of nonexpansive mappings and isometries of a (proper) metric space and appli-
cations thereof can be found in [9]. In a related line, ergodic-theoretic results in
CAT(0) spaces were proved by Es-Sahib and Heinich [3] and Sturm [20] using
barycenter techniques. Considering a different notion of barycenter map, Austin
[1] proved an extension of the pointwise ergodic theorem for mappings with val-
ues in complete separable CAT(0) spaces. Following a similar proof strategy,
but defining another suitable notion of barycenter (that actually recovers the
one from [3]), Navas [16] gave an ergodic theorem for mappings taking values
in Busemann spaces.

In this paper we show that the ergodic theorem given in [10] holds true for a
more general class of geodesic spaces, by generalizing its proof to these spaces.
More precisely, we prove that we can relax the uniform convexity assumption
on Y used in [10] as follows: Y is said to be weakly uniformly convex if for any
a ∈ Y , r > 0 and ε ∈ (0, 2],

δY (a, r, ε) = inf{1− d(a,m(x, y))/r : d(a, x), d(a, y) ≤ r, d(x, y) ≥ εr} > 0,

where m(x, y) is a midpoint of a geodesic segment from x to y. We refer to
the mapping δY as the the modulus of convexity of Y . This notion was used
by Reich and Shafrir [19] in the setting of hyperbolic spaces. In addition, we
assume that for every a ∈ Y and ε > 0 there exists s > 0 such that

inf
r≥s

δY (a, r, ε) > 0. (1)

2



The main result of the paper is the following.

Theorem 1.1. Assume that Y is a complete Busemann convex geodesic space
that is weakly uniformly convex and satisfies (1). If A > 0, then for almost
every x ∈ X, there exists a unique geodesic ray γ in Y that issues at y and

depends on x such that lim
n→∞

1

n
d(γ(An), an(x)y) = 0.

In Section 2 we recall different notions of uniform convexity used in nonlinear
settings, all of them fitting within the class of weakly uniform convex geodesic
spaces defined as above and satisfying (1). We also discuss a convexity condition
that we actually use in the proof and provide an example of a weakly uniformly
convex geodesic space satisfying (1) which is not uniformly convex in the sense
of [10]. Section 3 contains the proof of our main result.

2 Weakly uniformly convex geodesic spaces

Let (Y, d) be a metric space. Y admits midpoints if for every x, y ∈ Y there exists
a point m(x, y) ∈ Y (called a midpoint of x and y) such that d(x,m(x, y)) =
d(y,m(x, y)) = d(x, y)/2. A geodesic path (resp. geodesic ray) in Y is a distance-
preserving map γ : [0, l] ⊆ R → Y (resp. γ : [0,∞) → Y ). If γ is a geodesic
path such that γ(0) = x, γ(l) = y, we say that γ joins x, y and the image of γ
is a geodesic segment from x to y, denoted by [x, y] if there is no confusion. Y
is a (uniquely) geodesic space if every two points in Y are joined by a (unique)
geodesic path. Any complete metric space that admits midpoints is a geodesic
space. A point z ∈ Y belongs to a geodesic segment [x, y] if and only if there
exists t ∈ [0, 1] such that d(x, z) = td(x, y) and d(y, z) = (1 − t)d(x, y) and we
write z = (1−t)x+ty. For t = 1/2 we get a midpoint m(x, y). See, for instance,
[2] for details on geodesic spaces.

Following [14], we can define weak uniform convexity in an alternative way:
a geodesic space Y is weakly uniformly convex if there exists a mapping η :
Y × (0,∞) × (0, 2] → (0, 1] such that for any a ∈ Y, r > 0, ε ∈ (0, 2], every
x, y ∈ Y and all geodesic segments [x, y] we have that,

d(a, x) ≤ r
d(a, y) ≤ r
d(x, y) ≥ εr







⇒ d (a,m(x, y)) ≤ (1 − η(a, r, ε))r. (2)

Such a mapping η is referred to as a modulus of weak uniform convexity. This
definition is equivalent to the previous one, with the modulus of convexity δY
giving the largest modulus of weak uniform convexity. A modulus η is said to
be monotone if it is nonincreasing in the second argument.
A weakly uniformly convex geodesic space Y is strictly convex (i.e., for all
a, x, y ∈ Y with x 6= y, d (a,m(x, y)) < max{d(a, x), d(a, y)}), hence uniquely
geodesic. Likewise, if d(a, x), d(a, y) ≤ r, then d(a, p) ≤ r for all p ∈ [x, y].
If one can find a modulus η = η(r, ε) that does not depend on a, we get the
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stronger notion of uniform convexity, first considered in a nonlinear setting in
[7, 6], and η is called a modulus of uniform convexity.

We include next some particular notions of (weak) uniform convexity:

(i) Karlsson and Margulis [10] define uniform convexity in a metric space Y
that admits midpoints as follows: Y is said to be uniformly convex if there
exists a strictly decreasing and continuous function g : [0, 1] → [0, 1] with
g(0) = 1, so that for any a, x, y ∈ Y and any midpoint m(x, y),

d(a,m(x, y))

M
≤ g

(

d(x, y)

2M

)

, where M = max{d(x, a), d(y, a)}. (3)

Any geodesic space satisfying the above condition is uniformly convex in
our sense. Indeed, given r > 0, ε ∈ (0, 2], let a, x, y ∈ Y satisfy d(x, a) ≤
r, d(y, a) ≤ r and d(x, y) ≥ εr. Then d(a,m(x, y)) ≤ g(d(x, y)/(2M))M ≤
g(ε/2)r, so η(ε) = 1− g (ε/2) > 0 is a modulus of uniform convexity that
only depends on ε.

(ii) Gelander, Karlsson and Margulis [5] consider a strictly convex geodesic
space Y to be uniformly convex if it is weakly uniformly convex and for all
ε > 0 there exists η(ε) > 0 such that δY (a, r, ε) ≥ η(ε) for all r > 0, a ∈ Y .

(iii) In [11], a metric space Y that admits midpoints is called uniformly p-
convex (where p ∈ [1,∞]) if for every ε > 0 there exists ρp(ε) ∈ (0, 1) such
that for all a, x, y ∈ Y with d(x, y) > εMp(d(a, x), d(a, y)) for p > 1 and
d(x, y) > |d(a, x)− d(a, y)|+ εM1(d(a, x), d(a, y)) for p = 1 we have that

d(a,m(x, y)) ≤ (1− ρp(ε))Mp(d(a, x), d(a, y)), (4)

where Mp(α, β) = (αp/2 + βp/2)1/p and M∞(α, β) = max{α, β}.
By [11, Lemma 1.4], any uniformly p-convex space is uniformly ∞-convex
which, in turn, is uniformly convex in our sense. Let r > 0, ε ∈ (0, 2]
and a, x, y ∈ Y with d(x, a) ≤ r, d(y, a) ≤ r and d(x, y) ≥ εr. Then
d(x, y) > (εM)/2, where M is as in (3). This yields d(a,m(x, y)) ≤
(1 − ρ∞(ε/2))M ≤ (1 − ρ∞(ε/2))r. Hence, Y has a modulus of uniform
convexity η(ε) = ρ∞ (ε/2) > 0 that only depends on ε.

Geodesic spaces which are p-uniformly convex in the sense of Naor and Silber-
man [15] (see also [13, 17]) satisfy all three definitions (i)-(iii). These spaces
are defined as follows: for a fixed 1 < p < ∞, a geodesic space Y is called
p-uniformly convex with parameter k > 0 if for every a, x, y ∈ Y and t ∈ [0, 1],

d(a, (1 − t)x+ ty)p ≤ (1− t)d(a, x)p + td(a, y)p − k

2
t(1− t)d(x, y)p.

We see below that p-uniformly convex spaces indeed satisfy (i)-(iii). Remark
first that, by [13, Proposition 2.5, (1)], k ≤ cp with

cp =

{

2(p− 1) if p ∈ (1, 2)
8/2p if p ≥ 2.
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Let a ∈ Y , r > 0, ε ∈ (0, 2]. Take x, y ∈ Y such that d(a, x) ≤ r, d(a, y) ≤
r and d(x, y) ≥ εr. Then 1 − d(a,m(x, y))/r ≥ 1 − (1 − kεp/8)1/p. This
implies (ii). To see that (i) is satisfied, consider a, x, y ∈ Y and M as in
(3). Then d(a,m(x, y))/M ≤ (1 − (k/8)(d(x, y)/M)p)1/p. For t ∈ [0, 1], take
g(t) = (1−k(2t)p/8)1/p. Then (i) holds. Let ε > 0 and ρp(ε) = 1−(1−kεp/8)1/p.
One gets that (4) holds, hence (iii) is satisfied (see also [11, Example, p. 361]).

For the rest of this paper we assume that any weakly uniformly convex
geodesic space also satisfies condition (1). From the above arguments it is
easy to see that all uniformly convex spaces described in (i)-(iii) satisfy (1).
Although we state our main result in the setting of weakly uniformly convex
geodesic spaces that additionally satisfy a nonpositive curvature assumption,
we remark that what we actually use in the proof is the following convexity
condition which holds in any weakly uniformly convex geodesic space.

2.1 A convexity assumption

We say that a geodesic space Y has property (C) if there exists a mapping
Ψ : Y × (0,∞)× (0, 2] → (0, 1] satisfying:

(C1) for all y ∈ Y, r > 0, ε ∈ (0, 2], every x, z ∈ Y with d(x, y) = r, d(y, z) ≥ r,
if w belongs to a geodesic segment [y, z] and d(y, w) = r, then

r + d(x, z) ≤ d(y, z) + Ψ(y, r, ε)r implies d(w, x) ≤ εr.

(C2) for all y ∈ Y, ε ∈ (0, 2], there exists s > 0 such that infr≥s Ψ(y, r, ε) > 0.

Lemma 2.1. Any weakly uniformly convex geodesic space Y has property (C)
with Ψ(y, r, ε) = δY (y, r, ε) for all y ∈ Y , r > 0 and ε ∈ (0, 2].

Proof. Define Ψ := δY and let y, r, ε, x, z, w as in (C1). We may assume
that w 6= x. By hypothesis, d(x, z) ≤ d(y, z) − r + δY (y, r, ε)r = d(z, w) +
δY (y, r, ε)r. Denote m(w, x) by m. Then d(m, z) < max{d(z, x), d(z, w)} ≤
d(z, w)+ δY (y, r, ε)r, hence d(y, z)−d(y,m) < d(z, w)+ δY (y, r, ε)r, from where
d(y,m) > d(y, w)− δY (y, r, ε)r = (1− δY (y, r, ε))r. By weak uniform convexity,
d(y,m) ≤ (1− δY (y, r, d(x,w)/r)) r, hence δY (y, r, d(x,w)/r) < δY (y, r, ε). As
δY is nondecreasing in the third argument, we get d(x,w) ≤ εr.
(C2) follows immediately from (1).

2.2 An example

In the sequel we give an example of a weakly uniformly convex space satisfying
(1) which is not uniformly convex in the sense of Karlsson and Margulis. We
refer to [2] for all the undefined notions.

In the construction of our example, we glue spaces through points. Assume
that (X, dX) and (Y, dY ) are geodesic spaces, θ ∈ X and τ ∈ Y . Let Z be the
quotient of the disjoint union X ⊔ Y by the equivalence relation generated by
[θ ∼ τ ]. We identify X and Y with their images in Z, write Z = X ⊔θ Y and
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refer to it as the gluing of X and Y obtained by identifying the points θ, τ . This
is a geodesic metric space with the gluing metric

d(x, y) =











dX(x, y), if x, y ∈ X

dY (x, y), if x, y ∈ Y

dX(x, θ) + dY (τ, y), if x ∈ X, y ∈ Y.

Lemma 2.2. Assume that (X, dX) and (Y, dY ) are weakly uniformly convex
geodesic spaces with monotone moduli ηX and ηY , respectively. For every θ ∈ X,
τ ∈ Y , X ⊔θ Y is weakly uniformly convex with a modulus

η(a, r, ε) =

{

min{ηX(a, r, ε), ηY (τ, r, ε)ε/2, ε/4, ηX(a, r, ε/4)}, if a ∈ X

min{ηY (a, r, ε), ηX(θ, r, ε)ε/2, ε/4, ηY (a, r, ε/4)}, if a ∈ Y.

Proof. Let a ∈ X ⊔θ Y , ε ∈ (0, 2], r > 0 and x, y ∈ X ⊔θ Y be such that
d(a, x), d(a, y) ≤ r and d(x, y) ≥ εr. Let us denote m(x, y) with m, for simplic-
ity. We assume that a ∈ X , the case a ∈ Y being similar. We distinguish the
following cases:

(i) x, y ∈ X . Then, since ηX is a modulus of weak uniform convexity for X ,
d(a,m) ≤ (1 − ηX(a, r, ε))r.

(ii) x, y ∈ Y . Let M := max{d(θ, x), d(θ, y)}. One can easily see that εr/2 ≤
M ≤ r and that d(a, θ) + M ≤ r. By the weak uniform convexity of Y ,
d(θ,m) = dY (τ,m) ≤ (1 − ηY (τ, r, ε))M . It follows then that d(a,m) ≤
(1 − ηY (τ, r, ε)ε/2)r.

(iii) x ∈ X , y ∈ Y . If m ∈ Y , then m ∈ [θ, y], so d(θ, y) = d(θ,m)+d(m, y). It
follows that d(a,m) = d(a, θ) + d(θ,m) = d(a, y)− d(m, y) ≤ (1 − ε/2)r.
If m ∈ X , so m ∈ [x, θ], we have two cases. If d(m, θ) < εr/8, then
d(θ, y) > 3εr/8, so d(a, θ) = d(a, y) − d(θ, y) ≤ (1 − 3ε/8)r. Thus,
d(a,m) ≤ (1− ε/4)r. Suppose now that d(m, θ) ≥ εr/8 and let p ∈ [x,m]
be such that m is the midpoint of the segment [p, θ]. Then d(a, p) ≤ r
and, since d(a, θ) ≤ r and d(p, θ) ≥ εr/4, apply the fact that X is weakly
uniformly convex to get that d(a,m) ≤ (1− ηX(a, r, ε/4))r.

As a consequence, if X and Y have moduli ηX , ηY which depend only on ε, then
X ⊔θ Y has a modulus η with the same property.

Consider the 2-dimensional sphere S2 which is a geodesic space when en-
dowed with the distance dS2(x, y) = arccos (x | y), where (· | ·) is the Euclidean
scalar product. Let

b =
(√

3/2, 1/2, 0
)

, c = (0, 1, 0) , an =
(

1/(2n),
√
3/(2n),

√

1− 1/n2
)

.

Thenm(b, c) =
(

1/2,
√
3/2, 0

)

, dS2(b, c) = π/3, dS2(an, b) = dS2(an, c) = arccos
(√

3/(2n)
)

and dS2 (an,m(b, c)) = arccos (1/n) for all n ∈ N, n ≥ 2.
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Denote by ∆n the geodesic triangle ∆(an, b, c). Since we will glue these
triangles, we denote the points b and c by bn and cn, respectively. Note that,
for each n ≥ 2, ∆n is a 2-uniformly convex geodesic space. In fact, Ohta proved
in [17] that, for κ > 0, any CAT(κ) space X with diam(X) < π/(2

√
κ) is 2-

uniformly convex with parameter k = (π − 2
√
κσ) tan(

√
κσ) for any 0 < σ ≤

π/(2
√
κ)−diam(X). In particular, since ∆n is a CAT(1) space and diam(∆n) <

π/2 it follows, by the argument given in Section 2, that it has a modulus of
uniform convexity given by δ∆n

(ε) =
√

1− (1− kε2/8).
Glue ∆n and ∆n+1 successively through a point by identifying bn with an+1

in order to obtain a chain of triangles Y =
∑

n≥2 ∆n. More precisely, one
considers first the gluing Y1 := ∆2 ⊔b2 ∆3, then one forms Y2 := Y1 ⊔b3 ∆4 and
so on, for general n ≥ 2, Yn+1 := Yn ⊔bn+2 ∆n+3. One glues in this way the
sequence of triangles (∆n) obtaining the unbounded geodesic space Y . Applying
repeatedly Lemma 2.2, we get that for every n ≥ 1, Yn is uniformly convex, with
a modulus of uniform convexity ηYn

which depends only on ε.

Proposition 2.3. Y is a weakly uniformly convex geodesic space satisfying (1).

Proof. Let a ∈ Y , ε ∈ (0, 2], r > 0 and x, y ∈ Y be such that d(a, x), d(a, y) ≤ r
and d(x, y) ≥ εr. If i is such that a ∈ Yi, then a, x, y ∈ YN , with N =
i+ ⌈r/ arccos

(√
3/(2i+ 4)

)

⌉. Thus, d(a,m(x, y)) ≤ (1− ηYN
(ε))r.

We prove now that (1) holds. Take s = (i+1)π/ε and r ≥ s. Note that since
d(x, y) ≥ εr, it follows that d(x, y) ≥ (i+1)π. At least one of the points x and y
does not belong to Yi and we may assume that this point is y. One can also easily
see that m(x, y) does not belong to Yi either and that m(x, y) ∈ [a, y]. Thus, as
in the proof of Lemma 2.2, case (iii), we have that d(a,m(x, y)) ≤ (1 − ε/2)r.
Therefore, infr≥s δY (a, r, ε) ≥ ε/2.

Proposition 2.4. Y does not admit a modulus of uniform convexity that does
not depend on the center of balls.

Proof. Let r = π/2, ε = 2/3 and δ ∈ (0, 1] be arbitrary. Take n sufficiently
large such that arccos (1/n) > (1 − δ)π/2. Then d(bn, cn) = εr, d(an, bn) =
d(an, cn) ≤ r, while d(an,m(bn, cn)) > (1 − δ)r.

3 Proof of the main theorem

We denote d(y, an(x)y) by Dn(x) and d(y, an−k(T
kx)y) by Dn(x, k).

Let E be the set of points x ∈ X for which taking any ε > 0 there exist M ∈ N

and infinitely many n ∈ N such that for every k ∈ [M,n],

Dn(x) −Dn(x, k) ≥ (A− ε)k.

By [10, Proposition 4.2] we know that µ(E) = 1.

Lemma 3.1. Let x ∈ E such that lim
n→∞

Dn(x)/n = A > 0. Then for all

sequences (αi) ⊆ (0, 1], (pi) ⊆ N, there exist sequences (Ki) ⊆ N, (ni) ⊆ N

satisfying for all i ≥ 1:
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(i) pi ≤ Ki, ni ∈ (Ki+1, ni+1) and Dni+1(x) ≥ max{Dni
(x), Ani};

(ii) for all k ∈ [Ki, ni], |Dk(x) −Ak| ≤ Ak/2i and

(

1−min{1/2i, αi}
)

Dk(x) + d(ak(x)y, ani
(x)y) ≤ Dni

(x). (5)

Proof. For i ≥ 1, take εi = min{A/(1 + 2i+1), Aαi/(2 + αi)}. Then

2εi
A− εi

≤ min{1/2i, αi}. (6)

Since x ∈ E, there exist Mi and infinitely many n satisfying

Dn(x) −Dn(x, k) ≥ (A− εi)k for every k ∈ [Mi, n]. (7)

Moreover, since lim
n→∞

Dn(x)/n = A, one gets Ji such that for every k ≥ Ji,

(A− εi)k ≤ Dk(x) ≤ (A+ εi)k. (8)

Take Ki := max{Mi, Ji, pi}. Then there are infinitely many n such that (7)
and (8) hold for every k ∈ [Ki, n]. We define the sequence (ni) as follows. Take
n1 > K1 + K2 such that (7) and (8) hold for k ∈ [K1, n1]. For i ≥ 2, pick
ni > max{ni−1,Ki+1} such that Dni

(x) ≥ max{Dni−1(x), Ani−1} and (7), (8)
hold for k ∈ [Ki, ni]. Then (Ki), (ni) satisfy (i).
Let i ≥ 1 and k ∈ [Ki, ni]. By (8), |Dk(x) −Ak| ≤ εik ≤ Ak/2i. Furthermore,

Dk(x) +Dni
(x, k) ≤ Dk(x) +Dni

(x) − (A− εi)k by (7)

≤ Dni
(x) + 2εik ≤ Dni

(x) +
2εiDk(x)

A− εi
by (8)

≤ Dni
(x) + min{1/2i, αi}Dk(x) by (6).

As d(ak(x)y, ani
(x)y) = d(ak(x)y, ak(x)ani−k(T

kx)y) ≤ Dni
(x, k), (5) holds.

Recall that a geodesic space Y is Busemann convex if given any pair of
geodesic paths γ1 : [0, l1] → Y and γ2 : [0, l2] → Y with γ1(0) = γ2(0), one has
d(γ1(tl1), γ2(tl2)) ≤ td(γ1(l1), γ2(l2)) for every t ∈ [0, 1].

3.1 Proof of Theorem 1.1

Let x ∈ E be such that limn→∞ Dn(x)/n = A. For every i ∈ N there exist
si > 0 such that αi = infr≥si Ψ

(

y, r, 1/2i
)

> 0 (by (C2)) and pi ∈ N such that
Dn(x) ≥ si for n ≥ pi. Apply Lemma 3.1 to obtain the sequences (Ki) and
(ni) satisfying properties (i)-(ii) thereof. For each j ∈ N, we denote by γj the
geodesic path that joins y and anj

(x)y and for each j, k ∈ N we let

Mj,k = min{Dk(x), Dnj
(x)}.
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Claim 1: For all j ∈ N and all k ∈ [Kj, nj ],

d(ak(x)y, γj(Mj,k) ≤
Dk(x)

2j
. (9)

Proof of claim: If Dk(x) > Dnj
(x), we apply (5) to get that

d(ak(x)y, γj(Dnj
(x))) = d(ak(x)y, anj

(x)y) ≤ Dk(x)

2j
.

Assume now that Dk(x) ≤ Dnj
(x). Since k ≥ pj , we get that Dk(x) ≥ sj and

so αj ≤ Ψ(y,Dk(x), 1/2
j). Then (5) yields that

Dk(x) + d(ak(x)y, anj
(x)y) ≤ Dnj

(x) + αjDk(x)

≤ Dnj
(x) + Ψ(y,Dk(x), 1/2

j)Dk(x).

Apply now property (C) to obtain that d(ak(x)y, γj(Dk(x))) ≤ Dk(x)/2
j . �

For all i ∈ N, we have that ni ∈ [Ki+1, ni+1] and Dni
(x) ≤ Dni+1(x), so we can

apply (9) (with j := i+ 1 and k := ni) to conclude that

d(γi+1(Dni
(x)), γi(Dni

(x))) = d(γi+1(Dni
(x)), ani

(x)y) ≤ Dni
(x)

2i+1
. (10)

Fix now R > 0 and define I(R) as the smallest integer for which DnI(R)
(x) ≥

R. Let i ≥ I(R) be arbitrary. Since (Dni
(x))i is nondecreasing, one has

that Dni
(x) ≥ R. By Busemann convexity, we get that d(γi+1(R), γi(R)) ≤

(R/Dni
(x))d(γi+1(Dni

(x)), γi(Dni
(x))) and an application of (10) gives us

d(γi+1(R), γi(R)) ≤ R

2i+1
. (11)

Applying repeatedly (11), we get that for all m ∈ N,

d(γi+m(R), γi(R)) ≤
m
∑

j=1

1

2i+j
R ≤ R

2i
.

Thus, (γi(R))i≥I(R) is Cauchy, hence converges to γ(R) := limi→∞ γi(R). Fur-
thermore,

d(γ(R), γi(R)) ≤ R

2i
for all i ≥ I(R). (12)

It is easy to see that γ is a geodesic ray starting at y.
We shall prove in the sequel that limk→∞ d(γ(Ak), ak(x)y)/k = 0. Let k ∈ N.

Then there exists i such that k ∈ [ni−1, ni), which yields k ∈ (Ki, ni).

Claim 2: |Mi,k −Ak| ≤ Ak/2i.
Proof of claim: If Dk(x) ≤ Dni

(x), then by Lemma (3.1).(ii), we get that
|Mi,k−Ak| = |Dk(x)−Ak| ≤ Ak/2i. If Dk(x) > Dni

(x), since |Dni
(x)−Ani| ≤

Ani/2
i+1 (by Lemma (3.1).(ii))), we have that

(A−A/2i)k ≤ (A−A/2i+1)ni ≤ Dni
(x) < Dk(x) ≤ (A+A/2i)k.
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On gets immediately that |Mi,k −Ak| = |Dni
(x) −Ak| ≤ Ak/2i. �

By (9), d(ak(x)y, γi(Mi,k)) ≤ Dk(x)/2
i ≤ 2Ak/2i. Since Dni+1(x) > Ak and

Dni
(x) ≥ Mi,k, we have that i+1 ≥ I(Ak) and i ≥ I(Mi,k), so we can apply (12)

and (11) to get that d(γ(Ak), γi+1(Ak)) ≤ Ak/2i+1 and d(γi+1(Mi,k), γi(Mi,k)) ≤
Mi,k/2

i+1 ≤ 2Ak/2i+1. Thus,

d(γ(Ak), ak(x)y) ≤ d(γ(Ak), γi+1(Ak)) + d(γi+1(Ak), γi+1(Mi,k))

+d(γi+1(Mi,k), γi(Mi,k)) + d(γi(Mi,k), ak(x)y)

≤ Ak

2i+1
+ |Ak −Mi,k|+

2Ak

2i+1
+

2Ak

2i
≤ 9Ak

2i+1
.

This implies that lim
k→∞

1

k
d(γ(Ak), ak(x)y) = 0. By Busemann convexity it fol-

lows easily that the obtained geodesic ray is unique.
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