
ar
X

iv
:1

20
3.

65
46

v3
  [

m
at

h.
N

T
]  

23
 S

ep
 2

01
3

Compatible systems of symplectic Galois representations and

the inverse Galois problem I.

Images of projective representations.

Sara Arias-de-Reyna∗, Luis Dieulefait†, Gabor Wiese‡

24th September 2013

Abstract

This article is the first part of a series of three articles about compatible systems of symplectic

Galois representations and applications to the inverse Galois problem.

In this first part, we determine the smallest field over which the projectivisation of a given

symplectic group representation satisfying some natural conditions can be defined. The answer

only depends on inner twists. We apply this to the residual representations of a compatible system

of symplectic Galois representations satisfying some mildhypothesis and obtain precise informa-

tion on their projective images for almost all members of thesystem, under the assumption of huge

residual images, by which we mean that a symplectic group of full dimension over the prime field

is contained up to conjugation. Finally, we obtain an application to the inverse Galois problem.

MSC (2010): 11F80 (Galois representations); 20C25 (Projective representations and multi-

pliers), 12F12 (Inverse Galois theory).

1 Introduction

This article is the first part of a series of three articles, about compatible systems of symplectic Galois

representations with huge images and applications to the inverse Galois problem. The overall aim is,

for givenn ∈ N even andd ∈ N, to construct a compatible system of Galois representations overQ

such that the projective image of the residual representations at a positive density set of primesℓ is

PGSpn(Fℓd) or PSpn(Fℓd), thus realising these groups as Galois groups overQ.

Three tasks emerge:
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(1) Given a compatible system of Galois representations, determine the fields of definition of the

projective residual representations. Forn = 2 and the compatible system arising from a Hecke

eigenformf =
∑

n≥1 anq
n of levelN and Dirichlet characterψ, these fields are known to be

equal to the residue fields of the number fieldQ(
a2p
ψ(p) | p ∤ N) at almost all places.

In this Part I we produce an analog of this number field for ann-dimensional compatible system

of Galois representations. We need to make some irreducibility and regularity assumptions, which

are automatically satisfied for compatible systems coming from modular forms.

(2) Having established the minimal fields of definition for projective representations, the next task

is to determine the actual image. In the casen = 2 a well-known classical theorem of Dickson

classifies the finite subgroups ofPGL2(Fℓ) (up to conjugation) into ‘huge’ ones (i.e.PGL2(Fℓd)

or PSL2(Fℓd) for somed ∈ N), dihedral ones, subgroups of the upper triangular matrices and

three exceptional ones; in representation theoretic language, the non-huge and non-exceptional

images come from induced or reducible representations. In Part II [AdDW13] we supply an

analog of this result forn-dimensional symplectic representations under the assumption of the

existence of a nontrivial transvection in the image.

As a general strategy, as in [DW11], we will enforce local properties to the compatible system in

order to ensure global ones: one local property takes care ofthe nontrivial transvection, another

one (that of a maximally induced place, see below) of absolute irreducibility and in the end huge

image and the existence of a suitable subfield of a cyclotomicfield in the projective field of

definition.

(3) The final task is then to construct a compatible system of Galois representations satisfying the

specified local requirements. This is achieved through the construction of a suitable automorphic

representation in Part III [AdDSW13], which is joint work with Sug Woo Shin.

The present Part I is entirely independent of the other two papers. Part II is independent as well,

except that in the end the results developed in Part II are combined with Theorem 6.5 from the present

Part I in order to prove that the existence of a compatible system of Galois representations with certain

specified local properties implies the desired applicationto the inverse Galois problem. Part III relies

on some results of Part I and Part II.

Statement of the results

We now describe the main results of the present article in slightly simplied forms. Although we

are mainly interested in symplectic representations (and compatible systems thereof), we also prove

results for general linear representations along the way; some of the assumptions needed are different

in that case, making the statements longer; but, we think that including the general linear case is

worthwhile. In this overview we will, however, entirely stick to the symplectic case.

Our first result determines projective fields of definition for Galois representations.
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Theorem 1.1. LetL/K be a finite Galois extension ofℓ-adic fields (i.e. finite extensions ofQℓ) or

of finite fields andρ : G → GSpn(L) be a representation of a groupG such that its restriction to

the subgroupI[ρ] of G (defined in Proposition 2.14;G/I[ρ] is finite abelian) is residually absolutely

irreducible.

Then there is an extensionK[ρ] of K insideL, which is explicitly described only in terms of

inner twists, such thatρproj : G
ρ
−→ GSpn(L) → PGSpn(L) is conjugate to a representationG →

PGSpn(K[ρ]), andK[ρ] is the smallest field with this property.

This is proved as Theorem 2.15 in Section 2. In Section 4 we compute the fieldK[ρλ]
from The-

orem 1.1 for almost all residual representationsρλ in a compatible system of Galois representations

under certain assumptions. The computations are essentially based on relating the inner twists of the

residual representations with inner twists of the compatible system. Here we present a simplified form

of Theorem 4.6.

Theorem 1.2. Let ρ• = (ρλ)λ with ρλ : GQ → GSpn(Lλ) (for a Galois number fieldL/Q; Lλ
denotes an algebraic closure of the completion ofL at the placeλ) be a compatible system as in

Definition 4.1, consisting of irreducible representationsand such that its multiplier is a fixed finite

order character times a fixed power of the cyclotomic character. Assume a certain condition at places

aboveℓ (the rational prime belowλ), which is for instance satisfied when theρλ are de Rham with

Hodge-Tate weights independent ofλ.

Then there is a number fieldKρ• , which is explicitely determined by the inner twists of the com-

patible system, such that for all placesλ of L at whichρλ is residually absolutely irreducible, except

possibly finitely many, the projective field of definition of the residual representationρλ is κ((Kρ•)λ),

the residue field ofKρ• at λ.

We can then already determine the residual projective images under the assumption that almost

all of them are ‘huge’ (defined in Definition 5.1). This is donein Corollary 5.8, a version of which we

state here.

Theorem 1.3. Let ρ• = (ρλ)λ be as in Theorem 1.2. Assume, moreover, that for all but possibly a

density zero set of placesλ of L the residual representationρλ has huge image.

Then for all placesλ of L with the possible exception of a density zero set, the image of ρprojλ is

PGSpn(κ((Kρ•)λ)) or PSpn(κ((Kρ•)λ)).

Under these assumptions together with that of the existenceof a maximally induced place of a

certain order (see Definition 6.1, this goes back to [KLS08] in the context of(n, p)-groups) we can

derive the following application to the inverse Galois problem (proved as Theorem 6.5).

Theorem 1.4. Let ρ• = (ρλ)λ be as in Theorem 1.3. Assume also that there is a placeq ∈ S such

thatρ• is maximally induced atq of orderp.

Then for anyd | p−1
n

there exists a setLd of rational primesℓ of positive density such that for all

ℓ ∈ Ld there is a placeλ ofL aboveℓ satisfying that the image ofρprojλ isPGSpn(Fℓd) or PSpn(Fℓd).
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The maximally induced place of orderp serves to produce a certain elementξp ∈ Q(ζp) of

degreep−1
n

in Kρ• , generalising the approach of [DW11]. This element guarantees the existence of a

subextension ofKρ that is cyclic degreed, from which the existence of a positive density set of primes

of residue degreed can be derived.
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2 Inner twists of a group representation

In this section we determine under some mild conditions the smallest field over which a member

of the equivalence class of a (projective, symplectic) representation is defined. The main results

are Theorem 2.15 and Proposition 2.17. This part owes many ofits ideas to Ribet’s paper [Rib85],

including Papier’s theorem cited in that article, as well asto other papers of Ribet. A conceptual

framework for some of those ideas is provided here as well as ageneralisation.

We take some time and space to introduce the objects we work with in detail. A guiding example

the reader may have in mind is that of a newformf =
∑

n≥1 anq
n with coefficient fieldQf =

Q(an | n ∈ N). For a primeℓ takeK = Qℓ andL the Galois closure overQℓ of the completion ofQf

at some place aboveℓ (orL = Qℓ). Theρ we will be interested in are theℓ-adic Galois representation

ρf and its modℓ reductionρf attached tof with respect to the chosen place.

We are interested inℓ-adic fields (i.e. finite extensions ofQℓ) as well as finite fields. Since the

reasonings are very similar in both cases, we will treat themsimultaneously. In what follows,when we

write that a representation is “(residually) absolutely irreducible” we mean that it is “residually

absolutely irreducible” in the case ofℓ-adic fields, and “absolutely irreducible” in the case of

finite fields. Whenever we consider a morphism between two topological spaces we assume it to be

continuous. In particular, representations and characters will always be continuous.

Set-up 2.1. • K anℓ-adic field with theℓ-adic topology or a finite field with the discrete topology.

• L/K a Galois extension,Γ := Gal(L/K), endowed with the Krull topology.

• G a finite or a compact topological group. In later sections,G will be a Galois group.

• E = {ǫ : G→ L×character}.
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Note that the assumptions imply thatim(ǫ) lies in a finite extension ofK. Note also thatΓ acts

onE from the left by composition:γǫ := γ ◦ ǫ.

• Form the semi-direct productG := E ⋊ Γ for the above action. Since we consider theΓ-entry

more important than theE-entry, we denote elements ofG as (γ, ǫ) with γ ∈ Γ and ǫ ∈ E

(instead of the other way around). We concretely have:

(γ1, ǫ1) · (γ2, ǫ2) := (γ1γ2, (
γ1ǫ2)ǫ1) and(γ, ǫ)−1 = (γ−1, γ

−1
(ǫ−1)).

Consequently, we have the exact sequence:

1 → E
ι:ǫ 7→(1,ǫ)
−−−−−→ G

π:(γ,ǫ)7→γ
−−−−−−→ Γ → 1.

This sequence is split in the obvious way. Note that the otherprojection

c : G → E , (γ, ǫ) 7→ ǫ

is a1-cocycle, when lettingG act onE through its quotientΓ.

• Letn ∈ N. The equivalence class of a representationρ : G → GLn(L) (for conjugation by an

element ofGLn(L)) is denoted by[ρ] and equivalence of representations is denoted by∼. We

denote the set of equivalence classes byGL-Repsn(G,L/K). Noteρ is defined over a finite

extensionK̃/K insideL, that isρ : G → GLn(K̃)
nat.emb.
−−−−→ GLn(L) (This is a standard fact:

the reader can find a proof in e.g. [Ski09], page 244).

• Letn ∈ N be even. The symplectic equivalence class of a representationρ : G→ GSpn(L) (for

conjugation by an element ofGSpn(L)) is also denoted by[ρ] and also symplectic equivalence

of representations is denoted by∼.

We denote the set of equivalence classes byGSp-Repsn(G,L/K). Note thatρ is defined

over a finite extensioñK/K insideL, that is ρ : G → GSpn(K̃)
nat.emb.
−−−−→ GSpn(L). We

make the convention that equivalence of symplectic representations always means symplectic

equivalence. Note that the embeddingGSpn(L) →֒ GLn(L) allows us to see elements of

GSp-Repsn(G,L/K) as elements ofGL-Repsn(G,L/K). We will call [ρ] (absolutely) irre-

ducible, if (any member of) it is (absolutely) irreducible as a linear representation.

• Note thatG acts onGL-Repsn(G,L/K) from the left by the following formula:

(γ, ǫ).[ρ] := [(γρ)⊗L ǫ
−1],

whereγ ∈ Γ, ǫ ∈ E and [ρ] ∈ GL-Repsn(G,L/K). In the same way,G acts on the set

GSp-Repsn(G,L/K) from the left.

• Let n ∈ N and r1, r2 : G → PGLn(L) be projective representations. We callr1 and r2
equivalent (also denotedr1 ∼ r2) if they are conjugate by the class (modulo scalars) of a

matrix inGLn(L). The equivalence class ofr1 is also denoted[r1]. For ρ : G → GLn(L) we

denote byρproj the composition ofρ with the natural projectionGLn(L) → PGLn(L).
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• Letn ∈ N be even andr1, r2 : G → PGSpn(L) be projective symplectic representations. We

call r1 and r2 equivalent (also denotedr1 ∼ r2) if they are conjugate by the class (modulo

scalars) of a matrix inGSpn(L). The equivalence class ofr1 is also denoted[r1]. For ρ : G→

GSpn(L) we denote byρproj the composition ofρ with the natural projectionGSpn(L) →

PGSpn(L).

Remark 2.2. LetK be anℓ-adic field andOK its valuation ring.

(a) It is well-known that any representationρ : G → GLn(K) is conjugate inGLn(K) to a rep-

resentationG → GLn(OK) (see e.g. [Ser98], I-2). We have already used this implicitly when

speaking about residual representations.

(b) In the symplectic case we assume thatρ : G → GSpn(K) is residually irreducible. One can

show that thenρ is conjugate inGSpn(K) to a representationG→ GSpn(OK).

Indeed, ifL is a lattice provided by (a) and the standard symplectic pairing is scaled such that

its restriction toL × L is surjective ontoOK , then the residual irreducibility together with

Nakayama’s lemma implies that theOK [G]-homomorphismL
v 7→(w 7→〈w,v〉)
−−−−−−−−−→ HomOK

(L,OK),

where theG-action on the right hand side is twisted by the multiplier ofρ, is an isomorphism.

Thus,L admits a symplecticOK -basis and the corresponding base change matrix is general

symplectic.

For the rest of this section we assume that we are in Set-up 2.1. We now make the main definition

of this section, which generalises standard definitions forelliptic curves and modular forms.

Definition 2.3. Let [ρ] ∈ GL-Repsn(G,L/K) or [ρ] ∈ GSp-Repsn(G,L/K).

• DefineG[ρ] to be the stabiliser group of[ρ] in G (for theG-action onGL-Repsn(G,L/K) or

onGSp-Repsn(G,L/K)). Its elements are calledinner twists of[ρ]. Explicitly, let(γ, ǫ) ∈ G.

Then(γ, ǫ) is an inner twist of[ρ] if and only if [ρ] = [(γρ) ⊗L ǫ
−1], which is the case if and

only if [γρ] = [ρ⊗L ǫ].

• Define the groupsΓ[ρ] := π(G[ρ]) ⊆ Γ andE[ρ] := ι−1(G[ρ]) = ι−1(ker(π|G[ρ]
)).

• We say that[ρ] hasno complex multiplicationif E[ρ] = {1}, i.e. if and only if the projection

π : G[ρ] → Γ[ρ] is an isomorphism.

• Define the fieldK[ρ] := LΓ[ρ]. It is called theprojective field of definition of[ρ] (see The-

orem 2.15 for a justification of the terminology).

• Define the group∆[ρ] := {γ ∈ Γ[ρ] | (γ, 1) ∈ G[ρ]}.

• Define the fieldE[ρ] := L∆[ρ]. It is called thefield of definition of[ρ] (see Proposition 2.17 (b)

for a justification of the terminology).

In our guiding example of a newformf , ρf has CM or a nontrivial inner twist if and only iff

does.
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Lemma 2.4. (a) Let [ρ] ∈ GL-Repsn(G,L/K) or [ρ] ∈ GSp-Repsn(G,L/K) be absolutely irre-

ducible. Then anyM ∈ GLn(L) commuting with allρ(g) for g ∈ G is a scalar matrix.

(b) Let ρ : G → GSpn(L) be absolutely irreducible without complex multiplication, let M ∈

GLn(L) and assume that the image ofM−1ρM lies in GSpn(L). ThenM ∈ GSpn(L), thus

M−1ρM belongs to the symplectic equivalence class ofρ.

Proof. (a) This is a form of Schur’s Lemma. See e.g. [CR62],§ 27 of Chapter IV, Lemma (27.3).

(b) Callρ′ =M−1ρM . The symplecticity ofρ andρ′ implies forg ∈ G:

ρ(g)trJρ(g) = m(ρ(g))J and(M−1ρ(g)M)trJ(M−1ρ(g)M) = m(ρ′(g))J,

wherem is the multiplier andJ is the Gram matrix of the standard symplectic pairing. Combining

these two equations, yields

(MJ−1M trJ)−1ρ(g)(MJ−1M trJ) =
m(ρ′(g))

m(ρ(g))
ρ(g).

Note that this equation implies that the characterm(ρ′(g))
m(ρ(g)) lies inE[ρ]. As we are assuming thatρ has no

complex multiplication, this character is trivial. Using (a), we get thatMJ−1M trJ is a scalar matrix

λidn, showing thatM ∈ GSpn(L), as claimed.

One can find examples showing that the conditions in Lemma 2.4(b) are necessary. On our

way to develop the main results of this section, we first include a proposition summarising some

representation theory to be used in the sequel.

Proposition 2.5. (a) Let [ρ], [ρ′] ∈ GL-Repsn(G,L/K) be absolutely irreducible. If for allg ∈ G

the equalityTr(ρ(g)) = Tr(ρ(g′)) holds, then[ρ] = [ρ′].

(b) Let [ρ], [ρ′] ∈ GSp-Repsn(G,L/K) be absolutely irreducible without complex multiplication. If

Tr(ρ(g)) = Tr(ρ′(g)) for all g ∈ G, then[ρ] = [ρ′].

(c) Let [ρ] ∈ GL-Repsn(G,L/K) be (residually) absolutely irreducible and letK ⊆ K̃ ⊆ L be a

field extension such thatTr(ρ(g)) ∈ K̃ for all g ∈ G. Then there isM ∈ GLn(L) such that

M−1ρ(g)M ∈ GLn(K̃) for all g ∈ G. So, the equivalence class[ρ] has a representative with

target inGLn(K̃).

(d) Let[ρ] ∈ GSp-Repsn(G,L/K) be (residually) absolutely irreducible without complex multiplic-

ation and letK ⊆ K̃ ⊆ L be a field extension such thatTr(ρ(g)) ∈ K̃ andm(g) ∈ K̃ (multiplier

map) for all g ∈ G. Then there isM ∈ GSpn(L) such thatM−1ρ(g)M ∈ GSpn(K̃) for all

g ∈ G. So, the equivalence class[ρ] has a representative with target inGSpn(K̃).

Proof. (a) This follows from the Theorem of Brauer-Nesbitt, cf. [CR62], §30 of Chapter V, Theorem

(3.15).
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(b) Applying (a), we obtain thatρ andρ′ are equivalent asGLn-representations, meaning that there

is some matrixM ∈ GLn(L) such thatρ′ =M−1ρM . Lemma 2.4-(b) shows thatM ∈ GSpn(L), as

claimed.

(c) Forℓ-adic fields, this is Théorème 2 of [Car94]; see also [Maz97],p. 255. For finite fields the

result follows from the triviality of the Brauer group.

(d) Applying (c) we obtain a matrixM ∈ GLn(L) such thatM−1ρ(g)M ∈ GLn(K̃) for all

g ∈ G. We want to show that there is a matrixN ∈ GLn(K̃) such thatN−1M−1ρ(g)MN ∈

GSpn(K̃) for all g ∈ G. Again denoteJ the Gram matrix of the standard symplectic pairing. Then all

M−1ρ(g)M respect the symplectic pairing with Gram matrixI :=M trJM up to the same multiplier

m(ρ(g)), i.e.

(M−1ρ(g)M)trI(M−1ρ(g)M) = m(ρ(g))I

for all g ∈ G.

We claim thatI ∈ GLn(K̃). Note that conjugatingM−1ρ(g)M by I yields an element in

GLn(K̃), using here the assumptionm(ρ(g)) ∈ K̃. The absolute irreducibility ofM−1ρM now

implies that conjugating byI preservesMn(K̃) (see e.g. [Maz97], p. 252). The Skolem-Noether

theorem (Corollary 3.63 of [CR81]) consequently showsI ∈ GLn(K̃).

This now means thatI defines a symplectic pairing oñKn (the representation space ofM−1ρM ),

which is respected byM−1ρM (up to the multiplier). The claimed existence of the matrixN is now

just the fact that in a symplectic vector space a basis can be chosen such that the symplectic pairing

has the standard form, i.e. is given byJ . We conclude, using (b), that(MN)−1ρ(MN) is in the

equivalence class[ρ].

We now include a word on topology.

Lemma 2.6. Let [ρ] ∈ GL-Repsn(G,L/K) or [ρ] ∈ GSp-Repsn(G,L/K). ThenΓ[ρ] and∆[ρ] are

open subgroups ofΓ (and thus of finite index).

Proof. There is an open normal subgroupΓ̃ρ of Γ acting trivially onρ. Then we have inclusions

Γ̃ρ ⊆ ∆[ρ] ⊆ Γ[ρ] ⊆ Γ,

all of which are of finite index. Fix a system of representativesγ1, . . . , γm of Γ/Γ̃ρ. Then

Ei := {ǫ ∈ E | γiρ ∼ ρ⊗ ǫ} =




∅ or

ǫiE[ρ] for someǫi ∈ E .

It follows thatΓ[ρ] =
⋃m
i=1,Ei 6=∅ γiΓ̃ρ and∆[ρ] =

⋃m
i=1,Ei=E[ρ]

γiΓ̃ρ, thus they are open subsets ofΓ.

The following lemma is very useful in our applications of theabove theory to compatible systems

of Galois representations, where the Frobenius traces lie in some global field.
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Lemma 2.7. Let [ρ] ∈ GL-Repsn(G,L/K) or [ρ] ∈ GSp-Repsn(G,L/K) (in this case also assume

thatρ has no complex multiplication) be absolutely irreducible.ThenG[ρ] is equal to the set

{(γ, ǫ) ∈ G | γ(Tr(ρ(g))) = Tr(ρ(g))ǫ(g) ∀g ∈ G}.

Proof. Proposition 2.5 (a) and (b).

We continue with a useful observation on the values ofǫ occuring for inner twists.

Lemma 2.8. Let [ρ] ∈ GL-Repsn(G,L/K) or [ρ] ∈ GSp-Repsn(G,L/K). Furthermore, letχ :

G → K× be any character and letψ : G → L× be a character of finite order. Letǫ ∈ E occur in

some(γ, ǫ) ∈ G[ρ].

(a) If det(ρ) = ψχ, thenǫn =
γψ
ψ

and the values ofǫn are contained in the field generated overK

by the values ofψ.

(b) If [ρ] is symplectic with multiplier mapm(ρ) = ψχ, then ǫ2 =
γψ
ψ

and the values ofǫ are

contained in the field generated overK by the values ofψ.

Proof. Let (γ, ǫ) ∈ G[ρ]. We get:

(a)γ(det(ρ)) = χγ(ψ) = ψχǫn, implying ǫn =
γψ
ψ

. The second assertion is now clear.

(b) The same calculation with the multiplier map yieldsǫ2 =
γψ
ψ

. Consequently, the order ofǫ

divides2m, wherem is the order ofψ. Let ζ be a primitivem-th root of unity,g ∈ G andb, c ∈ Z

such thatψ(g) = ζb, γ(ζ) = ζc. Thenǫ(g)2 = ζbc

ζb
= ζb(c−1). If m is odd, there existsd ∈ Z such

that ζ = (ζ2)d, thusǫ(g)2 = ζ2bd(c−1) andǫ(g) ∈ K(ζ). Assume now thatm is even. Thenc − 1

is also even (otherwisec would be even, andζc would not be a primitivem-th root of unity). Hence

ǫ(g)2 has order dividingm/2, so thatǫ(g) has order dividingm; thus the values ofǫ are a subset of

the values ofψ.

We now study projective representations.

Lemma 2.9. (a) For ρ : G→ GLn(L) andǫ ∈ E one hasρproj = (ρ⊗ ǫ)proj.

(b) For [ρ] ∈ GL-Repsn(G,L/K) or [ρ] ∈ GSp-Repsn(G,L/K) and ǫ ∈ E one hasρproj ∼

(ρ⊗ ǫ)proj.

(c) Let [ρ1], [ρ2] ∈ GL-Repsn(G,L/K) or [ρ1], [ρ2] ∈ GSp-Repsn(G,L/K) such thatρproj1 ∼

ρproj2 . Then there isǫ ∈ E such that[ρ1] = [ρ2 ⊗ ǫ].

Proof. (a) and (b) are clear.

(c) Denote bys the injective homomorphismL× → GLn(L) which sendsx to the scalar matrix

x · idn. LetM be a matrix inGLn(L) (or in GSpn(L)) such thatρproj1 = Mρproj2 M−1. Define the

characterǫ : G→ L× by the formula

ǫ(g) := s−1
(
ρ1(g)(Mρ2(g)M

−1)−1
)
.

Note thatǫ is well-defined, is multiplicative and that it obviously satisfies the requirements.
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For the next lemma note that(γρ)proj = γ(ρproj).

Lemma 2.10. Let [ρ] ∈ GL-Repsn(G,L/K) or [ρ] ∈ GSp-Repsn(G,L/K).

(a) Γ[ρ] = {γ ∈ Γ | γρproj ∼ ρproj}.

(b) If ρproj factors asG → PGLn(K̃)
nat. emb.
−−−−−→ PGLn(L) or as G → PGSpn(K̃)

nat. emb.
−−−−−→

PGSpn(L) for some fieldK ⊆ K̃ ⊆ L, thenK[ρ] ⊆ K̃.

Proof. (a) Letγ ∈ Γ[ρ]. Then there isǫ such that(γ, ǫ) ∈ G[ρ], i.e.γρ ∼ ρ⊗ ǫ. Hence,γρproj ∼ ρproj

by Lemma 2.9. Conversely, ifγ ∈ Γ satisfyingγρproj ∼ ρproj, then by Lemma 2.9, there isǫ such

that(γ, ǫ) ∈ G[ρ], whenceγ ∈ Γ[ρ].

(b) LetU ⊆ Γ the closed subgroup such thatK̃ = LU . Then for allγ ∈ U we haveγρproj = ρproj.

Hence,γ ∈ Γ[ρ] by (a). Consequently,U ⊆ Γ[ρ], whenceK[ρ] ⊆ K̃.

The lemma shows that any field over whichρproj can be defined containsK[ρ]. Our aim will be to

show that under suitable assumptionsρproj can be defined overK[ρ].

Lemma 2.11. Let [ρ] ∈ GL-Repsn(G,L/K) or [ρ] ∈ GSp-Repsn(G,L/K). Let g ∈ G and let

Xn +
∑n

i=1 ai(g)X
n−i be the characteristic polynomial ofρ(g). Let (γ, ǫ) ∈ G[ρ]. Then one has the

equations

γ(ai(g)) = ǫ(g)i · ai(g)

for all i = 1, . . . , n.

Proof. This follows by comparing the characteristic polynomials of [ρ] and(γ, ǫ).[ρ].

Corollary 2.12. Let [ρ] ∈ GL-Repsn(G,L/K) or [ρ] ∈ GSp-Repsn(G,L/K) andǫ ∈ E[ρ].

(a) The order ofǫ dividesn.

(b) Leti ∈ {1, . . . , n} andg ∈ G. If ai(g) 6= 0, thenǫi(g) = 1.

Proof. (a) The coefficientan(g) of the characteristic polynomial ofρ(g) as in Lemma 2.11 is the

determinant ofρ(g), which is a unit. Asan(g) = ǫ(g)nan(g) for all g, we concludeǫ(g)n = 1.

(b) is immediate.

Lemma 2.13. For [ρ] ∈ GL-Repsn(G,L/K) or [ρ] ∈ GSp-Repsn(G,L/K), considerH[ρ] :=
⋂
ǫ∈E[ρ]

ker(ǫ). It is a closed normal subgroup ofG with abelian quotient of exponent dividingn.

If ρ has complex multiplication, then the restriction ofρ toH[ρ] is not absolutely irreducible.

Proof. Let ǫ ∈ E[ρ] and letM be a (symplectic) matrix such thatρ⊗ ǫ = MρM−1. If the restriction

of ρ toH[ρ] is absolutely irreducible, then restricting toH[ρ] givesρ|H[ρ]
=MρM−1|H[ρ]

. By absolute

irreduciblity, any matrix that commutes with all ofρ(H[ρ]) is scalar, whenceρ⊗ ǫ = ρ. Consequently,

ǫ is the trivial character.
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Proposition 2.14. For [ρ] ∈ GL-Repsn(G,L/K) or [ρ] ∈ GSp-Repsn(G,L/K), define the sub-

group I[ρ] :=
⋂
ǫ∈E s.t.∃(γ,ǫ)∈G[ρ]

ker(ǫ). Assume that the restriction ofρ to I[ρ] is (residually) abso-

lutely irreducible (in particular, by Lemma 2.13 this implies that[ρ] has no complex multiplication).

Then the equivalence class[ρ] contains a memberρ′ satisfying:

• Letg ∈ G. Thenρ′(g) ∈ GLn(K[ρ]) ⇔ g ∈ I[ρ].

• γρ′ = ρ′ ⊗ ǫ for all (γ, ǫ) ∈ G[ρ].

Proof. Due to Lemma 2.11, the character ofρ restricted toI[ρ] takes values inK[ρ]. If ρ is symplectic,

the formulaǫ2 =
γ(m◦ρ)
m◦ρ for all (γ, ǫ) ∈ G[ρ] (see also Lemma 2.8 (b)) shows that the multiplier

of ρ restricted toI[ρ] takes values inK[ρ]. Due to the (residual) irreduciblity assumption,ρ|I[ρ] is thus

conjugate by some (symplectic) matrixM to a representation defined overK[ρ], see Proposition 2.5

(c) and (d). Thusρ′ :=MρM−1 is a representation ofG such that its restriction toI[ρ] takes its values

in the (symplectic) matrices with entries inK[ρ].

We start by showing the second property. For this, let(γ, ǫ) ∈ G[ρ]. Since[γρ] = [ρ⊗ ǫ], there is a

(symplectic) matrixN such thatγρ′ = N(ρ′⊗ǫ)N−1. Restricting toI[ρ] and using that this restriction

is absolutely irreducible, the matrixN has to be scalar (see Proposition 2.4 (a)), showingγρ′ = ρ′⊗ ǫ.

Let now g ∈ G \ I[ρ]. Then there is a(γ, ǫ) ∈ G[ρ] such thatǫ(g) 6= 1. Hence,γ(ρ′(g)) =

ρ′(g)ǫ(g) 6= ρ′(g), showingρ′(g) 6∈ GLn(K[ρ]).

Our first main theorem can now be obtained as an application ofHilbert’s Satz 90.

Theorem 2.15. Let [ρ] ∈ GL-Repsn(G,L/K) or [ρ] ∈ GSp-Repsn(G,L/K) such that its restric-

tion to I[ρ] (see Proposition 2.14 for its definition) is (residually) absolutely irreducible. Then the

equivalence class ofρproj has a member that factors throughPGLn(K[ρ]) or PGSpn(K[ρ]), respect-

ively. Combining with Lemma 2.10,K[ρ] is hence the smallest subfield ofL with this property.

Proof. By Proposition 2.14, we may and do assume thatγρ = ρ⊗ ǫ for all (γ, ǫ) ∈ G[ρ].

Now let g ∈ G. Consider the continuous1-cocycle cg : Γ[ρ] → L× defined bycg(γ) =

s−1(γρ(g)ρ(g)−1), wheres : L× → GLn(L) denotes the morphism which sendsx to the scalar

matrix x · idn. By Hilbert’s Satz 90,H1(Γ[ρ], L
×) is the trivial module. Hence,cg is a coboundary,

i.e. it is of the formcg(γ) =
ag

γ(ag)
with someag ∈ L×. Then for anyg ∈ G and anyγ ∈ Γ[ρ] we

obtain
γρ(g) ⊗

γ(ag)

ag
= ρ(g) and consequentlyγ(ρ(g)ag) = ρ(g)ag,

showing thatρ(g)ag belongs toGLn(K[ρ]) (or toGSpn(K[ρ])). Taking this equation modulo scalars,

yields the theorem.

Remark 2.16. The previous theorem shows that the fieldK[ρ] is related to the minimal field of defini-

tion of the adjoint representation introduced by R. Pink in amore general context in [Pin98].

The following proposition complements Theorem 2.15 by clarifying the relation betweenK[ρ] and

the minimal field over which a member of the equivalence class[ρ] can be defined.
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Proposition 2.17. Let [ρ] ∈ GL-Repsn(G,L/K) or [ρ] ∈ GSp-Repsn(G,L/K) be (residually)

absolutely irreducible. Letχ : G → K× be any character and letψ : G → L× be a character of

finite order. If[ρ] is symplectic, assume that the multiplier map ism(ρ) = ψχ; otherwise assume that

det ρ = ψχ andE[ρ] contains then-th roots of the values ofψ.

(a) ∆[ρ] is an open normal subgroup ofΓ[ρ] and, hence,E[ρ]/K[ρ] is a finite Galois extension with

Galois groupΓ[ρ]/∆[ρ]. In particular, one hasγ(E[ρ]) = E[ρ] for all γ ∈ Γ[ρ].

(b) If [ρ] is symplectic, also assume that[ρ] has no complex multiplication. The equivalence class

[ρ] contains a representation that can be defined over the fieldE[ρ] andE[ρ] is the smallest such

subfield ofL. Moreover,E[ρ] is generated overK by the tracesTr(ρ(g)) for g ∈ G (and the

values of the multiplier ifρ is symplectic).

Proof. (a) Note that, if[ρ] is symplectic, for allδ ∈ ∆[ρ], δ(m(ρ)) = m(ρ), whenceE[ρ] contains the

values ofψ. Let δ ∈ ∆[ρ] andγ ∈ Γ[ρ]. There isǫ ∈ E such that(γ, ǫ) ∈ G[ρ]. Taking into account

thatE[ρ] contains the values ofǫ by Lemma 2.8, we compute

(γ, ǫ)(δ, 1)(γ, ǫ)−1 = (γδγ−1, (γδγ
−1
ǫ−1)ǫ) = (γδγ−1, 1) ∈ G[ρ],

whenceγδγ−1 ∈ ∆[ρ]. The finiteness follows from the fact that∆[ρ] has finite index inΓ, which was

proved in Lemma 2.6.

(b) Lemma 2.11 implies that the character ofρ takes values inE[ρ], i.e. the traces lie inE[ρ].

If ρ is symplectic, then the multiplier ofρ also takes values inE[ρ]. Due to the (residual) absolute

irreducibility, [ρ] can thus be defined overE[ρ] by Proposition 2.5 (c) and (d). If the traces ofρ

(together with the values of the multiplier for symplecticρ) generated a proper subfield̃K of E[ρ],

then [ρ] could be defined over̃K. Then, however, there would be aγ ∈ Γ \ ∆[ρ] such thatγ is the

identity onK̃, andγ would fix all traces. This would meanγρ ∼ ρ (by Proposition 2.5 (a) and (b)),

so that(γ, 1) ∈ G[ρ], consequently,γ ∈ ∆[ρ], a contradiction.

3 Inner twists of a Galois representation

In this short section we analyse the ramification of the characters occuring in inner twists. LetF be a

number field and letG := GF := Gal(F/F ) in Set-up 2.1, which we assume for this section.

Lemma 3.1. Let [ρ] ∈ GL-Repsn(GF , L/K) or [ρ] ∈ GSp-Repsn(GF , L/K). Then anyǫ occuring

in (γ, ǫ) ∈ G[ρ] is unramified at all places ofF at whichρ is unramified.

Proof. Let σ be an element such thatρ(σ) is the identity. Thenγρ(σ) is also the identity, hence,
γρ ∼= ρ⊗ ǫ implies thatǫ(σ) = 1. Now apply this reasoning toσ in inertia groups at primes at which

ρ does not ramify.
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Assumption 3.2. LetK be a finite field of characteristicℓ or Fℓ andρ : G → GLn(L). For a prime

L of F aboveℓ we make the assumption:

There exist an integert and an integers between1 andn, and for eachi = 1, . . . , s, an ri-tuple

Si = (ai,1, . . . , ai,ri) of natural numbers0 ≤ ai,j ≤ ℓ − 1 with r1 + · · · + rs = n such that, if we

denote byBi the matrix,

Bi ∼




ψbiri 0

ψbiℓri
. ..

0 ψbiℓ
ri−1

ri




with ψri a (fixed choice of) fundamental character of niveauri (so thatψ1 is the mod-ℓ cyclotomic

character) andbi = ai,1 + ai,2ℓ+ · · ·+ ai,riℓ
ri−1, then

(ρ⊗ ψt1)|IL ∼




B1 ∗
. . .

0 Bs


 .

It is well known that Assumption 3.2 is verified ifFL = Qℓ.

Proposition 3.3. LetK be a finite field of characteristicℓ or Fℓ and [ρ] ∈ GL-Repsn(G,L/K) or

[ρ] ∈ GSp-Repsn(G,L/K). LetL be a prime ofF aboveℓ such that Assumption 3.2 is verified. If

ai,j <
ℓ−1
2n for all 1 ≤ i ≤ s and all 1 ≤ j ≤ ri, then the characterǫ is unramified atL for all

(γ, ǫ) ∈ G[ρ].

Proof. First note that the restriction toIL of the determinant ofρ is χb1+···+bs−t
ℓ . For any exponentx

of ψri occuring inBi for anyi ∈ {1, . . . , s} we have the

0 ≤ x <
ℓri − 1

2n
,

as each exponentx is of the form
∑ri

j=1 a
(j)ℓj−1, where thea(j) are the entries ofSi up to a cyclic

permutation and they are less thanℓ−1
2n .

Let (γ, ǫ) ∈ G[ρ]. We first consider the action ofγ. AsK is a finite field,γ acts by raising to the

ℓc-th power for somec. In particularγψri = ψℓ
c

ri
. This shows thatγ(ρ⊗ψt1)|IL has the same shape as

(ρ ⊗ ψt1)|IL except that the elements of eachSi are permuted. Taking the determinant on both sides

of γρ ∼= ρ⊗ ǫ yields thatǫ|IL has orderm dividing n, asγ acts trivially on the cyclotomic character.

Moreover, looking at any diagonal entry we getψxri = ψyrj · ǫ|IL for some exponentsx andy. Let r be

the least common multiple ofri andrj . Then we can rewrite the previous equation as

ψx̃r = ψỹr · ǫ|IL (3.1)

with 0 ≤ x̃ < ℓr−1
2n , sinceψr = ψ

ℓr−1
ℓri−1
ri and hencẽx = x ℓr−1

ℓri−1 <
ℓri−1
2n

ℓr−1
ℓri−1 = ℓr−1

2n . The same

estimate holds true for̃y.
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Furthermore, the knowledge of the order ofǫ|IL impliesǫ|IL = ψ
ℓr−1
m

b
r for some1 ≤ b ≤ m − 1

coprime tom. Note that this implies the estimates

ℓr − 1

n
≤
ℓr − 1

m
≤
ℓr − 1

m
b ≤

(m− 1)(ℓr − 1)

m
≤

(n− 1)(ℓr − 1)

n
.

But, sinceψr has orderℓr−1, Equation (3.1) implies that(ℓ
r−1)b
m

+ ỹ− x̃ is divisible byℓr−1, hence

we get a contradiction. Thusǫ|IL is trivial, as was to be shown.

4 Inner twists in compatible systems of Galois representations

In this section we aim to generalise the results of Section 2 to compatible systems of Galois representa-

tions. For a compatible systemρ• we will define number fieldsEρ• andKρ• such that almost all mem-

bersρλ and their projectivisationρprojλ can be defined over the completion atλ of Eρ• andKρ• , re-

spectively. The example of a non-CM newformf already used in Section 2 can serve as a guidance to

the reader. The fieldEρ• is thenQf = Q(ap | p prime , p ∤ N) andKρ• is Q(
a2p
ψ(p) | p prime , p ∤ N),

whereN is the level andψ the Dirichlet character off .

Definition 4.1. Letn ∈ N and letG := GF := Gal(F/F ) be the absolute Galois group of a number

field F . A compatible systemρ• = (ρλ)λ of n-dimensional representations ofGF consists of the

following data:

• A number fieldL.

• A finite setS of finite places ofF .

• For each finite placep of F not in S, a monic polynomialPp ∈ OL[X] (with OL the ring of

integers ofL).

• For each finite placeλ of L (together with fixed embeddingsL →֒ Lλ →֒ Lλ with Lλ the

completion ofL at λ andLλ an algebraic closure thereof) a continuous Galois representation

ρλ : GF → GLn(Lλ)

such thatρλ is unramified outsideS ∪ Sℓ (whereℓ is the residue characteristic ofλ andSℓ is

the set places ofF lying aboveℓ) and such that for allp 6∈ S ∪Sℓ the characteristic polynomial

of ρλ(Frobp) is equal toPp (equality insideLλ[X]).

We say that the compatible systemρ• = (ρλ)λ is symplecticif for all λ the representationρλ is of

the formGF → GSpn(Lλ). We say thatρ• = (ρλ)λ is almost everywhere (a. e.) symplecticif for all

but possibly finitely manyλ the representationρλ is of the formGF → GSpn(Lλ).

Let a ∈ Z andψ : GF → L× a continuous finite order character. We say that the compatible

systemρ• = (ρλ)λ hasdeterminantψχaℓ if for all placesλ ofL (say,λ lies over the rational primeℓ)

the determinant ofρλ is ψχaℓ with χℓ theℓ-adic cyclotomic character.
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We say that a symplectic compatible systemρ• = (ρλ)λ hasmultiplier mapψχaℓ if for all places

λ of L (say,λ lies over the rational primeℓ) the multiplier map ofρλ is ψχaℓ with χℓ the ℓ-adic

cyclotomic character. In the case of an almost everywhere symplectic compatible system, we only

insist on this property at those placesλ, where the representation is symplectic.

A compatible systemρ• = (ρλ)λ is calledalmost everywhere (a. e.) absolutely irreducibleif all

its membersρλ are absolutely irreducible except for finitely many placesλ of L.

For a placep ofF not inS, denote byap the coefficient in front ofXn−1 ofPp(X), i.e. the ‘trace’

(up to sign). For the sequel, assume Set-up 2.1 for some number field K, and assume thatL/K is a

finite Galois extension of number fields with Galois groupΓ. Note that, in this context,Γ, L andK

are all endowed with the discrete topology. Let

Gρ• := {(γ, ǫ) ∈ G | γ(ap) = ap · ǫ(Frobp) for all placesp of F not inS},

Γρ• := π(Gρ•) ⊆ Γ, ∆ρ• := {γ ∈ Γρ• | (γ, 1) ∈ Gρ•} andEρ• := ι−1(Gρ•) = ι−1(ker(π|Gρ•
)).

(Compare with Definition 2.3 and Lemma 2.7). We say that the compatible systemρ• hasno complex

multiplication if Eρ• = {1}.

LetKρ• := LΓρ• , called theprojective field of definition ofρ•, andEρ• := L∆ρ• , called thefield

of definition ofρ•. Note thatEρ• is generated overK by the set{ap | p place ofF not inS}.

Remark 4.2. Let ρ• be an a. e. symplectic compatible system ofn-dimensional Galois represent-

ations without complex multiplication, and letρλ ∈ ρ• be a symplectic member of the system.

Thenρλ has no complex multiplication. Indeed, ifǫ : GF → L
×
λ is an inner twist for[ρλ] ∈

GSp-Repsn(GF , Lλ/Kλ), thenm(ρλ) = m(ρλ ⊗ ǫ) = m(ρλ)ǫ
2, henceǫ : GF → L

×
λ is at most

quadratic. Therefore we may view it as a characterǫ : GF → L×, and it satisfiesap = ap · ǫ(Frobp)

(equality inL) for all p 6∈ S. Thusǫ ∈ Eρ• = 1 becauseρ• has no complex multiplication. This

implies thatρλ does not have complex multiplication.

Let ρ• = (ρλ)λ be an a. e. absolutely irreducible compatible system. For a placeλ of L we can

consider Set-up 2.1 for the Galois extensionLλ/Kλ. If ρλ ∈ ρ• is residually absolutely irreducible

(and symplectic), by Proposition 2.5(c) (Proposition 2.5(d) and Remark 4.2) the equivalence class

of ρλ contains a member that is defined overLλ. Thus we can consider Set-up 2.1 for the Galois

extensionLλ/Kλ. In this case we will use the notationΓλ := Gal(Lλ/Kλ) (denoting the prime ofK

belowλ also byλ), andEλ := {ǫ : GF → L×
λ character} andGλ := Eλ ⋊ Γλ. In this setting, apply

Definition 2.3 with[ρλ], so that, in particular,G[ρλ] is the stabiliser subgroup insideGλ of [ρλ].

We start with the analog of Proposition 2.17 for compatible systems ofℓ-adic Galois representa-

tions; our main focus below will be to obtain results about their residual representations.

Proposition 4.3. Letρ• be an a. e. absolutely irreducible compatible system ofn-dimensional Galois

representations as in Definition 4.1. Ifρ• is a. e. symplectic, assume that the multiplier ofρ• is ψχaℓ
and thatρ• has no complex multiplication. Ifρ• is not a. e. symplectic, assume that the determinant

of ρ• isψχaℓ and thatEρ• contains then-th roots of the values ofψ.
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(a) ∆ρ• is a normal subgroup ofΓρ• and, hence,Eρ•/Kρ• is a Galois extension with Galois group

Γρ•/∆ρ• . In particular, the fieldγ(Eρ•) = Eρ• for all γ ∈ Γρ• .

(b) For each placeλ of L such thatρλ is residually absolutely irreducible (and symplectic ifρ• is

a. e. symplectic), the equivalence class[ρλ] contains a representation that can be defined over the

field (Eρ•)λ and(Eρ•)λ is the smallest such field.

Proof. (a) First of all, note that, ifρ• is a. e. symplectic, thenEρ• contains the values ofψ. Indeed,

for all δ ∈ ∆ρ• , for all placesλ of L fixed by δ and all placesp of F outsideS ∪ Sℓ (whereℓ

is the residue characteristic ofλ), we have thatTr(ρλ(Frobp)) = ap = δ(ap) = Tr(δρλ(Frobp)).

Here by abuse of notation we denote byδ any extension ofδ to Lλ. Suppose thatρλ is absolutely

irreducible and symplectic. Then by Remark 4.2ρλ does not have complex multiplication. Moreover,

by Chebotarev’s Density Theorem and Proposition 2.5 (b),ρλ andδρλ are equivalent as symplectic

representations. Henceδ(m(ρλ)) = m(δρλ) = m(ρλ) for all except possibly finitely many places

λ ∈ L. Since the multiplier ofρ• is ψχaℓ , we obtain that the values ofψ are fixed byδ, thus they lie

in Eρ• .

This allows us to compute(γǫ)(δ, 1)(γ, ǫ)−1 = (γδγ−1, 1) ∈ G• as in Proposition 2.17 (a) for all

γ ∈ Γρ• andδ ∈ ∆ρ• , which shows thatγδγ−1 ∈ Eρ• .

(b) Letλ be a place ofL such thatρλ is residually absolutely irreducible (and symplectic ifρ• is

a. e. symplectic). For allp 6∈ S∪Sℓ (whereℓ is the residue characteristic ofλ), the trace ofρλ(Frobp)

is fixed by all elements of∆ρ• that fix λ, whence it belongs to(Eρ•)λ, and we saw above that the

multiplier of ρλ takes values in(Eρ•)λ when ρ• is a. e. symplectic. Using Chebotarev’s density

theorem and Proposition 2.5 (c) and (d), we see thatρλ can be defined over(Eρ•)λ.

SinceEρ• is generated by the{ap | p 6∈ S}, it is clear that[ρλ] cannot contain a member which is

defined over a subfield smaller than(Eρ•)λ.

We will next see that, whenρλ is residually absolutely irreducible, the projective fieldof definition

of [ρλ] of Definition 2.3 is just the completion atλ of the projective field of definition of the compatible

system.

Lemma 4.4. Let ρ• = (ρλ)λ be ann-dimensional a. e. absolutely irreducible compatible system as

in Definition 4.1. Letψ : GF → L× be a character of finite order. Ifρ• is a. e. symplectic, assume

thatρ• has no complex multiplication and that the multiplier ofρ• isψχaℓ . If ρ• is not a. e. symplectic,

assume thatL contains then-th roots of the values ofψ and that the determinant ofρ• isψχaℓ . Letλ be

a place ofL such thatρλ is residually absolutely irreducible (and symplectic ifρ• is a. e. symplectic).

Then we have

Γ[ρλ] = Γλ ∩ Γρ• ,

where the intersection is taken insideΓ via the embeddingΓλ →֒ Γ coming from the embedding

L →֒ Lλ.
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Proof. We use Lemma 2.7. The inclusion ‘⊇’ is clear. Conversely, letγ ∈ Γ[ρλ]; in particular,γ ∈ Γλ.

There is a characterǫ ∈ Eλ such that(γ, ǫ) ∈ G[ρλ], i.e. thatγ(ap) = ap · ǫ(Frobp) for all p 6∈ S ∪ Sℓ.

Lemma 2.8 implies thatǫ can be lifted to an element ofE , i.e. taking values inL×. The equation

γ(ap) = ap · ǫ(Frobp) for all p 6∈ S ∪Sℓ is now an equation in the fieldL, implying (γ, ǫ) ∈ Gρ• .

The following theorem is our main result about projective fields of definition of compatible sys-

tems ofℓ-adic representations.

Theorem 4.5. Letρ• = (ρλ)λ be ann-dimensional a. e. absolutely irreducible compatible system as

in Definition 4.1. Letψ : GF → L× be a character of finite order. Ifρ• is a. e. symplectic, assume

thatρ• has no complex multiplication and that the multiplier ofρ• isψχaℓ . If ρ• is not a. e. symplectic,

assume thatL contains then-th roots of the values ofψ and that the determinant ofρ• is ψχaℓ .

Then for each placeλ of L such thatρλ is residually absolutely irreducible (and symplectic ifρ•
is a. e. symplectic), the projective field of definition of[ρλ] is (Kρ•)λ, the completion ofKρ• at the

prime lying belowλ.

Proof. By Lemma 4.4, we haveK[ρλ] = L
Γ[ρλ]

λ = L
Γλ∩Γρ•

λ = (LΓρ• )λ = (Kρ•)λ.

Given a compatible systemρ• = (ρλ)λ we will now consider the residual representationsρλ
(see Remark 2.2). IfM is a local field, we denote byκ(M) its residue field. Letλ be a finite

place ofL and assumeρλ is defined overLλ (which is the case wheneverρλ is residually absolutely

irreducible (and symplectic without complex multiplication)). Consider Set-up 2.1 for the Galois

extensionκ(Lλ)/κ(Kλ) with Galois groupΓλ, using the notationEλ andGλ. We apply Definition 2.3

to the equivalence class[ρλ] of the residual representation, using the notationG[ρλ]
⊆ Gλ, E[ρλ] ⊆ Eλ

andΓ[ρλ]
⊆ Γλ.

We now state and prove our principal result describing the projective fields of definition for almost

all residual representations of a compatible system. It maybe useful to roughly summarise where the

various conditions in the theorem come from. Thatψ has finite order is needed to ensure that allǫ

occuring in inner twists are of finite order; the condition onthen-th roots of the values ofψ in the

non-symplectic case ensures thatǫ takes its values inEρ• (which is automatic in the symplectic case).

The absolute irreducibility and the non-CM condition (in the symplectic case) are needed to ensure

that the representations are determined by the characteristic polynomials of Frobenius. The condition

on the shape aboveℓ is needed to exclude that the residual inner twists ramify atℓ (if infinitely many

of them did ramify, then they would not ‘glue’ to an inner twist of the compatible system).

Theorem 4.6. Letρ• = (ρλ)λ be ann-dimensional a. e. absolutely irreducible compatible system as

in Definition 4.1. Letψ : GF → L× be a character of finite order. Ifρ• is a. e. symplectic, assume

thatρ• has no complex multiplication and that the multiplier ofρ• isψχaℓ . If ρ• is not a. e. symplectic,

assume thatL contains then-th roots of the values ofψ and that the determinant ofρ• is ψχaℓ .

Assume that for primesL of F lying over the residue characteristic ofλ, the representationρλ
satisfies Assumption 3.2 (this is automatic ifFL = Qℓ). Moreover, assume that there is an integerk,

independent ofλ, such that the numbersai,j appearing in Assumption 3.2 are bounded byk.
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Then for all placesλ ofL at whichρλ is residually absolutely irreducible, except possibly finitely

many, the projective field of definition of[ρλ] is κ((Kρ•)λ).

Proof. We may restrict to thoseλ of residual characteristicℓ satisfying ℓ−1
2n > k (cf. Proposition 3.3),

and symplectic without complex multiplication ifρ• is a. e. symplectic. We may furthermore limit

ourselves toλ such thatλ is unramified inL/K.

Let (γ, ǫ) ∈ G[ρλ]
be an inner twist of[ρλ]. We identifyǫwith its lift to an element ofE of the same

order (with respect to the fixedL →֒ Lλ) andΓλ = Gal(Lλ/Kλ) with Γλ = Gal(κ(Lλ)/κ(Kλ)),

so thatG[ρλ] ⊆ G[ρλ]
. By Lemma 2.8 we know that the order ofǫ is bounded independently ofλ.

Moreover, by Proposition 3.3,ǫ is unramified outsideS. Let E0 be the finite subset ofE consisting of

those characters meeting these two requirements. Hence,G0 := E0 ⋊ Γ is a finite subgroup ofG and

G[ρλ] andG[ρλ]
are subgroups.

Now consider(γ, ǫ) ∈ G0. Assume that(γ, ǫ) ∈ G[ρλ]
for infinitely manyλ. Then for all placesp

of F not inS and each of theseλ (except those above the residue characteristic ofp), we have

γ(ap) ≡ ap · ǫ(Frobp) (mod λ).

Consequently, we have equalityγ(ap) = ap · ǫ(Frobp), whence(γ, ǫ) ∈ G[ρλ]. This means that

avoiding also those finitely manyλ such that a(γ, ǫ) ∈ G0\G[ρλ] is inG[ρλ]
, we haveG[ρλ] = G[ρλ]

, thus

κ(K[ρλ]) = K[ρλ]
. Sinceρλ is residually absolutely irreducible, Theorem 4.5 yieldsK[ρλ] = (Kρ•)λ,

which proves the theorem.

5 Application to compatible systems with huge residual images

In this section we make use of Theorem 4.6 to prove a first result that allows us to (almost) determine

the projective image of the residual representationρλ, (except for finitely manyλ), for a compatible

systemρ• = (ρλ) satisfying suitable conditions.

Let V be ann-dimensionalK-vector space endowed with a symplectic pairing. Recall that an

elementτ ∈ GL(V ) is a nontrivialtransvectionif τ − idV has rank1, i.e. if τ fixes a hyperplane

pointwisely and there is a lineU such thatτ(v) − v ∈ U for all v ∈ V . Any transvection has

determinant1. A symplectic transvectionis a transvection inSp(V ). Any symplectic transvection has

the form

Tv[λ] ∈ Sp(V ) : u 7→ u+ λ〈u, v〉v

with direction vectorv ∈ V andparameterλ ∈ K (cf. [Art57], p. 137-138).

Definition 5.1. LetL be an algebraically closed field, andG a subgroup ofGSpn(L). We will say

thatG is hugeif the subgroup ofG generated by the transvections contained inG is conjugated (in

GSpn(L)) to Spn(K) for some subfieldK ⊆ L.

LetK be an algebraic closure ofK.
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Remark 5.2. WhenK is a finite field of characteristicℓ, a subgroupG ⊆ GSpn(K) is huge if

and only if it contains a subgroup conjugated (inGSpn(K)) to Spn(Fℓ). This result is proved in

Part II [AdDW13] of the present series of papers.

The main ingredient will be the following group-theoretic result:

Proposition 5.3. LetK be a finite field of characteristic different from2, andG ⊆ GSpn(K) be a

group such that the group generated by the transvections inG is Spn(K). ThenG ⊆ GSpn(K)K
×

.

To prove this proposition, first note the following easy fact:

Lemma 5.4. LetG ⊆ GSpn(K) be a group such that the group generated by the transvectionsin G

is Spn(K). ThenG is contained in the normaliser ofSpn(K) in GSpn(K).

Proof. Let A ∈ G be any element, say with multiplierα. To see that it belongs to the normaliser

NGSpn(K)(Spn(K)), it suffices to see that, for all transvectionT = Tv[λ] ∈ Spn(K), ATA−1 ∈

Spn(K). An easy computation shows that, for allw ∈ V ,

ATv[λ]A
−1(w) = A(A−1w + λ〈A−1w, v〉Av) = w + λ〈A−1w, v〉Av =

w + λα〈w,Av〉Av = TAv[λα].

But TAv[λ] is a transvection and belongs toG, so it belongs toSpn(K), as was to be shown.

So, in order to obtain Proposition 5.3, all we need is to provethe following proposition.

Proposition 5.5. LetK be a finite field of characteristic different from2. ThenNGSpn(K)(Spn(K)) ⊆

GSpn(K)K
×

.

We will make use of an auxiliary lemma:

Lemma 5.6. LetK be field of characteristic different from2. The group of automorphisms ofSpn(K)

is generated by two subgroups, as described below:

• The group of automorphismsΦ such that: for allB ∈ Spn(K), Φ(B) = ABA−1, where

A ∈ GSpn(K) (semi-inner automorphisms).

• The group of automorphismsΦ such that there existsφ : K → K field automorphism such that,

for all B ∈ Spn(K), Φ(B) is the matrix with entries obtained by applyingφ to the entries ofB

(field automorphisms).

Proof. This follows from the main Theorem of [Hua48], page 740.

Proof of Proposition 5.5.Denote byN the normaliser ofSpn(K) in GSpn(K), and consider also

the centraliserC = CGSpn(K)Spn(K), that is, the elementsA ∈ GSpn(K) such that, for allB ∈

Spn(K), A−1BA = B.
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First, note that we can viewN/C in a natural way as a subgroup ofAut(Spn(K)): namely, given

A ∈ N , it defines an automorphism ofSpn(K) by conjugation, and the kernel of the homomorphism

N → Aut(Spn(K)) is obviouslyC. Let us callÑ the image ofN in the automorphism group.

We know thatÑ is a subgroup ofAut(Spn(K)). By Lemma 5.6, we know that the group of

automorphisms is generated by two subgroups, one consisting of the semi-inner automorphisms and

one consisting of the field automorphisms. But no automorphism ofÑ can be a field automorphism.

This is proved in [KLS08], page 548, inside of the proof of Corollary 2.6; namely, the reasoning is

that any automorphism of the shapeB 7→ A−1BA must respect the trace. But there is always an

elementB ∈ Sp2n(K) such that no field automorphism preserves the trace ofB.

On the other hand, all semi-inner automorphisms belong toÑ . From here we can conclude that

the semi-inner automorphisms are precisely those belonging to Ñ . Indeed, note that the composition

of a field automorphism with a semi-inner automorphism coincides with the composition of a semi-

inner automorphism with a field automorphism, so each automorphism can be written as a product of

a semi-inner one and a field one, and then we would get that ifÑ contains an automorphism which

is not semi-inner, it contains an automorphism which is a field automorphism. Therefore the group

Ñ coincides with the group of semi-inner automorphisms. Thatis to say, for any matrixA ∈ N ,

there exists a matrixA1 ∈ GSpn(K) such that the automorphismB 7→ A−1BA coincides with

the automorphismA−1
1 BA1. That is to say, for allB ∈ Spn(K), (A1A

−1)−1B(A1A
−1) = B.

Equivalently,A1A
−1 ∈ C.

But, in our situation,C = K
×
{Id}. One sees this by considering a basis ofV consisting of

directions of transvections inSpn(K), sayTv1 [λ1], . . . , Tvn [λn]. Assume thatB ∈ C. Then, for all

i = 1, . . . , n, B−1Tvi [λ]B = Tvi [λ]. But B−1Tvi [λ]B = TBvi [λβ
−1] (whereβ is the multiplier

of B), henceB must fix all 〈vi〉. Repeating the same reasoning with transvections with directions

v1 + v2, . . . , v1 + vn, one sees thatB must be a homothety.

HenceN = GSp2n(K)K
×

.

As a consequence of Proposition 5.3, we obtain the following.

Corollary 5.7. LetK be a finite field of characteristic different from2, andG ⊆ GSpn(K) be a

group such that the group generated by the transvections inG is Spn(K). Then the image ofG under

the projectionGSpn(K) → PGSpn(K) is eitherPSpn(K) or PGSpn(K).

Corollary 5.8. Letρ• = (ρλ)λ be ann-dimensional a. e. absolutely irreducible and a. e. symplectic

compatible system as in Definition 4.1. Letψ : GF → L× be a character of finite order. Assume that

the multiplier ofρ• isψχaℓ .

Assume, moreover, that for all but possibly a density zero set of placesλ ofL the residual repres-

entationρλ has huge image.

Assume that for primesL of F lying over the residue characteristic ofλ, the representationρλ
satisfies Assumption 3.2 (this is automatic ifFL = Qℓ). Moreover, assume that there is an integerk,

independent ofλ, such that the numbersai,j appearing in Assumption 3.2 are bounded byk.
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Then for all placesλ of L with the possible exception of a density zero set, the image of ρprojλ is

PGSpn(κ((Kρ•)λ)) or PSpn(κ((Kρ•)λ)).

Proof. Let λ be a place ofL such that the image ofρλ is symplectic and huge. Then the restriction of

ρλ to I[ρλ] (see Proposition 2.14) is absolutely irreducible and Theorems 2.15 and 4.6 show thatρprojλ

can be defined overκ((Kρ•)λ) and that this field is the smallest one with this property.

Now, because of Corollary 5.7, we know that there exists a fieldK ′ ⊆ K such that the image of

ρprojλ is conjugated toPSpn(K
′) orPGSpn(K

′) wheneverρλ has huge image. In particularρprojλ can

be defined overK ′, and this is the smallest field with this property. HenceK ′ = κ((Kρ•)λ), and the

statement follows.

6 Application to the inverse Galois problem

In this section we generalise results of [DW11] by proving that compatible systems with certain local

properties and the global assumption that all (but a densityzero set) residual images are huge lead

to the realisation ofPSpn(Fℓd) or PGSpn(Fℓd) as Galois groups overQ for certain fixedd and a

positive density set of primesℓ. In Part II [AdDW13] we replace the residual huge image assumption

by weaker local assumptions and in Part III [AdDSW13] we prove the existence of such compatible

systems. Some of the ideas in this section are taken from [KLS08], where the terminology of(n, p)-

groups is used.

Definition 6.1. Letρ• = (ρλ)λ be ann-dimensional a. e. symplectic compatible system as in Defini-

tion 4.1. Letq ∈ S be a place ofF that is totally split overQ and does not divide2n. Denote byq the

rational prime underq. Letδ : GQqn
→ L× be a tame symplectic character of degreen and order2p

as in Section 3.1 of [KLS08] (where it is denotedχ) for an odd primep such that the order ofq in F×
p

is equal ton (note that, in particular,n | (p− 1)).

We say that the compatible systemρ• is maximally induced atq of orderp if for eachλ not aboveq

the restriction ofρλ to a decomposition group atq is equivalent toInd
GQq

GQqn
(δ)⊗ α (where we viewδ

as taking its values inLλ viaL →֒ Lλ) with an unramified characterα : GQq → L
×
λ .

The definition is made precisely in such a way in order to ensure thatInd
GQq

GQqn
(δ) is symplectic and

irreducible. We refer to [KLS08] for more details (see also Part II [AdDW13]). Note moreover that

the maximally induced place ensures thatρλ is absolutely irreducible for almost allλ. The existence

of δ is a result of local class field theory.

Lemma 6.2. Let p and q be primes such that the order ofq in F×
p is equal ton. Let ζp ∈ Q be a

primitive p-th root of unity. Then the elementξp :=
∑n−1

i=0 ζ
qi

p has degreep−1
n

overQ.

Proof. See the paragraph above Proposition 2.16 of Chapter 2 of [Was82].

Note that the elementξp from Lemma 6.2 is the trace of an element in the image ofInd
GQq

GQqn
(δ).
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Lemma 6.3. Let ρ• = (ρλ)λ be ann-dimensional a. e. absolutely irreducible a. e. symplecticcom-

patible system as in Definition 4.1. Letψ : GF → L× be a character of finite orderm. Assume that

ρ• has no complex multiplication and that the multiplier ofρ• is ψχaℓ . Assume also that there is a

placeq ∈ S such thatρ• is maximally induced atq of orderp.

Thenξp :=
∑q−1

i=0 ζ
qi

p is an element ofKρ• .

Proof. Let λ be a place ofL not aboveq (the prime belowq), such thatρλ is absolutely irreducible

and symplectic. Let us take any(γ, ǫ) ∈ G[ρλ] so thatγρλ ∼ ρλ ⊗ ǫ. We first want to prove that

γ(ξp) = ξp.

There is an elementσ0 ∈ Iq (the inertia group atq) such thatγρλ(σ0) and (ρλ ⊗ ǫ)(σ0) are

conjugated to




γ(ζp)

γ(ζp)
q

. . .

γ(ζp)
qn−1




andǫ(σ0)




ζp

ζqp
. . .

ζq
n−1

p



, (6.2)

respectively. Sinceζpζ
q
p · · · · · ζq

n−1
p = 1, from the equality of the determinants of the matrices in

(6.2) we getǫ(σ0)n = 1. But, ǫ(σ0) is also ap-th root of unity (comparing the eigenvalues of the two

matrices), whenceǫ(σ0) = 1, as(n, p) = 1. We then getγ(ζp) = ζq
i

p for some0 ≤ i ≤ n − 1, and

thereforeγ(ξp) = ζq
i

p + · · · + ζq
i(n−1)

p = ζp + · · ·+ ζq
n−1

p = ξp.

Hence, we have establishedξp ∈ K[ρλ]. But, since this holds for almost allλ, we conclude from

Theorem 4.5 (using that, due to the presence of the maximallyinduced place, the residual representa-

tion ρλ is absolutely irreducible for almost allλ) thatξp lies inKρ• .

Finally we will make use of the following proposition:

Proposition 6.4(Prop. 7.2 of [DW11]). LetL/Q be a finite field extension which contains a cyclic

extensionM/Q of degreed. Then the set of primesℓ such that there is an idealλ in OL of residue

degreed has a positive density.

The following is our main result in this part about the application to the inverse Galois problem.

Theorem 6.5. Let ρ• = (ρλ)λ be ann-dimensional a. e. symplectic compatible system as in Defini-

tion 4.1 withK = Q. Letψ : GF → L× be a character of finite order. Assume that the multiplier of

ρ• is ψχaℓ .

Assume, moreover, that for all but a density zero set of places λ of L the residual representation

ρλ has huge image.

Assume that for primesL of F lying over the residue characteristic ofλ, the representationρλ
satisfies Assumption 3.2 (this is automatic ifFL = Qℓ). Moreover, assume that there is an integerk,

independent ofλ, such that the numbersai,j appearing in Assumption 3.2 are bounded byk.

Assume also that there is a placeq ∈ S such thatρ• is maximally induced atq of orderp.
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Then for anyd | p−1
n

there exists a setLd of rational primesℓ of positive density such that for all

ℓ ∈ Ld there is a placeλ ofL aboveℓ satisfying that the image ofρprojλ isPGSpn(Fℓd) or PSpn(Fℓd).

Proof. Let ξp :=
∑q−1

i=0 ζ
qi

p . By Lemma 6.2 we know thatξp has degreep−1
n

overQ and by Lemma 6.3

we also know thatξp lies inKρ• . Consequently,Kρ• contains a cyclic extensionM/Q of degreed.

The theorem is now just a combination of Proposition 6.4 and Corollary 5.8.

References

[AdDSW13] Sara Arias-de-Reyna, Luis Dieulefait, Sug Woo Shin, and Gabor Wiese,Compatible

systems of symplectic Galois representations and the inverse Galois problem III. Auto-

morphic construction of compatible systems with suitable local properties, Preprint

(2013).

[AdDW13] Sara Arias-de-Reyna, Luis Dieulefait, and Gabor Wiese,Compatible systems of sym-

plectic Galois representations and the inverse Galois problem II. Transvections and

huge image, Preprint, arXiv:1203.6552 (2013).

[Art57] E. Artin, Geometric algebra, Interscience Publishers, Inc., New York-London, 1957.

[Car94] Henri Carayol,Formes modulaires et représentations galoisiennes à valeurs dans un

anneau local complet, p-adic monodromy and the Birch and Swinnerton-Dyer conjec-

ture (Boston, MA, 1991), Contemp. Math., vol. 165, Amer. Math. Soc., Providence, RI,

1994, pp. 213–237.

[CR62] Charles W. Curtis and Irving Reiner,Representation theory of finite groups and associ-

ative algebras, John Wiley & Sons Inc., New York, 1962.

[CR81] , Methods of representation theory. Vol. I, John Wiley & Sons Inc., New York,

1981, With applications to finite groups and orders, Pure andApplied Mathematics, A

Wiley-Interscience Publication.

[DW11] Luis Dieulefait and Gabor Wiese,On modular forms and the inverse Galois problem,

Trans. Amer. Math. Soc.363(2011), no. 9, 4569–4584.

[Hua48] Loo-Keng Hua,On the automorphisms of the symplectic group over any field, Ann. of

Math. (2)49 (1948), 739–759.

[KLS08] Chandrashekhar Khare, Michael Larsen, and Gordan Savin, Functoriality and the in-

verse Galois problem, Compos. Math.144(2008), no. 3, 541–564.

[Maz97] Barry Mazur,An introduction to the deformation theory of Galois representations, Mod-

ular forms and Fermat’s last theorem (Boston, MA, 1995), Springer, New York, 1997,

pp. 243–311.

23



[Pin98] Richard Pink,Compact subgroups of linear algebraic groups, J. Algebra206 (1998),

no. 2, 438–504.

[Rib85] Kenneth A. Ribet,On l-adic representations attached to modular forms. II, Glasgow

Math. J.27 (1985), 185–194.

[Ser98] Jean-Pierre Serre,Abelian l-adic representations and elliptic curves, Research Notes

in Mathematics, vol. 7, A K Peters Ltd., Wellesley, MA, 1998,With the collaboration

of Willem Kuyk and John Labute, Revised reprint of the 1968 original. MR 1484415

(98g:11066)

[Ski09] Christopher Skinner,A note on thep-adic Galois representations attached to Hilbert

modular forms, Documenta Math.14 (2009), 241–258.

[Was82] Lawrence C. Washington,Introduction to cyclotomic fields, Graduate Texts in Mathem-

atics, vol. 83, Springer-Verlag, New York, 1982.

24


	1 Introduction
	2 Inner twists of a group representation
	3 Inner twists of a Galois representation
	4 Inner twists in compatible systems of Galois representations
	5 Application to compatible systems with huge residual images
	6 Application to the inverse Galois problem

