
Hybrid Networks of Evolutionary Processors

Carlos Mart́ın-Vide, Victor Mitrana, Mario J. Pérez-Jiménez, and
Fernando Sancho-Caparrini

Abstract. A hybrid network of evolutionary processors consists of sev-
eral processors which are placed in nodes of a virtual graph and can
perform one simple operation only on the words existing in that node
in accordance with some strategies. Then the words which can pass the
output filter of each node navigate simultaneously through the network
and enter those nodes whose input filter was passed. We prove that these
networks with filters defined by simple random-context conditions, used
as language generating devices, are able to generate all linear languages
in a very efficient way, as well as non-context-free languages. Then, when
using them as computing devices, we present two linear solutions of the
Common Algorithmic Problem.

1 Introduction

This work is a continuation of the investigation started in [1] and [2] where one
has considered a mechanism inspired from cell biology, namely networks of evo-
lutionary processors, that is networks whose nodes are very simple processors able
to perform just one type of point mutation (insertion, deletion or substi-tution of
a symbol). These nodes are endowed with filters which are defined by some
membership or random context condition.

Another source of inspiration is a basic architecture for parallel and dis-
tributed symbolic processing, related to the Connection Machine [13] as well as

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile (Ø©M) /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

the Logic Flow paradigm [6]. This consists of several processors, each of them
being placed in a node of a virtual complete graph, which are able to handle
data associated with the respective node. Each node processor acts on the local
data in accordance with some predefined rules, and, then local data becomes
a mobile agent which can navigate in the network following a given protocol.
Only such data can be communicated which can pass a filtering process. This
filtering process may require to satisfy some conditions imposed by the sending
processor, by the receiving processor or by both of them. All the nodes send
simultaneously their data and the receiving nodes handle also simultaneously all
the arriving messages, according to some strategies, see, e.g., [7,13].

Starting from the premise that data can be given in the form of strings, [4]
introduces a concept called network of parallel language processors in the aim of
investigating this concept in terms of formal grammars and languages. Networks
of language processors are closely related to grammar systems, more specifically
to parallel communicating grammar systems [3]. The main idea is that one can
place a language generating device (grammar, Lindenmayer system, etc.) in any
node of an underlying graph which rewrite the strings existing in the node, then
the strings are communicated to the other nodes. Strings can be successfully
communicated if they pass some output and input filter.

Mechanisms introduced in [1] and [2] simplify as much as possible the net-
works of parallel language processors defined in [4]. Thus, in each node is placed
a very simple processor, called evolutionary processor, which is able to perform
a simple rewriting operation only, namely either insertion of a symbol or substi-
tution of a symbol by another, or deletion of a symbol. Furthermore, filters used
in [4] are simplified in some versions defined in [1,2].

In spite of these simplifications, these mechanisms are still powerful. In [2]
networks with at most six nodes having filters defined by the membership to a
regular language condition are able to generate all recursively enumerable lan-
guages no matter the underlying structure. This result does not surprise since
similar characterizations have been reported in the literature, see, e.g., [5,11,10,
12,14]. Then one considers networks with nodes having filters defined by random
context conditions which seem to be closer to the biological possibilities of im-
plementation. Even in this case, rather complex languages like non-context-free
ones, can be generated.

However, these very simple mechanisms are able to solve hard problems in
polynomial time. In [1] it is presented a linear solution for an NP-complete
problem, namely the Bounded Post Correspondence Problem, based on networks
of evolutionary processors able to substitute a letter at any position in the string
but insert or delete a letter in the right end only. This restriction was discarded
in [2], but the new variants were still able to solve in linear time another NP-
complete problem, namely the “3-colorability problem”.

In the present paper, we consider hybrid networks of evolutionary processors
in which each deletion or insertion node has its own working mode (at any
position, in the left end, or in the right end) and its own way of defining the
input and output filter. Thus, in the same network one may co-exist nodes in

which deletion is done at any position and nodes in which deletion is done in
the right end only. Also the definition of the filters of two nodes, though both
are random context ones, may differ.

This model may be viewed as a biological computing model in the following
way: each node is a cell having a genetic information encoded in DNA sequences
which may evolve by local evolutionary events, that is point mutations (inser-
tion, deletion or substitution of a pair of nucleotides). Each node is specialized
just for one of these evolutionary operations. Furthermore, the biological data in
each node is organized in the form of arbitrarily large multisets of strings (each
string appears in an arbitrarily large number of copies), each copy being pro-
cessed in parallel such that all the possible evolutions events that can take place
do actually take place. Definitely, the computational process described here is
not exactly an evolutionary process in the Darwinian sense. But the rewriting
operations we have considered might be interpreted as mutations and the filter-
ing process might be viewed as a selection process. Recombination is missing but
it was asserted that evolutionary and functional relationships between genes can
be captured by taking into consideration local mutations only [17]. Furthermore,
we were not concerned here with a possible biological implementation, though a
matter of great importance.

The paper is organized as follows: in the next section we recall the some
basic notions from formal language theory and define the hybrid networks of
evolutionary processors. Then, we briefly investigate the computational power
of these networks as language generating devices. We prove that all regular lan-
guages over an n-letter alphabet can be generated in an efficient way by networks
having the same underlying structure and show that this result can be extended
to linear languages. Furthermore, we provide a non-context-free language which
can be generated by such networks. The last section is dedicated to hybrid net-
works of evolutionary processors viewed as computing (problem solving) devices;
we present two linear solutions of the so-called Common Algorithmic Problem.
The latter one needs linearly bounded resources (symbols and rules) as well.

2 Preliminaries

We start by summarizing the notions used throughout the paper. An alphabet is
a finite and nonempty set of symbols. The cardinality of a finite set A is written
card(A). Any sequence of symbols from an alphabet V is called string (word)
over V . The set of all strings over V is denoted by V ∗ and the empty string is
denoted by ε. The length of a string x is denoted by |x| while the number of
occurrences of a letter a in a string x is denoted by |x|a. Furthermore, for each
nonempty string x we denote by alph(x) the minimal alphabet W such that
x ∈ W ∗.

We say that a rule a → b, with a, b ∈ V ∪ {ε} is a substitution rule if both
a and b are not ε; it is a deletion rule if a �= ε and b = ε; it is an insertion rule
if a = ε and b �= ε. The set of all substitution, deletion, and insertion rules over
an alphabet V are denoted by SubV , DelV , and InsV , respectively.

Given a rule as above σ and a string w ∈ V ∗, we define the following actions
of σ on w:

– If σ ≡ a → b ∈ SubV , then

σ∗(w) = σr(w) = σl(w) =
{{ubv : ∃u, v ∈ V ∗ (w = uav)},

{w}, otherwise

– If σ ≡ a → ε ∈ DelV , then

σ∗(w) =
{{uv : ∃u, v ∈ V ∗ (w = uav)},

{w}, otherwise

σr(w) =
{{u : w = ua},

{w}, otherwise σl(w) =
{{v : w = av},

{w}, otherwise

– If σ ≡ ε → a ∈ InsV , then

σ∗(w) = {uav : ∃u, v ∈ V ∗ (w = uv)}, σr(w) = {wa}, σl(w) = {aw}.

α ∈ {∗, l, r} expresses the way of applying an evolution rule to a word, namely
at any position (α = ∗), in the left (α = l), or in the right (α = r) end of the
word, respectively. For every rule σ, action α ∈ {∗, l, r}, and L ⊆ V ∗, we define
the α-action of σ on L by σα(L) =

⋃
w∈L σα(w). Given a finite set of rules M ,

we define the α-action of M on the word w and the language L by:

Mα(w) =
⋃

σ∈M

σα(w) and Mα(L) =
⋃

w∈L

Mα(w),

respectively.
In what follows, we shall refer to the rewriting operations defined above as

evolutionary operations since they may be viewed as linguistical formulations of
local gene mutations. For two disjoint subsets P and F of an alphabet V and a
word over V , we define the predicates

ϕ(1)(w;P, F) ≡ P ⊆ alph(w) ∧ F ∩ alph(w) = ∅
ϕ(2)(w;P, F) ≡ alph(w) ⊆ P
ϕ(3)(w;P, F) ≡ P ⊆ alph(w) ∧ F �⊆ alph(w)

The construction of these predicates is based on random-context conditions
defined by the two sets P (permitting contexts) and F (forbidding contexts).

For every language L ⊆ V ∗ and β ∈ {(1), (2), (3)}, we define:
ϕβ(L, P, F) = {w ∈ L | ϕβ(w;P, F)}.

An evolutionary processor over V is a tuple (M, PI, FI, PO, FO), where:

– Either (M ⊆ SubV) or (M ⊆ DelV) or (M ⊆ InsV). The set M represents
the set of evolutionary rules of the processor. As one can see, a processor is
“specialized” in one evolutionary operation, only.

– PI, FI ⊆ V are the input permitting/forbidding contexts of the processor,
while PO, FO ⊆ V are the output permitting/forbidding contexts of the
processor.

We denote the set of evolutionary processors over V by EPV .
A hybrid network of evolutionary processors (HNEP for short) is a 7-tuple

Γ = (V, G, N, C0, α, β, i0), where:

– V is an alphabet.
– G = (XG, EG) is an undirected graph with the set of vertices XG and the

set of edges EG. G is called the underlying graph of the network.
– N : XG −→ EPV is a mapping which associates with each node x ∈ XG the

evolutionary processor N(x) = (Mx, P Ix, F Ix, POx, FOx).
– C0 : XG −→ 2V ∗

is a mapping which identifies the initial configuration of
the network. It associates a finite set of words with each node of the graph
G.

– α : XG −→ {∗, l, r}; α(x) gives the action mode of the rules of node x on
the words existing in that node.

– β : XG −→ {(1), (2), (3)} defines the type of the input/output filters of
a node. More precisely, for every node, x ∈ XG, the following filters are
defined:

input filter: ρx(·) = ϕβ(x)(·;PIx, F Ix),

output filter: τx(·) = ϕβ(x)(·;POx, FOx).

That is, ρx(w) (resp. τx) indicates whether or not the string w can pass the
input (resp. output) filter of x. More generally, ρx(L) (resp. τx(L)) is the set
of strings of L that can pass the input (resp. output) filter of x.

– i0 ∈ XG is the output node of the HNEP.

We say that card(XG) is the size of Γ . If α(x) = α(y) and β(x) = β(y) for
any pair of nodes x, y ∈ XG, then the network is said to be homogeneous. In
the theory of networks some types of underlying graphs are common, e.g., rings,
stars, grids, etc. We shall investigate here networks of evolutionary processors
with their underlying graphs having these special forms. Thus a HNEP is said to
be a star, ring, or complete HNEP if its underlying graph is a star, ring, grid, or
complete graph, respectively. The star, ring, and complete graph with n vertices
is denoted by Sn, Rn, and Kn, respectively.

A configuration of a HNEP Γ as above is a mapping C : XG −→ 2V ∗
which

associates a set of strings with every node of the graph. A configuration may
be understood as the sets of strings which are present in any node at a given
moment. A configuration can change either by an evolutionary step or by a
communication step. When changing by an evolutionary step, each component
C(x) of the configuration C is changed in accordance with the set of evolutionary
rules Mx associated with the node x and the way of applying these rules α(x).
Formally, we say that the configuration C ′ is obtained in one evolutionary step
from the configuration C, written as C =⇒ C ′, iff

C ′(x) = M
α(x)
x (C(x)) for all x ∈ XG.

When changing by a communication step, each node processor x ∈ XG sends
one copy of each string it has, which is able to pass the output filter of x, to all
the node processors connected to x and receives all the strings sent by any node
processor connected with x providing that they can pass its input filter.

Formally, we say that the configuration C ′ is obtained in one communication
step from configuration C, written as C C ′, iff

C ′(x) = (C(x) − τx(C(x))) ∪
⋃

{x,y}∈EG

(τy(C(y)) ∩ ρx(C(y))) for all x ∈ XG.

Let Γ an HNEP, the computation in Γ is a sequence of configurations
C0, C1, C2, . . ., where C0 is the initial configuration of Γ , C2i =⇒ C2i+1 and
C2i+1 C2i+2, for all i ≥ 0. By the previous definitions, each configuration Ci is
uniquely determined by the configuration Ci−1. If the sequence is finite, we have
a finite computation. If one uses HNEPs as language generating devices, then
the result of any finite or infinite computation is a language which is collected
in the output node of the network.

For any computation C0, C1, . . ., all strings existing in the output node at
some step belong to the language generated by the network. Formally, the lan-
guage generated by Γ is L(Γ) =

⋃
s≥0 Cs(i0).

The time complexity of computing a finite set of strings Z is the minimal
number s such that Z ⊆ ⋃s

t=0 Ct(i0).

3 Computational Power of HNEP as Language
Generating Devices

First, we compare these devices with the simplest generative grammars in the
Chomsky hierarchy. In [2], one proves that the families of regular and context-free
languages are incomparable with the family of languages generated by homoge-
neous networks of evolutionary processors. HNEPs are more powerful, namely

Theorem 1. Any regular language can be generated by any type (star, ring,
complete) of HNEP.

Proof. Let A = (Q, V, δ, q0, F) be a deterministic finite automaton; without loss
of generality we may assume that δ(q, a) �= q0 holds for each q ∈ Q and each
a ∈ V . Furthermore, we assume that card(V) = n. We construct the following
complete HNEP (the proof for the other underlying structures is left to the
reader):

Γ = (U, K2n+3, N, C0, α, β, f).

The alphabet U is defined by U = V ∪ V ′ ∪ Q ∪ {sa | s ∈ Q, a ∈ V }, where
V ′ = {a′ | a ∈ V }. The set of nodes of the complete underlying graph is
{x0, x1, xf} ∪ V ∪ V ′, and the other parameters are given in Table 1, where
s and b are generic states from Q and symbols from V , respectively. One can
easily prove by induction that

1. δ(q, x) ∈ F for some q ∈ Q \ {q0} if and only if xq ∈ C8|x|(0).
2. x is accepted by A (x ∈ L(A)) if and only if x ∈ Cp(f) for any p ≥ 8|x| + 1.

Therefore, L(A) is exactly the language generated by Γ .

Table 1.

Node M PI FI PO FO C0 α β

x0 {q → sb}δ(s,b)=q ∅ {sb}s,b ∪ {b′}b ∅ ∅ F ∗ (1)
a ∈ V ε → a′ {sa}s ∪ V Q U ∅ ∅ l (2)
a′ ∈ V ′ {sa → s}s {a′} Q ∅ ∅ ∅ ∗ (1)

x1 {b′ → b}b ∅ {sb}s,b ∅ ∅ ∅ ∗ (1)
xf q0 → ε {q0} V ′ ∅ V ∅ r (1)

Surprisingly enough, the size of the above HNEP, hence its underlying struc-
ture, does not depend on the number of states of the given automaton. In other
words, this structure is common to all regular languages over the same alphabet,
no matter the state complexity of the automata recognizing them. Furthermore,
all strings of the same length are generated simultaneously.

Since each linear grammar can be transformed into an equivalent linear gram-
mar with rules of the form A → aB, A → Ba, A → ε only, the proof of the above
theorem can be adapted for proving the next result.

Theorem 2. Any linear language can be generated by any type of HNEP.

We do not know whether these networks are able to generate all context-free
languages, but they can generate non-context-free languages as shown below.

Theorem 3. There are non-context-free languages that can be generated by any
type of HNEP.

Proof. We construct the following complete HNEP which generates the non-
context-free language L = {wcx | x ∈ {a, b}∗, w is a permutation of x}:

Γ = (V, K9, N, C0, α, β, y2),

where V = {a, b, a′, b′, Xa, Xb, X}, XK9 = {y0, y1, y2, ya, yb, ȳa, ȳb, ỹa, ỹb}, and
the other parameters are given in Table 2, where u is a generic symbol in {a, b}.
The working mode of this network is rather simple. In the node y0 there are
generated strings of the form Xn for any n ≥ 1. They can leave this node
as soon as they receive a D at their right end, the only node able to receive
them being y1. In y1, either Xa or Xb is added to their right end. Thus, for
a given n, the strings XnDXa and XnDXb are produced in y1. Let us follow
what happens with the strings XnDXa, a similar analysis applies to the strings
XnDXb as well. So, XnDXa goes to ya where any occurrence of X is replaced
by a′ in different identical copies of XnDXa. In other words, ya produces each
string Xka′Xn−k−1DXa, 0 ≤ k ≤ n − 1. All these strings are sent out but no
node, except ȳa, can receive them. Here, Xa is replaced by a and the obtained
strings are sent to ỹa where a is substituted to a′. As long as the strings contains
occurrences of X, they follow the same itinerary, namely y1, yu, ȳu, ỹu, u ∈ {a, b},
depending on what symbol Xa or Xb is added in y1.

After a finite number of such cycles, when no occurrence of X is present in
the strings, they are received by y2 where D is replaced by c in all of them, and

Table 2.

Node M PI FI PO FO C0 α β

y0 {ε → X, ε → D} ∅ {a′, b′, a, b, Xa, Xb} {D} ∅ {ε} r (1)
y1 {ε → Xa, ε → Xb} ∅ {Xa, Xb, a

′, b′} ∅ ∅ ∅ r (1)
yu {X → u′} {Xu} {a′, b′} ∅ ∅ ∅ ∗ (1)
ȳu {Xu → u} {u′} ∅ ∅ ∅ ∅ ∗ (1)
ỹu {u′ → u} {u′} {Xa, Xb} ∅ ∅ ∅ ∗ (1)
y2 {D → c} ∅ {X, a′, b′, Xa, Xb} ∅ {a, b} ∅ ∗ (1)

they remain in this node for ever. By these explanations, the node y2 collects all
strings of L and any string which arrives in this node belongs to L.

A more precise characterization of the family of languages generated by
HNEPs remains to be done.

4 Solving Problems with HNEPs

HNEPs may be used for solving problems in the following way. For any instance
of the problem the computation in the associated HNEP must be finite. In
particular, this means that there is no node processor specialized in insertions.
If the problem is a decision problem, then at the end of the computation, the
output node provides all solutions of the problem encoded by strings, if any,
otherwise this node will never contain any word. If the problem requires a finite
set of words, this set will be in the output node at the end of the computation.
In other cases, the result is collected by specific methods which will be indicated
for each problem.

In [2] one provides a complete homogeneous NEP of size 7m+2 which solves
in O(m + n) time an (n, m)–instance of the “3-colorability problem” with n
vertices and m edges. In the sequel, following the descriptive format for three
NP-complete problems presented in [9] we present a solution to the Common
Algorithmic Problem. The three problems are:

1. The maximum independent set : Given an undirected graph G = (X, E),
where X is the finite set of vertices and E is the set of edges given as a
family of sets of two vertices, find the cardinality of a maximal subset (with
respect to inclusion) of X which does not contain both vertices connected
by any edge in E.

2. The vertex cover problem: Given an undirected graph find the cardinality of
a minimal set of vertices such that each edge has at least one of its extremes
in this set.

3. The satisfiability problem: For a given set P of Boolean variables and a finite
set U of clauses over P , does a truth assignment for the variables of P exist
satisfying all the clauses of U?

For detailed formulations and discussions about their solutions, the reader is
referred to [8].

These problems can be viewed as special cases of the following algorithmic
problem, called the Common Algorithmic Problem (CAP) in [9]: let S be a
finite set and F be a non-empty family of subsets of S. Find the cardinality of a
maximal subset of S which does not include any set belonging to F . The sets in
F are called forbidden sets. We say that (F, S) is an (card(S), card(F))–instance
of CAP

Let us show how the three problems mentioned above can be obtained as
special cases of CAP. For the first problem, we just take S = X and F = E.
The second problem is obtained by letting S = X and F contains all sets o(x) =
{x}∪{y ∈ X | {x, y} ∈ E}. The cardinality one looks for is the difference between
the cardinality of S and the solution of the CAP. The third problem is obtained
by letting S = P ∪ P ′, where P ′ = {p′ | p ∈ P}, and F = {F (C) | C ∈ U},
where each set F (C) associated with the clause C is defined by

F (C) = {p′ | p appears in C} ∪ {p | ¬p appears in C}.

From this it follows that the given instance of the satisfiability problem has a
solution if and only if the solution of the constructed instance of the CAP is
exactly the cardinality of P .

First, we present a solution of the CAP based on homogeneous HNEPs.

Theorem 4. Let (S = {a1, a2, . . . , an}, F = {F1, F2, . . . , Fm}), be an (n, m)–
instance of the CAP. It can be solved by a complete homogeneous HNEP of size
m + 2n + 2 in O(m+n) time.

Proof. We construct the complete homogeneous HNEP
Γ = (U, Km+2n+2, N, C0, α, β).

Since the result will be collected in a way which will be specified later, the
output node is missing. The alphabet of the network is

U = S ∪ S̄ ∪ S′ ∪ {Y, Y1, Y2, . . . , Ym+1} ∪ {b} ∪ {Z0, Z1, . . . , Zn} ∪
{Y ′

1 , Y ′
2 , . . . , Y ′

m+1} ∪ {X1, X2, . . . , Xn},

where S̄ and S′ are copies of S obtained by taking the barred and primed copies
of all letters from S, respectively. The nodes of the underlying graph are:

x0, xF1 , xF2 , . . . , xFm
, xa1 , xa2 , . . . , xan

, y0, y1, . . . , yn.

The mapping N is defined by:

N(x0) = ({Xi → ai, Xi → āi | 1 ≤ i ≤ n} ∪ {Y → Y1} ∪ {Y ′
i → Yi+1 |

1 ≤ i ≤ m}, {Y ′
i | 1 ≤ i ≤ m}, ∅, ∅, {Xi | 1 ≤ i ≤ n} ∪ {Y }),

N(xFi) = ({ā → a′ | a ∈ Fi}, {Yi}, ∅, ∅, ∅), for all 1 ≤ i ≤ m,

N(xaj
) = ({a′

j → āj} ∪ {Yi → Y ′
i | 1 ≤ i ≤ m}, {a′

j}, ∅, ∅, {a′
j} ∪ {Yi |

1 ≤ i ≤ m}), for all 1 ≤ j ≤ n,

N(yn) = ({āi → b | 1 ≤ i ≤ n} ∪ {Ym+1 → Z0}, {Ym+1}, ∅, {Z0, b}, S̄),
N(yn−i) = ({b → Zi}, {Zi−1}, ∅, {b, Zi}, ∅), for all 1 ≤ i ≤ n.

The initial configuration C0 is defined by

C0(x) =
{{X1X2 . . . XnY } if x = x0

∅, otherwise

Finally, α(x) = ∗ and β(x) = (1), for any node x.
A few words on how the HNEP above works: in the first 2n steps, in the first

node one obtains 2n different words w = x1x2 . . . xnY , where each xi is either
ai or āi. Each such string w can be viewed as encoding a subset of S, namely
the set containing all symbols of S which appear in w. After replacing Y by Y1
in all these strings they are sent out and xF1 is the only node which can receive
them. After one rewriting step, only those strings encoding subsets of S which
do not include F1 will remain in the network, the others being lost. The strings
which remain are easily recognized since they have been obtained by replacing a
barred copy of symbol with a primed copy of the same symbol. This means that
this symbol is not in the subset encoded by the string but in F1. In the nodes
xai the modified barred symbols are restored and the symbol Y ′

1 is substituted
for Y1. Now, the strings go to the node x0 where Y2 is substituted for Y ′

1 and
the whole process above resumes for F2. This process lasts for 8m steps.

The last phase of the computation makes use of the nodes yj , 0 ≤ j ≤ n.
The number we are looking for is given by the largest number of symbols from
S in the strings from yn. It is easy to note that the strings which cannot leave
yn−i have exactly n − i such symbols, 0 ≤ i ≤ n. Indeed, only the strings which
contains at least one occurrence of b can leave yn and reach yn−1. Those strings
which do not contain any occurrence of b have exactly n symbols from S. In yn−1,
Z1 is substituted for an occurrence of b and those strings which still contain b
leave this node for yn−2 and so forth. The strings which remain here contain
n − 1 symbols from S. Therefore, when the computation is over, the solution of
the given instance of the CAP is the largest j such that yj is nonempty. The last
phase is over after at most 4n + 1 steps. By the aforementioned considerations,
the total number of steps is at most 8m + 4n + 3, hence the time complexity of
solving each instance of the CAP of size (n, m) is O(m + n).

As far as the time and memory resources the HNEP above uses, the total
number of symbols is 2m + 5n + 4 and the total number of rules is

mn + m + 5n + 2 +
m∑

i=1

card(Fi) ∈ Θ(mn)

The same problem can be solved in a more economic way, regarding especially
the number of rules, with HNEPs, namely

Theorem 5. Any instance of the CAP can be solved by a complete HNEP of
size m + n + 1 in O(m+n) time.

Proof. For the same instance of the CAP as in the previous proof, we construct
the complete HNEP Γ = (U, Km+n+1, N, C0, α, β).

The alphabet of the network is U = S ∪ S′ ∪ {Y1, Y2, . . . , Ym+1} ∪ {b} ∪
{Z0, Z1, . . . , Zn}. The other parameters of the network are given in Table 3.

Table 3.

Node M PI FI PO FO C0 α β

x0 {a′
i → ai}i {a′

1} ∅ ∅ {a′
i}i {a′

1 . . . a′
nY1} ∗ (1)

{a′
i → T}i

xFj {Yj → Yj+1} {Yj} Fj ∅ U ∅ ∗ (3)
yn {T → Z0} {Ym+1} ∅ {T} ∅ ∅ ∗ (1)

yn−i {T → Zi} {Zi−1} ∅ {T} ∅ ∅ ∗ (1)

In the table above, i ranges from 1 to n and j ranges from 1 to m. The
reasoning is rather similar to that from the previous proof. The only notable
difference concerns the phase of selecting all strings which do not contain any
symbol from any set Fj . This selection is simply accomplished by the way of
defining the filters of the nodes xFj . The time complexity is now 2m + 4n + 1 ∈
O(m + n), while the needed resources are: m + 3n + 3 symbols and m + 3n + 1
rules.

5 Concluding Remarks and Future Work

We have considered a mechanism inspired from cell biology, namely hybrid net-
works of evolutionary processors, that is networks whose nodes are very simple
processors able to perform just one type of point mutation (insertion, deletion or
substitution of a symbol). These nodes are endowed with a filter which is defined
by some random context conditions which seem to be close to the possibilities
of biological implementation. A rather suggestive view of these networks is that
of a group of connected cells that are similar to each other and have the same
purpose, that is a tissue. It is worth mentioning some similarities with the mem-
brane systems defined in [16]. In that work, the underlying structure is a tree
and the (biological) data is transferred from one region to another by means of
some rules. A more closely related protocol of transferring data among regions
in a membrane system was considered in [15].

We finish with a natural question: We are conscious that our mechanisms
have likely no biological relevance. Then why to study them? We believe that by
combining our knowledge about behavior of cell populations with advanced for-
mal theories from computer science, we could try to define computational models
based on the interacting molecular entities. To this aim we need to accomplish
the followings:

(1) Understanding which features of the behavior of molecular entities form-
ing a biological system can be used for designing computing networks with an
underlying structure inspired from that of the biological system.

(2) Understanding how to control the data navigating in the networks via
precise protocols

(3) Understanding how to effectively design the networks.
The results obtained in this paper suggest that these mechanisms might be a

reasonable example of global computing due to the real and massively parallelism

involved in molecular interactions. Therefore, they deserve a deep theoretical
investigation as well as an investigation of biological limits of implementation in
our opinion.

References

1. Castellanos, J., Mart́ın-Vide, C., Mitrana, V., Sempere, J.: Solving NP-complete
problems with networks of evolutionary processors. IWANN 2001 (J. Mira, A.
Prieto, eds.), LNCS 2084, Springer-Verlag (2001) 621–628.

2. Castellanos, J., Mart́ın-Vide, C., Mitrana, V., Sempere, J.: Networks of evolution-
ary processors. Submitted (2002).

3. Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems, Gordon
and Breach, 1993.

4. Csuhaj-Varjú, E., Salomaa, A.: Networks of parallel language processors. New
Trends in Formal Languages (Gh. Păun, A. Salomaa, eds.), LNCS 1218, Springer
Verlag (1997) 299–318.

5. Csuhaj-Varjú, E., Mitrana, V.: Evolutionary systems: a language generating device
inspired by evolving communities of cells. Acta Informatica 36 (2000) 913–926.

6. Errico, L., Jesshope, C.: Towards a new architecture for symbolic processing. Arti-
ficial Intelligence and Information-Control Systems of Robots ’94 (I. Plander, ed.),
World Sci. Publ., Singapore (1994) 31–40.

7. Fahlman, S.E., Hinton, G.E., Seijnowski, T.J.: Massively parallel architectures for
AI: NETL, THISTLE and Boltzmann machines. Proc. AAAI National Conf. on
AI, William Kaufman, Los Altos (1983) 109–113.

8. Garey, M., Johnson, D.: Computers and Intractability. A Guide to the Theory of
NP-completeness, Freeman, San Francisco, CA, 1979.

9. Head, T., Yamamura, M., Gal, S.: Aqueous computing: writing on molecules. Proc.
of the Congress on Evolutionary Computation 1999, IEEE Service Center, Piscat-
away, NJ (1999) 1006–1010.

10. Kari, L.: On Insertion and Deletion in Formal Languages, Ph.D. Thesis, University
of Turku, 1991.

11. Kari, L., Păun, G., Thierrin, G., Yu, S.: At the crossroads of DNA computing and
formal languages: Characterizing RE using insertion-deletion systems. Proc. 3rd
DIMACS Workshop on DNA Based Computing, Philadelphia (1997) 318–333.

12. Kari, L., Thierrin, G.: Contextual insertion/deletion and computability. Informa-
tion and Computation 131 (1996) 47–61.

13. Hillis, W.D.: The Connection Machine, MIT Press, Cambridge, 1985.
14. Mart́ın-Vide, C., Păun, G., Salomaa, A.: Characterizations of recursively enumer-

able languages by means of insertion grammars. Theoretical Computer Science 205
(1998) 195–205.

15. Mart́ın-Vide, Mitrana, V., Păun, G.: On the power of valuations in P systems.
Computacion y Sistemas 5 (2001) 120–128.

16. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(2000) 108–143.
17. Sankoff, D. et al.: Gene order comparisons for phylogenetic inference: Evolution of

the mitochondrial genome. Proc. Natl. Acad. Sci. USA 89 (1992) 6575–6579.

	Introduction
	Preliminaries
	Computational Power of HNEP as Language Generating Devices
	Solving Problems with HNEPs
	Concluding Remarks and Future Work

