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Abstract

This article is the first part of a series of three articlesitlsompatible systems of symplectic
Galois representations and applications to the inversei§ptoblem.

In this first part, we determine the smallest field over whioé projectivisation of a given
symplectic group representation satisfying some natumadlitions can be defined. The answer
only depends on inner twists. We apply this to the residyakgentations of a compatible system
of symplectic Galois representations satisfying some mjjgothesis and obtain precise informa-
tion on their projective images for almost all members ofdygtem, under the assumption of huge
residual images, by which we mean that a symplectic grouplbdimension over the prime field
is contained up to conjugation. Finally, we obtain an agtian to the inverse Galois problem.

MSC (2010): 11F80 (Galois representations); 20C25 (Ptiwgcepresentations and multi-
pliers), 12F12 (Inverse Galois theory).

1 Introduction

This article is the first part of a series of three articlegudltompatible systems of symplectic Galois
representations with huge images and applications to teesa Galois problem. The overall aim is,
for givenn € N even andi € N, to construct a compatible system of Galois representiiverQ
such that the projective image of the residual represemnstat a positive density set of priméss
PGSp,,(F,) or PSp,,(F,a), thus realising these groups as Galois groups Qver

Three tasks emerge:
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Given a compatible system of Galois representationterishine the fields of definition of the
projective residual representations. For= 2 and the compatible system arising from a Hecke
eigenformf = 2@1 a,q" of level N and Dirichlet charactet), these fields are known to be

equal to the residue fields of the number fi@d% | p1 N) at almost all places.

In this Part | we produce an analog of this number field fonattimensional compatible system
of Galois representations. We need to make some irreditigidiid regularity assumptions, which
are automatically satisfied for compatible systems contioign fmodular forms.

Having established the minimal fields of definition foojactive representations, the next task
is to determine the actual image. In the case 2 a well-known classical theorem of Dickson
classifies the finite subgroups BGL, (F) (up to conjugation) into *huge’ ones (i.BGLy(Fq)

or PSLy(F,q) for somed € N), dihedral ones, subgroups of the upper triangular matrécel
three exceptional ones; in representation theoretic gguthe non-huge and non-exceptional
images come from induced or reducible representations. ath IPJAdDW13] we supply an
analog of this result forn-dimensional symplectic representations under the assomof the
existence of a nontrivial transvection in the image.

As a general strategy, as [n [DW11], we will enforce localgandies to the compatible system in
order to ensure global ones: one local property takes cateeafontrivial transvection, another
one (that of a maximally induced place, see below) of absatutducibility and in the end huge
image and the existence of a suitable subfield of a cyclotdieid in the projective field of
definition.

The final task is then to construct a compatible systemalbiS representations satisfying the
specified local requirements. This is achieved through dimstcuction of a suitable automorphic
representation in Part IILJAdDSW13], which is joint work thiSug Woo Shin.

The present Part | is entirely independent of the other tweepa Part Il is independent as well,

except that in the end the results developed in Part Il ardoaoed with Theorerh 615 from the present
Part | in order to prove that the existence of a compatibleesy®f Galois representations with certain
specified local properties implies the desired applicattiiotihe inverse Galois problem. Part Il relies
on some results of Part | and Part Il.

Statement of the results

We now describe the main results of the present article gh#)i simplied forms. Although we
are mainly interested in symplectic representations (@mapatible systems thereof), we also prove
results for general linear representations along the waygesof the assumptions needed are different
in that case, making the statements longer; but, we thinkitltduding the general linear case is
worthwhile. In this overview we will, however, entirely ski to the symplectic case.

Ouir first result determines projective fields of definition @&alois representations.



Theorem 1.1. Let L/K be a finite Galois extension éfadic fields (i.e. finite extensions @f,) or
of finite fields and : G — GSp,,(L) be a representation of a grou@ such that its restriction to
the subgroup/|,, of G (defined in Propositiof 2.14G: /1|, is finite abelian) is residually absolutely
irreducible.

Then there is an extensioli|, of K inside L, which is explicitly described only in terms of
inner twists, such thgt?™ : G & GSp,, (L) — PGSp,, (L) is conjugate to a representatioi —
PGSp,,(K|,)), and K|, is the smallest field with this property.

This is proved as Theoren 2115 in Sectign 2. In Sedtion 4 wepcwenthe fieldK|5,; from The-
orem[L.1 for almost all residual representatignsn a compatible system of Galois representations
under certain assumptions. The computations are es$ghiEsed on relating the inner twists of the
residual representations with inner twists of the compaslgstem. Here we present a simplified form
of Theoreni4b.

Theorem 1.2. Let ps = (py)x With py : Gg — GSp,,(L,) (for a Galois number field./Q; L,
denotes an algebraic closure of the completionLoét the place)) be a compatible system as in
Definition[4.1, consisting of irreducible representaticarsd such that its multiplier is a fixed finite
order character times a fixed power of the cyclotomic chaadssume a certain condition at places
above/ (the rational prime below\), which is for instance satisfied when the are de Rham with
Hodge-Tate weights independenthof

Then there is a number fielld,,, which is explicitely determined by the inner twists of thane
patible system, such that for all placaof L at whichp, is residually absolutely irreducible, except
possibly finitely many, the projective field of definitionhaf tesidual representatiopy, is x((K,, )»),
the residue field of,, at \.

We can then already determine the residual projective isyageer the assumption that almost
all of them are ‘huge’ (defined in Definitidn %.1). This is ddneCorollary[5.8, a version of which we
state here.

Theorem 1.3. Let p, = (pa)a be as in Theorem 1.2. Assume, moreover, that for all but plgsai
density zero set of placesof L the residual representatiop, has huge image.
Then for all places\ of L with the possible exception of a density zero set, the imh@%‘é is

PGSD, k(K )2)) OF PSp, (s((Kp)))-

Under these assumptions together with that of the existeheemaximally induced place of a
certain order (see Definitidn 6.1, this goes back to [KLS®8hie context ofn, p)-groups) we can
derive the following application to the inverse Galois gesb (proved as Theorem 6.5).

Theorem 1.4. Let p, = (p)), be as in Theorem 1.3. Assume also that there is a pjageS such
that p, is maximally induced aj of orderp.

Then for any | ;%1 there exists a sef; of rational primes? of positive density such that for all
¢ € Ly there is a place\ of L above/ satisfying that the image 8" is PGSp,, (F ) or PSp,, (Fya).
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The maximally induced place of orderserves to produce a certain elemépte Q(¢,) of
degree%1 in K,,, generalising the approach of [DW11]. This element guaesithe existence of a
subextension ok, that is cyclic degred, from which the existence of a positive density set of primes
of residue degred can be derived.
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2 Inner twists of a group representation

In this section we determine under some mild conditions thallgst field over which a member
of the equivalence class of a (projective, symplectic) esentation is defined. The main results
are Theoreni 2.15 and Proposition 2.17. This part owes maitg @feas to Ribet’s paper [RibB5],
including Papier’s theorem cited in that article, as welt@®ther papers of Ribet. A conceptual
framework for some of those ideas is provided here as wellgenaralisation.

We take some time and space to introduce the objects we wdhkimidletail. A guiding example
the reader may have in mind is that of a newfofm= > _, a,q™ with coefficient fieldQ; =
Q(ay, | n € N). For a primef take K’ = Qy and L the Galois closure ovép, of the completion of)
at some place abovi(or L = Q,). Thep we will be interested in are theadic Galois representation
ps and its mod’ reductionp, attached tgf with respect to the chosen place.

We are interested if-adic fields (i.e. finite extensions @J,) as well as finite fields. Since the
reasonings are very similar in both cases, we will treat teisnultaneously. In what followsyhen we
write that a representation is “(residually) absolutely irreducible” we mean that it is “residually
absolutely irreducible” in the case of/-adic fields, and “absolutely irreducible” in the case of
finite fields. Whenever we consider a morphism between two topologicalespae assume it to be
continuous. In particular, representations and chametédralways be continuous.

Set-up 2.1. e K an/-adic field with the/-adic topology or a finite field with the discrete topology.
e L /K a Galois extensiorl := Gal(L/K), endowed with the Krull topology.

e ( afinite or a compact topological group. In later sectioswill be a Galois group.

o £ ={e: G — L*character.



Note that the assumptions imply that(e) lies in a finite extension dk. Note also thal” acts
on & from the left by compositiorite := v o e.

Form the semi-direct produg := £ x I for the above action. Since we consider thentry
more important than th&€-entry, we denote elements @fas (y,¢) withy € T ande € £

(instead of the other way around). We concretely have:
(y1,€1) - (32, €) == (3172, (Mea)er) and(y, )1 = (71,77 (7).

Consequently, we have the exact sequence:

£ t:e—(1,€) G w:(y,€) >y

1— I' - 1.

This sequence is split in the obvious way. Note that the qtiggection
c:G—=E&, (v,6) ~e¢

is al-cocycle, when letting act on€ through its quotient”.

Letn € N. The equivalence class of a representationG — GL,, (L) (for conjugation by an

element ofGL, (L)) is denoted byp| and equivalence of representations is denoted-by\Ve

denote the set of equivalence classesGyReps,, (G, L/K). Notep is defined over a finite
nat.emb.

extensionk /K inside L, that isp : G — GL,(K) ——= GL, (L) (This is a standard fact:
the reader can find a proof in e.q. [SKi09], page 244).

Letn € N be even. The symplectic equivalence class of a represamtatiG — GSp,, (L) (for
conjugation by an element 6fSp,,(L)) is also denoted bip| and also symplectic equivalence
of representations is denoted by

We denote the set of equivalence classe$:Bp-Reps, (G, L/K). Note thatp is defined
over a finite extensiod /K inside L, thatisp : G — GSp,(K) "™ GSp, (L). We
make the convention that equivalence of symplectic reptatens always means symplectic
equivalence. Note that the embeddi@§p, (L) — GL,(L) allows us to see elements of
GSp-Reps,, (G, L/K) as elements d&L-Reps,, (G, L/K). We will call [p] (absolutely) irre-

ducible, if (any member of) it is (absolutely) irreduciblg @linear representation.

Note thatG acts onGL-Reps,, (G, L/ K) from the left by the following formula:

(v.€).lo] = [(p) @ e,
wherey € T, e € £ and [p] € GL-Reps,(G,L/K). In the same wayy acts on the set
GSp-Reps,, (G, L/ K) from the left.

Letn € Nandr;,r, : G — PGL,(L) be projective representations. We call and r
equivalent (also denoted, ~ r») if they are conjugate by the class (modulo scalars) of a
matrix in GL,,(L). The equivalence class ef is also denotedr,]. For p : G — GL, (L) we
denote byP™ the composition of with the natural projectiorGL,, (L) — PGL,(L).
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e Letn € N be even and,r, : G — PGSp,,(L) be projective symplectic representations. We
call r; and ro equivalent (also denotech ~ r5) if they are conjugate by the class (modulo
scalars) of a matrix inGSp,,(L). The equivalence class of is also denoted]. Forp : G —
GSp,,(L) we denote byP™i the composition op with the natural projectionGSp,,(L) —
PGSp,,(L).

Remark 2.2. Let K be an/-adic field andOf its valuation ring.

(@) It is well-known that any representatign: G — GL,(K) is conjugate inGL,,(K) to a rep-
resentationG — GL,(Ok) (see e.g.[[Ser98], I-2). We have already used this impficithen
speaking about residual representations.

(b) In the symplectic case we assume thatG — GSp,,(K) is residually irreducible. One can
show that them is conjugate inGSp,,(K) to a representatior — GSp,,(Ok).
Indeed, if£ is a lattice provided byfa) and the standard symplectic ipgitis scaled such that
its restriction to £ x L is surjective ontoOg, then the residual irreducibility together with
Nakayama’s lemma implies that tki#x [G]-homomorphismC o lws(we)), Homop, (£, Ok),
where theG-action on the right hand side is twisted by the multiplierppis an isomorphism.
Thus, £ admits a symplecti@x-basis and the corresponding base change matrix is general
symplectic.

For the rest of this section we assume that we are in Sef-up\& how make the main definition
of this section, which generalises standard definitiongligatic curves and modular forms.

Definition 2.3. Let[p] € GL-Reps,, (G, L/K) or [p] € GSp-Reps,, (G, L/K).

e Defineg, to be the stabiliser group dp] in G (for the G-action onGL-Reps,, (G, L/K) or
on GSp-Reps,, (G, L/K)). Its elements are callediner twists offp]. Explicitly, let(v,¢) € G.
Then(y, €) is an inner twist of/p] if and only if [p] = [(7p) ®, e !], which is the case if and
only if '] = [p @y €.

o Define the group§', := m(Gy,)) C T and&y,) := v (G},)) = ¢ (ker(nlg,,))-

e We say thafp] hasno complex multiplicatiorif £, = {1}, i.e. if and only if the projection
7 : G|, — [, is an isomorphism.

e Define the fieldk7, := L', It is called theprojective field of definition of/p] (see The-
orem2.T5 for a justification of the terminology).
e Define the group\(, == {y € T | (v, 1) € Gy}

o Define the fieldz, := LA, ltis called thefield of definition of[] (see Propositiofi 2.1 71b)
for a justification of the terminology).

In our guiding example of a newfornfi, p; has CM or a nontrivial inner twist if and only if
does.



Lemma 2.4. (a) Let[p] € GL-Reps, (G,L/K) or [p] € GSp-Reps,, (G, L/K) be absolutely irre-
ducible. Then any/ € GL, (L) commuting with alp(g) for g € G is a scalar matrix.

(b) Letp : G — GSp, (L) be absolutely irreducible without complex multiplicatioet M/ <
GL,(L) and assume that the image bf ~!pM lies in GSp,,(L). ThenM € GSp,, (L), thus
M~'pM belongs to the symplectic equivalence class.of

Proof. (@) This is a form of Schur's Lemma. See e.g. [CR62Z7 of Chapter IV, Lemma (27.3).
@) Callp’ = M~'pM. The symplecticity op andp’ implies forg € G:

p(9)™* Ip(g) = m(p(g))J and(M " p(g) M) J (M~ p(g)M) = m(p'(g))J,

wherem is the multiplier andJ is the Gram matrix of the standard symplectic pairing. Carimgj
these two equations, yields

(T~ M )L p(g) (M T gy = T2 9)

Note that this equation implies that the charaefs p/((gg)))) liesin&,. As we are assuming thathas no
complex multiplication, this character is trivial. Using){we get thai\/.J—' A" J is a scalar matrix
Aid,,, showing thatV/ € GSp,,(L), as claimed. O

One can find examples showing that the conditions in Lernmia[®.4re necessary. On our
way to develop the main results of this section, we first idel@ proposition summarising some
representation theory to be used in the sequel.

Proposition 2.5. (a) Let[p], [p'] € GL-Reps,, (G, L/K) be absolutely irreducible. If for aly € G
the equalityIr(p(g)) = Tr(p(g’)) holds, ther{p] = [o'].

(b) Let[p], [¢'] € GSp-Reps,, (G, L/K) be absolutely irreducible without complex multiplicatidh
Tr(p(g)) = Tr(p'(g)) for all g € G, then[p] = [o'].

(c) Let[p] € GL-Reps, (G, L/K) be (residually) absolutely irreducible and 1&f C K C L be a
field extension such thatr(p(g)) € K forall g € G. Then there is\/ € GL, (L) such that
M~'p(g9)M € GL,(K) for all g € G. So, the equivalence clagg has a representative with
target inGL,,(K).

(d) Let[p] € GSp-Reps, (G, L/K) be (residually) absolutely irreducible without complexItiplic-
ation and letk’ C K C L be a field extension such tH#t(p(g)) € K andm(g) € K (multiplier
map) for allg € G. Then there isM/ € GSp,,(L) such thatM ~!p(g)M € GSp, (K) for all
g € G. So, the equivalence clags has a representative with target @&Sp,, (K).

Proof. @) This follows from the Theorem of Brauer-Nesbitt, ¢f. [€R, §30 of Chapter V, Theorem
(3.15).



(0) Applying (@), we obtain thai andy’ are equivalent a&L,,-representations, meaning that there
is some matrix\/ € GL,,(L) such thap’ = M~1pM. LemmdZ4{{b) shows thatl € GSp,,(L), as
claimed.

([©) For/-adic fields, this is Théoréeme 2 of [Cair94]; see also [Mazp7255. For finite fields the
result follows from the triviality of the Brauer group.

(d) Applying (a) we obtain a matri¥/ € GL, (L) such thatM ~'p(g)M € GL,(K) for all
g € G. We want to show that there is a matiX € GL, (K) such thatN—'M~'p(g)MN €
GSpn(f() for all g € G. Again denote/ the Gram matrix of the standard symplectic pairing. Then all
M~1p(g)M respect the symplectic pairing with Gram matfix= M J M up to the same multiplier
m(p(g)). i.e.

(M~ p(g)M)™ I(M " p(g)M) = m(p(9))]
forallg € G.

We claim that! € GL,(K). Note that conjugatingl/ ~'p(¢)M by I yields an element in
GL,(K), using here the assumption(p(g)) € K. The absolute irreducibility of\/—!pM now
implies that conjugating by preservesMn(f() (see e.qg.[IMaz97], p. 252). The Skolem-Noether
theorem (Corollary 3.63 of [CR81]) consequently shdws GL,,(K).

This now means that defines a symplectic pairing o™ (the representation spacelaf 1 pM),
which is respected by/ ~!pM (up to the multiplier). The claimed existence of the maf¥ixs now
just the fact that in a symplectic vector space a basis cambsea such that the symplectic pairing
has the standard form, i.e. is given By We conclude, usind1b), th&/ N)~1p(MN) is in the
equivalence clasg)]. O

We now include a word on topology.

Lemma 2.6. Let[p] € GL-Reps, (G, L/K) or [p] € GSp-Reps,, (G, L/K). Thenl'|, and A, are
open subgroups df (and thus of finite index).

Proof. There is an open normal subgroﬁp of I" acting trivially onp. Then we have inclusions
L) CAp CTy CT,
all of which are of finite index. Fix a system of representsiy;, . . . , ,, of P/fp. Then

0 or
Ei={ec&|Mp~pRe}=
€€, forsomeg; € £.

It follows thatI',) = UL, ¢, v, andA, = U?L,gi:g[p] ~iT 5, thus they are open subsetslof
O

The following lemma is very useful in our applications of tid@ve theory to compatible systems
of Galois representations, where the Frobenius traces #erme global field.



Lemma2.7. Let[p] € GL-Reps,, (G, L/K) or [p] € GSp-Reps,, (G, L/K) (in this case also assume
that p has no complex multiplication) be absolutely irreducibl&éeng, is equal to the set

{(v.€) € G [ (Tr(p(g))) = Tr(p(g))e(g) Vg € G}.
Proof. Propositioi 2.brfa) andi(b). O

We continue with a useful observation on the values @écuring for inner twists.

Lemma 2.8. Let [p] € GL-Reps,,(G,L/K) or [p] € GSp-Reps, (G, L/K). Furthermore, lety :
G — K* be any character and lep : G — L* be a character of finite order. Lete £ occur in
some(y, €) € G-

(@) If det(p) = ¥, thene™ = % and the values of* are contained in the field generated ou&r
by the values of.

(b) If [p] is symplectic with multiplier mapn(p) = vy, thene? = % and the values of are
contained in the field generated ov&rby the values of.

Proof. Let (v,¢) € G|,). We get:

@) ~(det(p)) = xv(¥) = ¥xe™, implying €" = % The second assertion is now clear.

(@) The same calculation with the multiplier map yields= % Consequently, the order ef
divides2m, wherem is the order ofy. Let ¢ be a primitivem-th root of unity,g € G andb,c € Z
such thaty(g) = ¢b, v(¢) = ¢°. Thene(g)? = % = ¢Ye=1_If m is odd, there existd € Z such
that¢ = (¢2)4, thuse(g)? = ¢24 1) ande(g) € K(¢). Assume now thatn is even. Ther: — 1
is also even (otherwisewould be even, and® would not be a primitivern-th root of unity). Hence
¢(g)? has order dividingn/2, so thate(g) has order dividingn; thus the values of are a subset of
the values ofp. O

We now study projective representations.

Lemma2.9. (a) Forp: G — GL,(L) ande € £ one hasP™ = (p ® ¢)Pri,

(b) For [p] € GL-Reps, (G,L/K) or [p] € GSp-Reps,(G,L/K) ande € £ one haspP™ ~
(p ® e)Proi,

() Let[p],[p2] € GL-Reps, (G,L/K) or [p1],[p2] € GSp-Reps, (G, L/K) such thatp?™ ~
P51, Then there is € £ such thatlp;] = [p2 @ €].

Proof. @) and[(b) are clear.
(@) Denote bys the injective homomorphismi* — GL, (L) which sends to the scalar matrix
x - id,. Let M be a matrix inGL,, (L) (or in GSp,,(L)) such thatp?™® = M p5™ M ~1. Define the
charactek : G — L* by the formula
e(9) = 5" (p1(9)(Mp2(g)M~1)71).

Note thate is well-defined, is multiplicative and that it obviously iséies the requirements. O
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For the next lemma note thétp)Prol = 7(pProJ).
Lemma 2.10. Let [p] € GL-Reps,, (G, L/K) or [p] € GSp-Reps,, (G, L/K).

(@) Tpy = {y €T |7pPrel ~ pProi}.

nat. emb. nat. emb.
—_— —_—

(b) If pProi factors asG — PGL,(K) PGL, (L) or as G — PGSp,(K)
PGSp,, (L) for some fieldk C K C L, thenK,) C K.

Proof. @) Lety € I',;. Then there ig such that(v, €) € G, i..7p ~ p ® e. Hence, pP™) ~ pProl
by Lemmd 2.D. Conversely, if € I' satisfying”pP ™ ~ pPrl, then by Lemm&2]9, there issuch
that (v, €) € Gj,, whencey € T,

() LetU C T the closed subgroup such thigt= LU. Then for ally € U we have? pPi = pproi,
Hence;y € I'|, by @). Consequently/ C I, whenceK|, C K. O

The lemma shows that any field over whigti®) can be defined contairis, . Our aim will be to
show that under suitable assumptigi&] can be defined ovelk (o]

Lemma 2.11. Let [p] € GL-Reps, (G, L/K) or [p] € GSp-Reps,(G,L/K). Letg € G and let
X"+ 3" ai(g)X™ " be the characteristic polynomial ofg). Let(v,¢) € Gi,- Then one has the
equations

v(ai(g)) = elg) - ai(g)

foralli=1,...,n.

Proof. This follows by comparing the characteristic polynomidi$0 and (v, €).[p]. O
Corollary 2.12. Let[p] € GL-Reps, (G, L/K) or [p] € GSp-Reps,,(G,L/K) ande € &.

(a) The order ot dividesn.

(b) Leti € {1,...,n} andg € G. If a;(g) # 0, thene’(g) = 1.

Proof. @) The coefficient,,(g) of the characteristic polynomial gf(¢g) as in Lemmad 2.11 is the
determinant op(g), which is a unit. Asz,,(g) = €(g)"an(g) for all g, we conclude:(g)™ = 1.
@) is immediate. U

Lemma 2.13. For [p] € GL-Reps, (G, L/K) or [p] € GSp-Reps, (G, L/K), considerH, :=
ﬂeegm ker(e). Itis a closed normal subgroup 6f with abelian quotient of exponent dividing
If p has complex multiplication, then the restrictiongofo H(, is not absolutely irreducible.

Proof. Lete € £, and letM be a (symplectic) matrix such that e = MpM ~1_If the restriction
of pto H|, is absolutely irreducible, then restricting &, gives,o|H[p] = MpM~—1 IH[,,] . By absolute
irreduciblity, any matrix that commutes with all pfH |, ) is scalar, whencg® ¢ = p. Consequently,
e is the trivial character. O
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Proposition 2.14. For [p] € GL-Reps, (G, L/K) or [p] € GSp-Reps, (G, L/K), define the sub-
group I ;) := e st3(1.0€0, ker(e). Assume that the restriction pfto I}, is (residually) abso-
lutely irreducible (in particular, by Lemnia2.113 this imgdi that[p] has no complex multiplication).
Then the equivalence clafsg contains a member’ satisfying:

e Letg € G. Theny'(g) € GL,(K|,) < g € I,
e Y =p @eforall (v,¢) € G-

Proof. Due to Lemma2.11, the characterofestricted tal}, takes values iy, . If p is symplectic,
the formulae® = w(mm—o"[f’) for all (v,¢) € G, (see also Lemmia_2.81(b)) shows that the multiplier
of p restricted tol|, takes values ir[,. Due to the (residual) irreduciblity assumpti(m;[p] is thus
conjugate by some (symplectic) matdx to a representation defined ov&¥,), see Proposition 2.5
@) and[(d). Thug' := MpM ! is a representation @ such that its restriction tg,, takes its values

in the (symplectic) matrices with entries k).

We start by showing the second property. For this({et) € G,. Since["p| = [p®¢], there is a
(symplectic) matrixV such that' p’ = N(p'®€)N . Restricting tal|,; and using that this restriction
is absolutely irreducible, the matriX has to be scalar (see Proposition 214 (a)), showjig= p’ @ e.

Let nowg € G\ Ij,. Then there is dv,¢) € G, such thate(g) # 1. Hence,y(p'(g)) =

p'(g)e(g) # p'(g), showingp'(g) & GL,(K,). O

Our first main theorem can now be obtained as an applicatidtilloért’s Satz 90.

Theorem 2.15. Let [p] € GL-Reps,, (G, L/K) or [p] € GSp-Reps,, (G, L/K) such that its restric-

tion to 7}, (see Propositio 2.14 for its definition) is (residually)salutely irreducible. Then the
equivalence class @f** has a member that factors througtGL,, (K|,) or PGSp,,(K|,), respect-

ively. Combining with Lemnia 2118, is hence the smallest subfield ofvith this property.

Proof. By Propositiori 2.14, we may and do assume that p © ¢ for all (v, €) € Gy

Now let g € G. Consider the continuous-cocyclec, : I',) — L* defined bycy(y) =
s (7p(g)p(g)~1), wheres : L* — GL,(L) denotes the morphism which sendgo the scalar
matrix = - id,,. By Hilbert's Satz 90,H'(I',;, L*) is the trivial module. Hence;, is a coboundary,
i.e. it is of the formc,(v) = % with somea, € L*. Then for anyg € G and anyy € I'|,) we
obtain

Tp(g) ® %‘;g) = p(g) and consequently(p(g)ag) = p(g)ay,

showing thaf(g)a, belongs toGL,,(K],) (or to GSp,,(K|,)). Taking this equation modulo scalars,
yields the theorem. O

Remark 2.16. The previous theorem shows that the fi&lg is related to the minimal field of defini-
tion of the adjoint representation introduced by R. Pink imare general context in [Pin98].

The following proposition complements Theorem 2.15 byifylang the relation betwee# [, and
the minimal field over which a member of the equivalence dalssan be defined.
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Proposition 2.17. Let [p] € GL-Reps, (G, L/K) or [p] € GSp-Reps, (G, L/K) be (residually)
absolutely irreducible. Let : G — K* be any character and lep : G — L* be a character of
finite order. If[p] is symplectic, assume that the multiplier mapi§) = 1x; otherwise assume that
det p = ¢px and E,; contains then-th roots of the values af.

(@) Ay, is an open normal subgroup &f, and, hencef, /K, is a finite Galois extension with
Galois groupl'(, /A, - In particular, one hasy(E,) = £, forall v € T',.

(b) If [p] is symplectic, also assume tHat has no complex multiplication. The equivalence class
[p] contains a representation that can be defined over the figljdand F,, is the smallest such
subfield ofL. Moreover, E, is generated ovei by the tracesIr(p(g)) for g € G (and the
values of the multiplier ip is symplectic).

Proof. (@) Note that, iffp] is symplectic, for alb € A}, 5(m(p)) = m(p), whencek, contains the
values ofy. Letd € Ay, andy € T',. There isec € £ such that(v,¢) € Gj,. Taking into account
that ) contains the values efoy Lemmd2.B, we compute

(3@ (1,07 = (1071, (0 e e = (v 1) € Gy,

whenceydy ! € A[,- The finiteness follows from the fact that,; has finite index irl", which was
proved in Lemma2l6.

() Lemmal 2.1 implies that the characterotakes values int,, i.e. the traces lie inf,.
If p is symplectic, then the multiplier of also takes values if,. Due to the (residual) absolute
irreducibility, [p] can thus be defined ovéf|, by Propositiorl 26r{(c) and(d). If the traces of
(together with the values of the multiplier for symplectizgenerated a proper subfield of £,
then([p] could be defined ovek. Then, however, there would beyac ' \ A(, such thaty is the
identity on &, and~ would fix all traces. This would mearp ~ p (by Propositiod ZJ55{a) andl(b)),
so that(v, 1) € Gy, consequentlyy € A, a contradiction. O

3 Inner twists of a Galois representation

In this short section we analyse the ramification of the attara occuring in inner twists. L&t be a
number field and le€ := G := Gal(F/F) in Set-ud 2L, which we assume for this section.

Lemma 3.1. Let[p] € GL-Reps,,(Gr, L/K) or [p] € GSp-Reps,,(Gr, L/K). Then any occuring
in (v, €) € Gy, is unramified at all places of' at whichp is unramified.

Proof. Let o be an element such thato) is the identity. Ther?p(o) is also the identity, hence,
Tp = p® e implies thate(o) = 1. Now apply this reasoning @ in inertia groups at primes at which
p does not ramify. O

12



Assumption 3.2. Let K be a finite field of characteristi¢ or F, andp : G — GL,(L). For a prime
£ of F abovel we make the assumption:

There exist an integerand an integers betweenl andn, and for eachi = 1,..., s, anr;-tuple
Si = (ai1,...,a;,;) of natural number$) < a; ; < ¢ —1withr; 4 --- 4+ ry = n such that, if we
denote byB; the matrix,
wy 0
bit
B; ~
0 b1

ri
with +,, a (fixed choice of) fundamental character of niveayso thaty, is the mod¢ cyclotomic
character) andh; = a; 1 + a; 2l + - -+ + a; 071, then

I
o [B

It is well known that Assumptioh 3.2 is verified He = Q.

(P ® Wi)’fs ~

Proposition 3.3. Let K be a finite field of characteristié or F, and [p] € GL-Reps,(G,L/K) or
[p] € GSp-Reps,, (G, L/K). Let£ be a prime ofF’ abovel such that Assumptidn 3.2 is verified. If
aj; < 52‘—”1 forall 1 < i <sandalll < j < r;, then the charactet is unramified atC for all

(V. €) € G-
Proof. First note that the restriction th. of the determinant of is Xlgl*'“*bs*t. For any exponent
of ., occuring inB; for anyi € {1,..., s} we have the

-1

0<z< ,
=7 2n

as each exponentis of the form)_"" | al9)¢i~!, where thex”) are the entries of; up to a cyclic
permutation and they are less th%fﬁ.

Let (v, ¢) € Gi,- We first consider the action of As K is a finite field,y acts by raising to the
¢¢-th power for some. In particular’y,, = £, . This shows that(p @ ¥})|;, has the same shape as
(p @ ¥})|1, except that the elements of eaghare permuted. Taking the determinant on both sides
of 7p = p ® e yields thate|;, has ordern dividing n, as~y acts trivially on the cyclotomic character.
Moreover, looking at any diagonal entry we g€t = ¢ - €|, for some exponents andy. Letr be
the least common multiple ef andr;. Then we can rewrite the previous equation as

Uy = f - elrg (3.1)

-1
: S =1 _ ot oo 41 i1 =1 _ -1
with 0 < 7 < ==, sincey, = vy, and hencel = v/ < 51 = 9. -

2n !

estimate holds true fay.

The same
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-1

Furthermore, the knowledge of the orderepf, impliese|r, = ¢, ™ b forsomel <b<m-—-1
coprime tom. Note that this implies the estimates

C-1 -1 -1, (m-1( -1

< < < (n—l)(ﬁr—l).

But, sincey),. has order” — 1, Equation[(3.1l) implies thaff%m + ¢ — & is divisible by¢" — 1, hence
we get a contradiction. Thus, is trivial, as was to be shown. O

4 Inner twists in compatible systems of Galois representabins

In this section we aim to generalise the results of Se€lianc®@inpatible systems of Galois representa-
tions. For a compatible systepg we will define number field&,, andK,, such that almost all mem-
bersp, and their projectivisatior,p§erj can be defined over the completion)aof E£,, andK,,, re-
spectively. The example of a non-CM newforfhalready used in Sectidn 2 can serve as a guidance to
the reader. The field,, is thenQ; = Q(a, | p prime,p { N) and K, is Q(% | pprime,pt N),
whereN is the level and) the Dirichlet character of .

Definition 4.1. Letn € N and letG := G := Gal(F/F) be the absolute Galois group of a number
field F. A compatible systemp, = (p)), Of n-dimensional representations 6fs consists of the
following data:

A number fieldL.

o A finite setS of finite places of'.

e For each finite place of ' not in S, a monic polynomialP, € O [X] (with Oy, the ring of
integers ofL).

e For each finite place\ of L (together with fixed embeddindgs < L, < L, with L, the
completion of. at A and L, an algebraic closure thereof) a continuous Galois représton

P - GF — GLn(fA)

such thatp, is unramified outsid& U S, (where/ is the residue characteristic of and Sy is
the set places af’ lying abovel) and such that for alp ¢ S U .S, the characteristic polynomial
of p(Froby) is equal toP, (equality insideL [ X]).

We say that the compatible systegn= (p, ), is symplecticif for all A the representatiom), is of
the formGr — GSp,,(Ly). We say thap, = (py ), is almost everywhere (a. e.) sympledfifor all
but possibly finitely many the representatiop, is of the formGr — GSp,,(L).

Leta € Z andy : Gp — L* a continuous finite order character. We say that the compmtib
systenp, = (py ), hasdeterminant)§ if for all places\ of L (say, \ lies over the rational primé)
the determinant of, is 1 x§ with x, the /-adic cyclotomic character.
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We say that a symplectic compatible sysggm= (py), hasmultiplier mapyx if for all places
A of L (say, A lies over the rational primé) the multiplier map ofpy is ¥xj with x, the ¢-adic
cyclotomic character. In the case of an almost everywhengpisctic compatible system, we only
insist on this property at those placaswhere the representation is symplectic.

A compatible system, = (p, )., is calledalmost everywhere (a. e.) absolutely irreducitblall
its memberg, are absolutely irreducible except for finitely many plagesf L.

For a placep of F' not in S, denote by, the coefficient in front ok "1 of P,(X), i.e. the ‘trace’
(up to sign). For the sequel, assume Sef-up 2.1 for some mfialtkK’, and assume that /K is a
finite Galois extension of number fields with Galois graupNote that, in this contexi;, L and K
are all endowed with the discrete topology. Let

Gpe :=1{(7,€) € G | v(ap) = a, - €(Froby) for all placesp of F' notin S},

oo = m(Gp) €T, Ay, i={y €Ty | (v.1) € Gp, } andé,, = Lil(gp-) = Lil(ker(ﬂ"gp.))'
(Compare with Definition 213 and Lemimal2.7). We say that thepatible systerp, hasno complex
multiplicationif £,, = {1}.

Let K, := LI+, called theprojective field of definition op,, and £, := L*»+, called thefield
of definition of p,. Note thatF,, is generated oveK by the sefa, | p place of ' notin S}.

Remark 4.2. Let p, be an a. e. symplectic compatible systerm-afimensional Galois represent-
ations without complex multiplication, and e}, € p, be a symplectic member of the system.
Thenp, has no complex multiplication. Indeed,df: Gr — L is an inner twist for[p,]
GSp-Reps,, (Gr, Ly/K)), thenm(py) = m(px ® €) = m(py)e2, hencee : Gp — L, is at most
quadratic. Therefore we may view it as a characterGr — L*, and it satisfiesy, = a, - €(Froby)
(equality inL) for all p ¢ S. Thuse € &,, = 1 becausep, has no complex multiplication. This
implies thatp, does not have complex multiplication.

Let po = (px)x be an a. e. absolutely irreducible compatible system. Fdéaeep of L we can
consider Set-up 2.1 for the Galois extensiogy K. If py € p. is residually absolutely irreducible
(and symplectic), by Propositidn_2:5(c) (Propositionl@)5{nd Remark™4]12) the equivalence class
of p) contains a member that is defined ovey. Thus we can consider Set-Up12.1 for the Galois
extensionL, /K. In this case we will use the notatidh, := Gal(L,/K)) (denoting the prime o
below A also by)), and&, := {e : Gp — L; characte} andG, := £, x I'y. In this setting, apply
Definition[2.3 with[p,], so that, in particulaig,, is the stabiliser subgroup insidg of [p,].

We start with the analog of Propositibn 2.17 for compatilylsteams of/-adic Galois representa-
tions; our main focus below will be to obtain results abowirtinesidual representations.

Proposition 4.3. Letp, be an a. e. absolutely irreducible compatible system-dimensional Galois
representations as in Definitidn 4.1. 4§ is a. e. symplectic, assume that the multiplieppfs 1 x§

and thatp, has no complex multiplication. H, is not a. e. symplectic, assume that the determinant
of pe is X7 and thatE,, contains then-th roots of the values af.

15



(@) A,, is anormal subgroup of ,, and, henceF,, /K, is a Galois extension with Galois group
I'y./A,,. Inparticular, the fieldy(E,,) = E,, forally € T,.

(b) For each place\ of L such thatp, is residually absolutely irreducible (and symplectigif is
a. e. symplectic), the equivalence cl§sg contains a representation that can be defined over the
field (E,, )\ and (£, ), is the smallest such field.

Proof. @) First of all, note that, ip, is a. e. symplectic, thef/,, contains the values af. Indeed,
forall 6 € A,,, for all places\ of L fixed by § and all places of F' outsideS U S, (where/
is the residue characteristic aj, we have thaflr(py(Froby)) = a, = d(ay) = Tr(°px(Froby)).
Here by abuse of notation we denote dyny extension of to L. Suppose thap, is absolutely
irreducible and symplectic. Then by Remhrkl #,2does not have complex multiplication. Moreover,
by Chebotarev's Density Theorem and Proposifion 215 4b)and®p, are equivalent as symplectic
representations. Hendém(py)) = m(°py) = m(py) for all except possibly finitely many places
A € L. Since the multiplier op, is ¥x§, we obtain that the values of are fixed bys, thus they lie
inE,,.

This allows us to computéye)(d,1)(v, €)=t = (yv6y~1,1) € G, as in Proposition 2.1 7%(a) for all
v €T, ands € A,,, which shows thatdy~! € &,,.

(D) Let X be a place of. such thafp, is residually absolutely irreducible (and symplectigifis
a. e. symplectic). Forafl ¢ SU .S, (where/ is the residue characteristic &, the trace op (Frob,,)
is fixed by all elements oA, that fix A\, whence it belongs t¢E,, )\, and we saw above that the
multiplier of p, takes values i{E,, ), when p, is a. e. symplectic. Using Chebotarev’s density
theorem and Proposition 25 (c) ahdl (d), we see ghatan be defined oveE,,, ) ».

SinceE,, is generated by théa, | p ¢ S}, itis clear thafp,] cannot contain a member which is
defined over a subfield smaller thaf,,, ) ». O

We will next see that, whepm, is residually absolutely irreducible, the projective fiefdlefinition
of [p,] of Definition[2.3 is just the completion atof the projective field of definition of the compatible
system.

Lemma 4.4. Letp, = (p)) be ann-dimensional a. e. absolutely irreducible compatible eystas
in Definition[4.1. Let) : G — L* be a character of finite order. lf, is a. e. symplectic, assume
that p, has no complex multiplication and that the multipliersfis 1 x 7. If p, is not a. e. symplectic,
assume thak contains the:-th roots of the values af and that the determinant f is'x§. Let\ be
a place ofL such thaip, is residually absolutely irreducible (and symplectig{fis a. e. symplectic).
Then we have
Loy =IanTy,,

where the intersection is taken insifievia the embedding’, — I' coming from the embedding
L— LA.
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Proof. We use Lemm@a 2l7. The inclusioR”is clear. Conversely, let € INPNE in particular,y € T'y.
There is a characterc &, such thaly, €) € Gy,,), i.e. thaty(ay) = ay - ¢(Frob,) for allp ¢ S U S,.
LemmalZ.8 implies that can be lifted to an element &f, i.e. taking values in.*. The equation
v(ap) = ap - €(Froby) for all p & S U S, is now an equation in the fiell, implying (v,¢) € G,,. O

The following theorem is our main result about projectivédfieof definition of compatible sys-
tems of¢-adic representations.

Theorem 4.5. Letps = (py ) be ann-dimensional a. e. absolutely irreducible compatible eysas
in Definition[4.1. Let) : Gr — L* be a character of finite order. l§, is a. e. symplectic, assume
that p, has no complex multiplication and that the multiplierfis 1) x7. If pe is not a. e. symplectic,
assume thaL contains then-th roots of the values af and that the determinant @f is ¢'x§.

Then for each place of L such thatp, is residually absolutely irreducible (and symplectigif
is a. e. symplectic), the projective field of definitionmf] is (K, )., the completion of<,, at the
prime lying below\.

ANy

Proof. By Lemma 4.4, we havé| LEW =L, = (L"re)x = (Kp)a- O

Pl =

Given a compatible system, = (p»)» We will now consider the residual representatigns
(see Remark212). I/ is a local field, we denote by (M) its residue field. Let\ be a finite
place of L and assume, is defined ovel., (which is the case whenevey, is residually absolutely
irreducible (and symplectic without complex multiplicat)). Consider Set-up 2.1 for the Galois
extensionk(L,)/x(K ) with Galois grouf"y, using the notatio&', andgG . We apply Definitioh 2.3
to the equivalence clasg, | of the residual representation, using the notaﬁgﬂ} C Gy, EW C &y
andl“[m CT,.

We now state and prove our principal result describing togeptive fields of definition for almost
all residual representations of a compatible system. It bgayseful to roughly summarise where the
various conditions in the theorem come from. Thahas finite order is needed to ensure thatall
occuring in inner twists are of finite order; the condition tbe n-th roots of the values af in the
non-symplectic case ensures thédkes its values i, (which is automatic in the symplectic case).
The absolute irreducibility and the non-CM condition (ire tlymplectic case) are needed to ensure
that the representations are determined by the chardittgridynomials of Frobenius. The condition
on the shape abowkis needed to exclude that the residual inner twists ramify(ditinfinitely many
of them did ramify, then they would not ‘glue’ to an inner tivig the compatible system).

Theorem 4.6. Letps = (py ) be ann-dimensional a. e. absolutely irreducible compatible eysas
in Definition[4.1. Let) : Gp — L* be a character of finite order. I, is a. e. symplectic, assume
that p, has no complex multiplication and that the multipliersfis 1 x 7. If p, is not a. e. symplectic,
assume thal contains then-th roots of the values af and that the determinant @f is ¥xj.
Assume that for prime§ of F' lying over the residue characteristic of the representatior,
satisfies Assumptidn 3.2 (this is automati@'§f = Q,). Moreover, assume that there is an integer
independent ok, such that the numbers ; appearing in Assumptidn 3.2 are boundediby
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Then for all places\ of L at whichp, is residually absolutely irreducible, except possiblytélyi
many, the projective field of definition [k, | is x((K, ), ).

Proof. We may restrict to thosg of residual characteristi(:satisfying42‘—711 > k (cf. Propositiod 3.3),
and symplectic without complex multiplication 4§ is a. e. symplectic. We may furthermore limit
ourselves to\ such that\ is unramified inL/ K.

Let(v,¢€) € Gjp,) be aninner twist ofp,|. We identifye with its lift to an element of of the same
order (with respect to the fixel — L,) andT'y = Gal(L,/K)) with I'y = Gal(x(Ly)/x(K))),
so thatGj,,; € Gpz,)- By Lemmal2.8 we know that the order ofs bounded independently of
Moreover, by Proposition 3.3,is unramified outsidé&. Let &, be the finite subset & consisting of
those characters meeting these two requirements. Hépce; & x I is a finite subgroup of and
[, @NdG[5,; are subgroups.

Now consider(v, €) € Go. Assume thaty, €) € G, for infinitely many\. Then for all places
of F notin S and each of thesk (except those above the residue characteristig),ofrfe have

v(ap) = ayp - €(Froby) (mod A).

Consequently, we have equalitfa,) = a, - ¢(Frob,), whence(v,¢) € G,,). This means that
avoiding also those finitely manysuch that &, €) € Go\Gj,,]isin Gz, |, we haveg,,; = G, ], thus
k(K1) = Kz,)- Sincep, is residually absolutely irreducible, Theoréml4.5 yields, | = (K, )x,
which proves the theorem. O

5 Application to compatible systems with huge residual imags

In this section we make use of Theorem| 4.6 to prove a firstirésat allows us to (almost) determine
the projective image of the residual representagign(except for finitely many), for a compatible
systemp, = (p,) satisfying suitable conditions.

Let V' be ann-dimensionalK -vector space endowed with a symplectic pairing. Recatl éima
elementr € GL(V) is a nontrivialtransvectionif = — idy has ranki, i.e. if 7 fixes a hyperplane
pointwisely and there is a lin& such thatr(v) — v € U for all v € V. Any transvection has
determinant.. A symplectic transvectiois a transvection iSp(1”). Any symplectic transvection has
the form

Ty[N € Sp(V) : u— u+ Au,v)v

with direction vectorv € V andparameter\ € K (cf. [Art57], p. 137-138).

Definition 5.1. Let L be an algebraically closed field, ar@ a subgroup ofGSp,,(L). We will say
that GG is hugeif the subgroup ofs generated by the transvections containedims conjugated (in
GSp,,(L)) to Sp,,(K) for some subfieldd C L.

Let K be an algebraic closure &f.
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Remark 5.2. WhenK is a finite field of characteristi¢, a subgroupG C GSp,,(K) is huge if
and only if it contains a subgroup conjugated (itSp,,(K)) to Sp,,(F,). This result is proved in
Part Il JADDW13] of the present series of papers.

The main ingredient will be the following group-theoretasuilt:

Proposition 5.3. Let K be a finite field of characteristic different frotqa and G € GSp,,(K) be a

X

group such that the group generated by the transvectios imSp,, (K ). ThenG C GSp,,(K)K .
To prove this proposition, first note the following easy fact

Lemma5.4. LetG C GSp,,(K) be a group such that the group generated by the transveciinGs
is Sp,,(K). ThenG is contained in the normaliser &f,,(K) in GSp,, (K).

Proof. Let A € G be any element, say with multiplier. To see that it belongs to the normaliser
Nasp () (Spn(K)), it suffices to see that, for all transvectidh = T,,[A] € Sp,(K), ATA' €
Sp,, (K). An easy computation shows that, for allc V/,

AT, NA N (w) = A(A™ w + MA  w, v) Av) = w + MA  w, v) Av =
w + Aa(w, AvyAv = Tgp[Aa.
But T4, [A] is a transvection and belongs@ so it belongs t&p,, (K), as was to be shown. O
So, in order to obtain Proposition 5.3, all we need is to ptbesfollowing proposition.

Proposition 5.5. Let K be a finite field of characteristic different frokn ThenNg 7 (Sp,(K)) C

X

GSp,,(K)K .
We will make use of an auxiliary lemma:

Lemma 5.6. Let K be field of characteristic different froth The group of automorphisms &b, (/)
is generated by two subgroups, as described below:

e The group of automorphism® such that: for all B € Sp,(K), ®(B) = ABA™!, where
A € GSp,,(K) (semi-inner automorphisms).

e The group of automorphisnissuch that there exists : K — K field automorphism such that,
forall B € Sp,,(K), ®(B) is the matrix with entries obtained by applyingo the entries o3
(field automorphisms).

Proof. This follows from the main Theorem df [Hua48], page 740. O

Proof of Propositiori. 555.Denote by N the normaliser ofSp,,(K) in GSp,,(K), and consider also

the centraliselC’ = Cq, (f)Spn(K), that is, the elementd € GSp,,(K) such that, for allB €
Sp,(K), A"'BA = B.
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First, note that we can view/C' in a natural way as a subgroup &fit(Sp,,(K)): namely, given
A € N, it defines an automorphism 8p,,(K’) by conjugation, and the kernel of the homomorphism
N — Aut(Sp,,(K)) is obviouslyC'. Let us callN the image ofV in the automorphism group.

We know thatN is a subgroup of\ut(Sp,,(K)). By Lemma5.5, we know that the group of
automorphisms is generated by two subgroups, one comgistithe semi-inner automorphisms and
one consisting of the field automorphisms. But no automermhif N can be a field automorphism.
This is proved in[[KLSO0B], page 548, inside of the proof of @ltary 2.6; namely, the reasoning is
that any automorphism of the shape— A~!BA must respect the trace. But there is always an
elementB € Sp,,, (K) such that no field automorphism preserves the trade. of

On the other hand, all semi-inner automorphisms belony td=rom here we can conclude that
the semi-inner automorphisms are precisely those belgrgitV. Indeed, note that the composition
of a field automorphism with a semi-inner automorphism ddieg with the composition of a semi-
inner automorphism with a field automorphism, so each autphiem can be written as a product of
a semi-inner one and a field one, and then we would get thdtdbntains an automorphism which
is not semi-inner, it contains an automorphism which is alfaltomorphism. Therefore the group
N coincides with the group of semi-inner automorphisms. T&ab say, for any matrixd € N,
there exists a matrixd; € GSp,,(K) such that the automorphis®@ — A~!BA coincides with
the automorphismd;'BA;. That is to say, for allB € Sp,(K), (A;A")"'B(4,A7") = B.
Equivalently,A; A~ € C.

But, in our situation,C' = K - {Id}. One sees this by considering a basisiotonsisting of
directions of transvections ifp,,(K), sayTy, [A\1], ..., Ty, [\n]. Assume thaB € C. Then, for all
i =1,...,n, BT'T,,[\|B = T,,[\]. But B"'T,,[\|B = Tp,,[\37!] (Where s is the multiplier
of B), henceB must fix all (v;). Repeating the same reasoning with transvections witfctitires
v1 + va,...,01 + vy, ONE sees thaB must be a homothety.

HenceN = GSp,, (K)K". O

As a consequence of Proposition]5.3, we obtain the following

Corollary 5.7. Let K be a finite field of characteristic different froty and G € GSp,,(K) be a
group such that the group generated by the transvectiodsigSp,,(K ). Then the image af under

the projectionGSp,,(K) — PGSp,,(K) is eitherPSp,,(K) or PGSp,,(K).

Corollary 5.8. Letps = (pA)a be ann-dimensional a. e. absolutely irreducible and a. e. syntjgec
compatible system as in Definitibn ¥.1. ket G — L* be a character of finite order. Assume that
the multiplier ofp, is 1x7.

Assume, moreover, that for all but possibly a density zdarofggaces) of L the residual repres-
entationp, has huge image.

Assume that for prime§ of F' lying over the residue characteristic of the representatior,
satisfies Assumptidn 3.2 (this is automati®'§f = Q,). Moreover, assume that there is an integer
independent ok, such that the numbers ; appearing in Assumptidn 3.2 are boundediby
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Then for all places\ of L with the possible exception of a density zero set, the imﬁ@?‘?ﬂ is
PGSp,, (k((Kp, )x)) OF PSp,, (K((Kp, )A))-

Proof. Let \ be a place of. such that the image @f, is symplectic and huge. Then the restriction of
Py to I;5,) (see Proposition 2.14) is absolutely irreducible and Téwasf2.T5 and’ 4.6 show thﬁ{foj
can be defined ovet((k,, )») and that this field is the smallest one with this property.

Now, because of Corollafy 5.7, we know that there exists d fi€l C K such that the image of
ﬁﬁ“’j is conjugated t&Sp,, (K’) or PGSp,,(K') wheneveip, has huge image. In particulﬁgerj can
be defined ovek’, and this is the smallest field with this property. Hed¢e= x((K,,),), and the
statement follows. O

6 Application to the inverse Galois problem

In this section we generalise results(of [DW11] by provingttbompatible systems with certain local
properties and the global assumption that all (but a dezsgitp set) residual images are huge lead
to the realisation oPSp,,(F,.) or PGSp,,(F,.) as Galois groups ovep for certain fixedd and a
positive density set of primes In Part || [AdDW13] we replace the residual huge image agsiion

by weaker local assumptions and in Part [l JAADSW13] we prtive existence of such compatible
systems. Some of the ideas in this section are taken from 0&l,Svhere the terminology df, p)-
groups is used.

Definition 6.1. Let ps = (px)x be ann-dimensional a. e. symplectic compatible system as in Defini
tion[4.1. Letg € S be a place oft" that is totally split overQ and does not dividen. Denote by; the
rational prime undemn. Leté : Gg,, — L™ be atame symplectic character of degreand order2p
as in Section 3.1 of [KLS08] (where it is denotepifor an odd primep such that the order of in I
is equal ton (note that, in particularn | (p — 1)).

We say that the compatible systggris maximally induced aj of orderp if for each\ not abovey
the restriction ofp), to a decomposition group atis equivalent tdndggzn (0) ® a (where we view

as taking its values i, via L — T,) with an unramified charactet : Gg, — Ly .

The definition is made precisely in such away in order to einmﬂ’tlndggz" (0) is symplectic and
irreducible. We refer td [KLS08] for more details (see alsotRl [AdDW13]). Note moreover that
the maximally induced place ensures thgtis absolutely irreducible for almost all The existence
of § is a result of local class field theory.

Lemma 6.2. Letp and g be primes such that the order gfin IF\ is equal ton. Let(, € Qbea
primitive p-th root of unity. Then the elemeg)i := 37~ ¢ has degree=- overQ.

Proof. See the paragraph above Proposition 2.16 of Chapter 2 oi8R)as O

Note that the elemerg}, from Lemmée.6.P is the trace of an element in the imagmdggq (0).
q"
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Lemma 6.3. Letp, = (p))x be ann-dimensional a. e. absolutely irreducible a. e. symplectim-
patible system as in Definitidn 4.1. Let: G — L* be a character of finite ordem. Assume that
pe has no complex multiplication and that the multiplier gfis x7. Assume also that there is a
placeq € S such thatp, is maximally induced af of orderp.

Then, := Y9! ¢¢'is an element ok, .

Proof. Let A be a place of. not abovey (the prime belowy), such thatp, is absolutely irreducible
and symplectic. Let us take arfy,e) € G}, SO that’py ~ py ® e. We first want to prove that
Y(&p) = &p-

There is an element; € I, (the inertia group atj) such that’p, (o) and (px ® €)(op) are
conjugated to

Y(Cp) Cp

q
1(G)" | ande(or) | & ) , 6.2)

V()" ¢

respectively. Since,(; - --- - g”—l = 1, from the equality of the determinants of the matrices in

(6.2) we get (o)™ = 1. But, (o) is also gp-th root of unity (comparing the eigenvalues of the two
matrices), whence(oy) = 1, as(n,p) = 1. We then gety((,) = ggi for some0 < i <n —1, and
thereforey(6,) = G& +---+ ¢ =G+ G =6

Hence, we have establishég € K|, ;. But, since this holds for almost all, we conclude from
Theoreni 4.b (using that, due to the presence of the maxinmallyced place, the residual representa-
tion p, is absolutely irreducible for almost al) that¢,, lies in K, . O

Finally we will make use of the following proposition:

Proposition 6.4 (Prop. 7.2 of [DW11]) Let L/Q be a finite field extension which contains a cyclic
extensionM /Q of degreed. Then the set of primessuch that there is an ideal in Oy, of residue
degreed has a positive density.

The following is our main result in this part about the apgtion to the inverse Galois problem.

Theorem 6.5. Let p, = (p) ) be ann-dimensional a. e. symplectic compatible system as in Defini
tion[4.1 withK = Q. Lety : Gr — L* be a character of finite order. Assume that the multiplier of
Pe IS UXT.

Assume, moreover, that for all but a density zero set of placef L the residual representation
P, has huge image.

Assume that for prime8 of F' lying over the residue characteristic af the representatiom,
satisfies Assumptidn_3.2 (this is automati@'§f = Q,). Moreover, assume that there is an integer
independent ok, such that the numbers ; appearing in Assumptidn 3.2 are boundediby

Assume also that there is a plage= .S such thatp, is maximally induced aj of orderp.
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Then for any | ;%1 there exists a sef; of rational primes? of positive density such that for all
¢ € Ly there is a place\ of L above/ satisfying that the image @8 is PGSp,, (F ) or PSp,, (Fya).

Proof. Let¢, := 23;01 ggi. By Lemmd®6.2 we know thd}, has degreéé‘;—1 overQ and by Lemm&a®]3
we also know that, lies in K,,. Consequently<,, contains a cyclic extensioh//Q of degreed.
The theorem is now just a combination of Proposifiod 6.4 ao(ary[5.8. O
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