
On the controllability of a free-boundary problem for the

1D heat equation

E. Fernández-Cara∗, J. Limaco†, S. B. de Menezes‡

Abstract

This paper deals with the local null control of a free-boundary problem for the classical

1D heat equation with distributed controls, locally supported in space. In the main result we

prove that, if the final time T is fixed and the initial state is sufficiently small, there exist

controls that drive the state exactly to rest at time t = T .
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1 Introduction. The main result

Assume that L0 > 0, T > 0, 0 < a < b < L∗ < L0 and y0 ∈ L∞(0, L0) are given. In this paper, we

consider free-boundary problems of the following kind:

Find L ∈ C1([0, T ]) with L(t) > 0 for all t and a function y = y(x, t) such that

L(0) = L0, (1)
yt − yxx = v1ω, (x, t) ∈ QL,

y(0, t) = 0, y(L(t), t) = 0, t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, L0)

(2)

and, moreover,

yx(L(t), t) = −L′(t), t ∈ (0, T ). (3)

Here, we have used the notation

QL = { (x, t) : x ∈ (0, L(t)), t ∈ (0, T ) }, ω = (a, b);

∗Dpto. E.D.A.N., Universidad de Sevilla, Aptdo. 1160, 41080 Sevilla, Spain, cara@us.es. Partially supported by

grant MTM2013-41286-P (DGI-MINECO, Spain) and CAPES (Brazil)
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as usual, 1ω denotes the characteristic function of ω.

In (1)–(3), v is a control and (L, y) is an associated state. Recall that, for any y0 ∈ H1
0 (0, L0)

and v ∈ L2(ω × (0, T )), there exists at least one local in time solution to (2)–(3). In other words,

there exist T∗ ∈ (0, T ] and a couple (L, y) with
L ∈ C1([0, T∗)), L(t) ≥ L∗ in [0, T∗),

y, yx, yxx, yt ∈ L2(Q∗L), with Q∗L := { (x, t) : x ∈ (0, L(t)), t ∈ (0, T∗) },
L(0) = L0, y(x, 0) = y0(x) in (0, L0),

such that the PDE in (2) is satisfied in Q∗L in the distributional sense and the boundary conditions

and (3) are fulfilled in (0, T∗). Furthermore, either T∗ = T , or at least one of the following identities

hold:

lim
t→T−∗

L(t) = b or lim
t→T−∗

|L′(t)| = +∞.

This is established in [7]; see also [16].

Free-boundary problems similar to (1)–(3) are motivated by many different applications:

• Solidification processes and, in particular, the so called Stefan problem, see [11, 12].

• The analysis and computation of free surface flows, see [18, 22, 25].

• Fluid-solid interaction, see [3, 21, 24].

• Gas flow through porous media, see [1, 6, 23].

• Tumor growth and other problems from mathematical biology, see [13, 14], etc.

Note that, for a fixed control v, (1) and (2) are not enough to identify the state (L, y). We need

an additional information and this is furnished by (3). In many of these areas, this condition is

completely natural. For instance, in tumor growth modelling, y can be viewed as a pressure (cells

are pushed towards the low density regions) and (3) says that, on the moving tumor boundary,

the growth speed is proportional to the pressure gradient. Of course, this is a version of the well

known Darcy’s law for porous media.

The main goal in this paper is to analyze the null controllability of (1)–(3). By definition,

it will be said that (1)–(3) is null-controllable if, for any y0 ∈ H1
0 (0, L0), there exist a control

v ∈ L2(ω × (0, T )), a function L ∈ C1([0, T ]) and an associated solution y = y(x, t) satisfying (1)–

(3) and

y(x, T ) = 0, x ∈ (0, L(T )). (4)

Notice that, if L and (v, y) solve (1)–(4) and (for instance) y(· , T ) ∈ H2(0, L(T )), then L′(T ) =

0. Consequently, the null controllability of (1)–(3) is a useful property from the viewpoint of

control theory: roughly speaking, if it is fulfilled, we only have to “work” during a finite time

interval in order to get the desired behavior of the system.

The controllability of linear and nonlinear PDEs has been the objective of a lot of papers the last

years. In the context of the linear and semilinear heat equation, the main contributions have been
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obtained in [8, 20, 5, 15, 10, 4]. On the other hand, to our knowledge, for parabolic free-boundary

problems, controllability questions have not been considered in depth; see however [2, 17].

In the sequel, C denotes a generic positive constant; C0, C1, etc. are other positive (specific)

constants; when it makes sense, the extension by zero in space of any function f is denoted by f∗.

The main result in this paper is the following:

Theorem 1.1 Let us assume that L0 > 0, T > 0 and 0 < a < b < L∗ < L0 < B are given. Then

(1)–(3) is locally null-controllable. More precisely, there exists ε > 0 such that, if y0 ∈ H1
0 (0, L0)

and ‖y0‖H1
0 (0,L0) ≤ ε, there exist L and (v, y), with

L ∈ C1([0, T ]), L∗ ≤ L(t) ≤ B, v ∈ L2(ω × (0, T )), y∗ ∈ C0([0, T ];H1
0 (0, B)),

that satisfy (1)–(3) and (4).

The plan of the proof is the following:

• First, we prove that there exists ε > 0 such that, whenever ‖y0‖H1
0 (0,L0) ≤ ε, for each β > 0

there exist uniformly bounded Lβ and (vβ , yβ) satisfying (1)–(3) and

‖yβ(· , T )‖L2(0,L(T )) ≤ β. (5)

This is achieved by solving an appropriate fixed point equation in a closed convex set M⊂
C1([0, T ]):

L = Λβ(L), L ∈M.

• Then, we take limits as β → 0. Thus, from the estimates deduced for Lβ and (vβ , yβ), we

see that, at least for a subsequence, we have

Lβ → L strongly in C1([0, T ]),

vβ → v weakly in L2(ω × (0, T )),

y∗β → y∗ strongly in C0([0, T ];H1
0 (0, B)),

where (v, y) is a control-state pair satisfying (1)–(3) and (4).

The rest of this paper is organized as follows.

In Section 2, we prove that, for any L ∈ C1([0, T ]) satisfying

L∗ ≤ L ≤ B, L(0) = L0, (6)

the linear system (2) is approximately and null-controllable. We also prove that the solutions

to (2) satisfy an additional regularity property. Section 3 is devoted to prove Theorem 1.1. In

Section 4, we present some additional comments and we give some indications on future work.

Finally, Section 5 is an Appendix where we sketch the proof of a Carleman estimate.
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2 Some controllability results for the classical heat equation

in a non-cylindrical domain

In this section, we assume that L0 > 0, T > 0 and 0 < a < b < L∗ < L0 < B are given.

We fix y0 ∈ H1
0 (0, L0) and we assume that L ∈ C1([0, T ]) is a prescribed function satisfying (6);

in particular, note that L(t) > b for all t ∈ [0, T ].

Throughout this paper, we will use the notation

NL := ‖L′‖∞, N0 := ‖y0‖H1
0 (0,L0). (7)

2.1 The problems and the results

Let us consider the linear system
yt − yxx = v1ω, (x, t) ∈ QL,

y(0, t) = 0, y(L(t), t) = 0, t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, L0).

(8)

For every v ∈ L2(ω× (0, T )) and every y0 ∈ H1
0 (0, L0), there exists exactly one solution to (8),

with

y, yx, yxx, yt ∈ L2(QL)

and, consequently,

y∗ ∈ C0([0, T ];H1
0 (0, B)).

Indeed, an appropriate change of variable allows to rewrite (8) as a similar problem for a parabolic

PDE of the form

zτ − zξξ + h(ξ, τ)zξ = w

in a cylindrical domain, with a bounded coefficient h and a square-integrable right hand side w;

see the precise definitions of ξ and τ below, after (21).

The following controllability result is satisfied by (8):

Theorem 2.1 For any y0 ∈ H1
0 (0, L0) and any β > 0 there exist pairs (vβ , yβ), with

vβ ∈ L2(ω × (0, T )), y∗β ∈ C0([0, T ];H1
0 (0, B)),

satisfying (8) and

‖yβ(· , T )‖L2(0,L(T )) ≤ β. (9)

Furthermore, vβ can be found such that

‖vβ‖L2(ω×(0,T )) ≤ C1‖y0‖H1
0 (0,L0), (10)

where C1 depends on NL, L∗, B, ω and T , but is independent of β.

An immediate consequence is the null controllability of (8):
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Corollary 2.1 For any y0 ∈ H1
0 (0, L0), there exist pairs (v, y), with

v ∈ L2(ω × (0, T )), y∗ ∈ C0([0, T ];H1
0 (0, B)),

satisfying (8) and (4). Furthermore, v can be found such that

‖v‖L2(ω×(0,T )) ≤ C1‖y0‖H1
0 (0,L0), (11)

where C1 only depends on NL, L∗, B, ω and T .

The proof of Theorem 2.1 follows rather standard arguments. The main tool is a global Carle-

man estimate for the solution to the adjoint system of (8), that is given by
− ϕt − ϕxx = g(x, t) (x, t) ∈ QL,

ϕ(0, t) = 0, ϕ(L(t), t) = 0, t ∈ (0, T ),

ϕ(x, T ) = ϕT (x), x ∈ (0, L(T )),

(12)

where g ∈ L2(QL) and ϕT ∈ L2(0, L(T )).

This will be established in the next section.

2.2 A Carleman estimate

In the sequel, we will denote by ΣL the lateral boundary of QL:

ΣL = { (x, t) : x = 0 or x = L(t), 0 < t < T }.

We begin with a simple result:

Lemma 2.1 Let ω0 be a non-empty open set with ω0 ⊂ ω. There exists a function α0 ∈ C1(QL)

with α0,xx ∈ C0(QL) such that
α0(x, t) = 0 ∀(x, t) ∈ ΣL,

|α0,x| > 0 in QL \ (ω0 × (0, T )) and

α0(x, t) = 1− x− b
L(t)− b

∀x ∈ (b, L(t)), ∀t ∈ [0, T ].

For the proof, it suffices to take (for instance)

α0(x, t) :=



x

a
, if 0 ≤ x < a,

1 + p

(
2(x− a)

b− a
,
b− a

2a

)
, if a ≤ x < a+ b

2
,

1 + p

(
2(b− x)

b− a
,

b− a
2(L(t)− b)

)
, if

a+ b

2
≤ x < b,

L(t)− x
L(t)− b

, if b ≤ x ≤ L(t),

where

p(w, z) := zw + (10− 6z)w3 + (8z − 15)w4 + (6− 3z)w5.
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In particular, notice that |α0,x| ≥ η in QL \ (ω0 × (0, T )), where

1

η
= max

{
a, max

0≤t≤T
(L(t)− b)

}
.

Let us introduce the weights ξ and α and the functions α1 and γ, with

ξ(x, t) :=
eλα1(x,t)

γ(t)
, α(x, t) :=

e2λ‖α1‖∞−eλα1(x,t)

γ(t)
, α1(x, t) :=α0(x, t)+1, γ(t) := tk(T−t)k,

where λ > 0 and k ≥ 2 are real numbers.

We will present now a Carleman estimate for the solution ϕ of the adjoint system (12). It is

inspired by the ideas in Fursikov-Imanovilov [15] and is contained in the following theorem:

Theorem 2.2 Let α0, α, γ and ξ be the functions defined above. There exist positive constants

λ0, s0 and C0, only depending on NL, L∗, B, ω and T , such that, for any s ≥ s0, any λ ≥ λ0,

any g ∈ L2(QL) and any ϕT ∈ L2(0, L(T )), one has∫∫
QL

e−2sα

[
(sξ)−1

(
|ϕt|2 + |ϕxx|2

)
+ λ2(sξ)|ϕx|2 + λ4(sξ)3|ϕ|2

]
dx dt

+

∫ T

0

e−2sα(L(t),t)λs ξ(L(t), t) |ϕx(L(t), t)|2 dt+

∫ T

0

e−2sα(0,t)λs ξ(0, t) |ϕx(0, t)|2 dt

≤ C0

(∫∫
QL

e−2sα |g|2 dx dt+

∫∫
ω×(0,T )

e−2sαλ4(sξ)3|ϕ|2 dx dt

)
,

(13)

where ϕ is the corresponding solution to (12).

The proof is given in the Appendix (see Section 5).

2.3 An observability inequality and the controllability properties of (8)

The first consequence of Theorem 2.2 is an observability inequality. We will consider the homoge-

neous adjoint system 
− ϕt − ϕxx = 0, (x, t) ∈ QL,

ϕ(0, t) = 0, ϕ(L(t), t) = 0, t ∈ (0, T ),

ϕ(x, T ) = ϕT (x), x ∈ (0, L(T )),

(14)

where ϕT ∈ L2(0, L(T )).

Proposition 2.1 There exists C2 > 0, only depending on NL, L∗, B, ω and T , such that, for any

ϕT ∈ L2(0, L(T )), the associated solution to (14) satisfies∫ L0

0

|ϕ(x, 0)|2 dx ≤ C2

∫∫
ω×(0,T )

|ϕ|2 dx dt. (15)

Proof: Let us take λ = λ0 and s = s0 in (13). Then∫∫
QL

e−2s0αξ3|ϕ|2 dx dt ≤ C
∫∫

ω×(0,T )

e−2s0αξ3|ϕ|2 dx dt

6
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and, consequently,∫ 3T/4

T/4

∫ L(t)

0

|ϕ|2 dx dt ≤ C
∫ 3T/4

T/4

∫ L(t)

0

e−2s0αξ3|ϕ|2 dx dt ≤ C
∫∫

ω×(0,T )

|ϕ|2 dx dt. (16)

On the other hand, by multiplying the PDE in (14) by ϕ and integrating in (0, L(t)), we get

the identities

−1

2

d

dt

(∫ L(t)

0

|ϕ|2 dx

)
+

1

2
L′(t) |ϕ(L(t), t)|2 +

∫ L(t)

0

|ϕx|2 dx = 0 ∀t ∈ (0, T ).

Since ϕ(L(t), t) ≡ 0, we deduce that

d

dt

(∫ L(t)

0

|ϕ(x, t)|2 dx

)
≥ 0

and, integrating in time, we deduce that∫ L(0)

0

|ϕ(x, 0)|2 dx ≤
∫ L(t)

0

|ϕ(x, t)|2 dx ∀t ∈ (0, T )

and
T

2

∫ L(0)

0

|ϕ(x, 0)|2 dx ≤
∫ 3T/4

T/4

∫ L(t)

0

|ϕ(x, t)|2 dx dt. (17)

From (16) and (17), we find (15) and the proof is done. 2

By duality, using classical arguments, it is not difficult to deduce from Proposition 2.1 the

controllability result in Theorem 2.1; see [5]. Thus, let y0 ∈ H1
0 (0, L0) and β > 0 be given and let

us introduce the function JL,β , with
JL,β(ϕT ) :=

1

2

∫∫
ω×(0,T )

|ϕ|2 dx dt+ β‖ϕT ‖L2(0,L(T )) + (ϕ(· , 0), y0)L2(0,L0)

∀ϕT ∈ L2(0, L(T )),

(18)

where, for each ϕT ∈ L2(0, L(T )), we have denoted by ϕ the unique solution to (14). Then, JL,β

possesses a unique minimizer ϕ̂Tβ and the “best” control is given by

vβ = ϕ̂β
∣∣
ω×(0,T )

,

where ϕ̂β is the solution to (14) associated to ϕ̂Tβ .

Furthermore, from the inequality JL,β(ϕ̂Tβ ) ≤ JL,β(0) = 0 and (15), we deduce that

1

2

∫∫
ω×(0,T )

|ϕ̂β |2 dx dt+ β‖ϕ̂Tβ ‖L2(0,L(T ))

≤ −(ϕ̂β(· , 0), y0)L2(0,L0)

≤ 1

4C2
‖ϕ̂β(· , 0)‖2L2(0,L0) + C2‖y0‖2L2(0,L0)

≤ 1

4

∫∫
ω×(0,T )

|ϕ̂β |2 dx dt+ C2‖y0‖2L2(0,L0)
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and, consequently,

‖vβ‖2L2(ω×(0,T )) ≤
∫∫

ω×(0,T )

|ϕ̂β |2 dx dt+ 2β‖ϕ̂Tβ ‖L2(0,L(T )) ≤ 4C2‖y0‖2L2(0,L0). (19)

This way, we find the estimates (10) and (11), where the constant C1 only depends on NL, L∗,

B, ω and T ; see for instance [15, 9] for more details.

2.4 A regularity property

Let (v, y) be a control-state pair furnished by Theorem 2.1 or Corollary 2.1 and let us introduce

the set

RL := QL ∩ { (x, t) : x > b′ },

where b < b′ < L∗. We will see in this section that, for some κ ∈ (0, 1/2] only depending on NL,

L∗, B, ω, T and N0, one has

y ∈ C1+κ,κ/2
x,t (RL), (20)

where C
1+κ,κ/2
x,t (RL) is the space of functions z ∈ C0(RL) that possess continuous partial derivatives

with respect to x in RL and satisfy

sup
(x,t),(x′,t′)∈RL

(
|z(x, t)− z(x′, t′)|
|x− x′|+ |t− t′|κ/2

+
|zx(x, t)− zx(x′, t′)|
|x− x′|κ + |t− t′|κ/2

)
< +∞.

Indeed, let δ > 0 be sufficiently small to have b < b′−δ < b′+δ < L∗. In view of Theorems 10.1

and 11.1 in [19], pp. 204–211, there exists κ ∈ (0, 1/2] depending on NL, L∗, B, ω, T and N0 such

that

y ∈ C1+κ,κ/2
x,t ([b′ − δ, b′ + δ]× [0, T ]). (21)

Let us now introduce the following change of variables in RL:

ξ =
1

L(t)− b′
(b′(L(t)− x) + L0(x− b′)) , τ = (L0 − b′)2

∫ t

0

1

(L(t)− b′)2
ds

and let us set z(ξ, τ) := y(x, t). Then, it is not difficult to see that z is well defined in the rectangle

R∗, where

R∗ := (b′, L0)× (0, SL), SL := (L0 − b′)2

∫ T

0

1

(L(t)− b′)2
ds

and, moreover, 
zτ − zξξ + h(ξ, τ)zξ = 0, (ξ, τ) ∈ R∗,

z(b′, τ) = y(b′, t), z(L0, τ) = 0, τ ∈ (0, SL),

z(ξ, 0) = y0(ξ), ξ ∈ (0, L0),

where h ∈ C0(R∗) and ‖h‖∞ is bounded by a constant only depending on NL, b′, L0 and T .

Consequently, taking again into account Theorems 10.1 and 11.1 in [19] and the facts that y

satisfies (21) and z(b′, τ) ≡ y(b′, t), we deduce that

z ∈ C1+κ,κ/2
ξ,τ (R∗),
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whence we get (20).

Now, let the function VL be given by

VL(t) := yx(L(t), t) ∀t ∈ [0, T ]. (22)

Obviously, VL ∈ Cκ([0, T ]). Furthermore, from the estimates in the proofs of Theorems 10.1

and 11.1 in [19], we also have

‖VL‖Cκ([0,T ]) ≤ C3‖y0‖∞, (23)

where C3 only depends on NL, L∗, B, ω, T and N0 and is non-decreasing with respect to NL

and N0.

3 Proof of the main result

We will first see that there exists ε > 0 such that, if N0 = ‖y0‖H1
0 (0,L0) ≤ ε, for any small β > 0,

there exist uniformly bounded Lβ ∈ C1([0, T ]) and control-pairs (vβ , yβ) satisfying (1)–(3) and (9).

To this purpose, we will use a fixed point argument.

Thus, let β > 0 and R > 0 be given, let us set

M := { ` ∈ C1([0, T ]) : L∗ ≤ ` ≤ B, `(0) = L0, N` := ‖`′‖∞ ≤ R }

and let us introduce the mapping Λβ :M 7→ C1([0, T ]), defined as follows: for each ` ∈M,

L = Λβ(`) if and only if L(t) = L0 −
∫ t

0

yx(`(s), s) ds ∀t ∈ [0, T ], (24)

where y is the solution to the linear system
yt − yxx = v1ω, (x, t) ∈ Q`,

y(0, t) = 0, y(`(t), t) = 0, t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, L0),

(25)

and v is the β-control of minimal norm in L2(ω × (0, T )) associated to `, i.e. the unique solution

to the following extremal problem:
Minimize

∫∫
ω×(0,T )

|v|2 dx dt

Subject to v ∈ L2(ω × (0, T )), (25), (9).

(26)

Let us see that, if N0 is small enough (depending on R but not on β), we can apply Schauder’s

Theorem to Λβ in M and deduce the existence of a fixed point.

Obviously, M is a non-empty bounded, closed, convex subset of C1([0, T ]). In view of Theo-

rem 2.1 and the strict convexity of the norm in L2(ω× (0, T )), (26) possesses exactly one solution

for each ` ∈M and the mapping Λβ is well-defined.

• Let us see that Λβ is continuous.
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Thus, let us assume that `n ∈ M for all n ≥ 1 and `n → ` in C1([0, T ]). Let us denote by

(vn, yn) the control-state pair associated to `n (vn is the solution to (26) for ` = `n and yn is the

corresponding state). Then, we know that

vn = ϕ̂n
∣∣
ω×(0,T )

,

where ϕ̂n is the solution to (14) for L = `n and ϕT = ϕ̂Tn , while ϕ̂Tn is the unique minimizer of

J`n,β (see (18) for the definition of this functional).

From (19), we see that ‖ϕ̂Tn‖L2(0,`(T )) is uniformly bounded. Consequently, at least for a

subsequence (again indexed by n), one has:

ϕ̂Tn → ϕ̂T weakly in L2(0, `(T )),

ϕ̂n → ϕ̂ strongly in L2(ω × (0, T )),

ϕ̂n(· , 0)→ ϕ̂(· , 0) strongly in L2(0, L0),

where ϕ̂ is the solution to (14) for L = ` and ϕT = ϕ̂T . In particular, this implies:

lim inf J`n,β(ϕ̂Tn ) ≥ J`,β(ϕ̂T ). (27)

Let us check that ϕ̂T is the unique minimizer of J`,β . This will prove that the whole sequence

{ϕ̂Tn} converges to ϕ̂T .

Thus, let ϕT ∈ L2(0, `(T )) be given and let the functions ϕTn ∈ L2(0, `n(T )) be such that their

extensions by zero converge strongly in L2(0, B) to the extension by zero of ϕT . Let us denote

by ϕn (resp. ϕ) the solution to (14) with L = `n and ϕT = ϕTn (resp. L = `). Then, it is clear that

ϕn → ϕ strongly in L2(ω × (0, T )) and ϕn(· , 0)→ ϕ(· , 0) strongly in L2(0, L0) and, consequently,

J`n,β(ϕTn )→ J`,β(ϕT ). (28)

A direct consequence of (27) and (28) is that

J`,β(ϕ̂T ) ≤ lim inf J`n,β(ϕ̂Tn ) ≤ lim inf J`n,β(ϕTn ) = J`,β(ϕT )

and, since ϕT is arbitrary, ϕ̂T minimizes J`,β in L2(0, `(T )).

An immediate consequence is that the controls vn converge strongly to the solution to (26).

Also, the states yn converges strongly (for instance in the L2 sense) to the associated state y.

Finally, from the estimates in Section 2.4, it becomes clear that ynx (`n(·), ·) → yx(`(·), ·) strongly

in C0([0, T ]) and Λβ(`n)→ Λβ(`) strongly in C1([0, T ]).

Hence, Λβ is continuous.

• The mapping Λβ is also compact. In fact, all the Λβ(`) with ` ∈M belong to a fixed compact

set of C1([0, T ]) (independent of β).

This can be seen as follows: in view of (24) and the estimates (23) (where VL is given by

(22) and C3 only depends on NL, L∗, B, ω, T and N0), the Λβ(`) belong to a fixed bounded set

of C1+κ([0, T ]) for some κ ∈ (0, 1/2] that is independent of `; this, together with the compactness

of the embedding C1+κ([0, T ]) ↪→ C1([0, T ]), allows to conclude.
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• Finally, let us see that, if N0 is small enough (uniformly with respect to β), Λβ mapsM into

itself. In fact, this is clear from (23): by construction, Λβ(`) ∈ C1([0, T ]) and Λβ(`)(0) = L0; we

also have

|Λβ(`)′(t)| = |yx(`(t), t)| ≤ C3‖y0‖∞ ≤ C4N0 and |Λβ(`)(t)− L0| ≤ C3T‖y0‖∞ ≤ C4TN0

for all t ∈ [0, T ], where C3 and C4 depend on R, L∗, B, ω, T and N0 and are non-decreasing with

respect to N0. Therefore, if we choose ε sufficiently small and N0 ≤ ε, we will have

N0 ≤ min

(
R

C4
,
B − L0

C4T
,
L0 − L∗
C4T

)
,

|Λβ(`)′(t)| ≤ R and L∗ ≤ Λβ(`)(t) ≤ B ∀t ∈ [0, T ],

whence the desired property Λβ(`) ∈M holds.

Let Lβ be a fixed point of Λβ for each β > 0. Then, it is clear that Lβ satisfies, together with

some vβ and yβ , (1)–(3) and (9). Moreover, Lβ and vβ are uniformly bounded in C1+κ([0, T ])

and L2(ω × (0, T )), respectively.

Consequently, our assertion is proved.

Now, at least for a subsequence, one has

Lβ → L strongly in C1([0, T ]) and vβ → v weakly in L2(ω × (0, T ))

as β → 0. Obviously, L satisfies (1). Also, it is clear that the unique solution to (2) satisfies (3)

and (4).

Hence, Theorem 1.1 is proved.

4 Some additional comments

In Theorem 1.1, we have established the null controllability of (1)–(3) with distributed controls,

locally supported in space. It is unknown whether a similar global controllability result holds.

Notice that the proof of such a result seems difficult: for general initial data in H1
0 (0, L0), even

when v ≡ 0, the existence of a global in time solution to the free-boundary problem (1)–(3) fails,

see [7].

To our knowledge, there are, at least, two other ways to prove Theorem 1.1 via a fixed point

argument:

• We can work directly with β = 0 and introduce other controls for (25) (not necessarily of

minimal norm in L2(ω× (0, T ))). A good candidate is the control furnished by the Fursikov-

Imanuvilov method, described in [15]. In this case, it can be proved that the mapping Λ0 is

continuous.
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• Alternatively, we can introduce a multi-valued mapping (assigning to each ` the whole family

of null-controls) and, then, apply Kakutani’s fixed point theorem.

On the other hand, it would be interesting to extend Theorem 1.1, at least, to the following

situations:

1. Free-boundary problems for semilinear parabolic PDEs with (Lipschitz-continuous) nonlinear

terms of the form 
yt − yxx + f(y, yx) = v1ω, (x, t) ∈ QL,

y(0, t) = 0, y(L(t), t) = 0, t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, L0),

yx(L(t), t) = −L′(t), t ∈ (0, T ),

2. Two-phase Stefan-like problems with the following structure:

yt − ayxx = v1ω, (x, t) ∈ QL,

zt − bzxx = 0, (x, t) ∈ DL,

y(0, t) = 0, y(L(t), t) = z(L(t), t) = 0, z(B, t) = 0, t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, L0),

z(x, 0) = z0(x), x ∈ (L0, B),

(ayx − bzx)(L(t), t) = −L′(t), t ∈ (0, T ),

where DL stands for the set

DL = { (x, t) : x ∈ (L(t), B), t ∈ (0, T ) }.

3. Radially symmetric and star-shaped systems, etc.

Some of these extensions will be considered in the next future.

Finally, let us mention that the exact controllability to the free trajectories of (1)–(3) is also a

challenging and very interesting question.

5 Appendix: proof of Theorem 2.2

Let us introduce ψ, with ϕ := esαψ. Then

ϕt = s αt e
sα ψ + esα ψt, ϕx = s αx e

sα ψ + esα ψx,

ϕxx = esα(ψxx + s2α2
x ψ + 2sαxψx + sαxxψ).

Taking into account that

αx = −ξx = −λα0,xξ, αxx = −λ2α2
0,xξ − λα0,xxξ,

αt = −k T − 2t

(T − t)k+1tk+1

(
e2λ‖α1‖∞−eλα1(x,t)

)
− λα0,tξ,
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we see that, for λ sufficiently large, one has:

|αx| ≤ Cλξ, |αxx| ≤ Cλ2ξ, |αt| ≤ Cξ1+1/k + Cλξ ≤ Cλξ3/2

(recall that k ≥ 2; also, note that, here and henceforth, λ and the constants C depend on NL).

We also have that ψ(x, 0) ≡ 0 in (0, L(0)) and ψ(x, T ) ≡ 0 in (0, L(T )).

In the new variable ψ, the PDE in (12) reads

(ψt + 2sαxψx) +
(
ψxx + s2α2

xψ
)

= −e−αg − sαxxψ − sαtψ.

Let us introduce the following notation: Uψ := ψt + 2sαxψx,

V ψ := ψxx + s2α2
xψ.

Then one has:

Uψ + V ψ = −e−αg − sαxxψ − sαtψ.

whence
‖Uψ‖2L2(QL) + ‖V ψ‖2L2(QL) + 2(Uψ, V ψ)L2(QL)

= ‖e−αg + sαxxψ + sαtψ‖2L2(QL)

≤ C
∫∫

QL

e−2α|g|2 dx dt+ C

∫∫
QL

λ4s2ξ3|ψ|2 dx dt.

(29)

After some computations, we see that

(Uψ, V ψ)L2(QL) = s

∫∫
QL

(−αxx)|ψx|2 dx dt

−
∫∫

QL

(
3s3α2

xαxx + 2s2αxαxt
)
|ψ|2 dx dt

+

∫ T

0

(
sαx(L(t), t)− 1

2
L′(t)

)
|ψx(L(t), t)|2 dt−

∫ T

0

sαx(0, t)|ψx(0, t)|2 dt.

Note that

−α2
xαxx = λ4|α0,x|4ξ3 + λ3|α0,x|2α0,xxξ

3 ≥ Cλ4ξ3 − Cλ3ξ3 in QL \ (ω0 × (0, T )).

On the other hand,

αx(L(t), t) ≥ C > 0 and − αx(0, t) ≥ C > 0 in (0, T ).

Consequently, we get the following for all sufficiently large s and λ:

(Uψ, V ψ)L2(QL) ≥ C
∫∫

QL

(
(sξ)λ2|ψx|2 + (sξ)3λ4|ψ|2

)
dx dt

+ Csλ

∫ T

0

(
ξ(L(t), t)|ψx(L(t), t)|2 + ξ(0, t)|ψx(0, t)|2

)
dx dt

− C

∫∫
ω0×(0,T )

(
(sξ)λ2|ψx|2 + (sξ)3λ4|ψ|2

)
dx dt.

(30)
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From (29) and (30), we deduce that

‖Uψ‖2L2(QL) + ‖V ψ‖2L2(QL) +

∫∫
QL

(
(sξ)λ2|ψx|2 + (sξ)3λ4|ψ|2

)
dx dt

+sλ

∫∫ T

0

(
ξ(L(t), t)|ψx(L(t), t)|2 + ξ(0, t)|ψx(0, t)|2

)
dx dt

≤ C

(∫∫
QL

e−2α|g|2 dx dt+

∫∫
ω0×(0,T )

(sξ)3λ4|ψ|2 dx dt

)
+C

∫∫
ω0×(0,T )

(sξ)λ2|ψx|2 dx dt.

(31)

Now, we can argue as in [15] to get (13) from (31); see also [9]. The steps are the following:

• First, we note that

‖V ψ‖2L2(QL) ≥ C
∫∫

QL

(sξ)−1|ψxx|2 dx dt− C
∫∫

QL

(sξ)3λ4|ψ|2 dx dt. (32)

• Then, we see that

‖Uψ‖2L2(QL) ≥ C
∫∫

QL

(sξ)−1|ψt|2 dx dt− C
∫∫

QL

(sξ)λ2|ψx|2 dx dt. (33)

• Also, we prove that, for each ε > 0, we can find Cε such that∫∫
ω0×(0,T )

(sξ)λ2|ψx|2 dx dt ≤ ε
∫∫

QL

(sξ)−1|ψxx|2 dx dt+ Cε

∫∫
ω×(0,T )

(sξ)3λ4|ψ|2 dx dt. (34)

Putting (31)–(34) together, we deduce that∫∫
QL

(
(sξ)−1(|ψt|2 + |ψxx|2) + (sξ)λ2|ψx|2 + (sξ)3λ4|ψ|2

)
dx dt

+sλ

∫ T

0

(
ξ(L(t), t)|ψx(L(t), t)|2 + ξ(0, t)|ψx(0, t)|2

)
dt

≤ C

(∫∫
QL

e−2α|g|2 dx dt+

∫∫
ω×(0,T )

(sξ)3λ4|ψ|2 dx dt

)
.

Finally, coming back to the original variable ϕ, it is very easy to obtain (13).
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