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Abstract. In this note, we give a self-contained proof of the following classification
(up to conjugation) of finite subgroups of GSpnpF`q containing a nontrivial transvection
for ` ≥ 5, which can be derived from work of Kantor: G is either reducible, symplectically
imprimitive or it contains SpnpF`q. This result is for instance useful for proving ‘big image’
results for symplectic Galois representations.

1. Introduction
In this paper, we provide a self-contained proof of a classification result of

subgroups of the general symplectic group over a finite field of characteristic
` ≥ 5 that contain a nontrivial transvection (cf. Theorem 1.1 below).

The motivation for this work came originally from Galois representations
attached to automorphic forms and the applications to the inverse Galois
problem. In a series of papers, we prove that for any even positive integer n
and any positive integer d, PSpnpF`dq or PGSpnpF`dq occurs as a Galois group
over the rational numbers for a positive density set of primes ` (cf. [2], [3], [1]).
A key ingredient in our proof is Theorem 1.1. When we were working on this
project, we were not aware that this result could be obtained as a particular
case of some results of Kantor [6], hence we worked out a complete proof,
inspired by the work of Mitchell on the classification of subgroups of classical
groups. More precisely, in an attempt to generalise Theorem 1 of [9] to
arbitrary dimension, one of us (S. A.-d.-R.) came up with a precise strategy
for Theorem 1.1. Several ideas and some notation are borrowed from [7].
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130 S. Arias-de-Reyna, L. Dieulefait, G. Wiese

We believe that our proof of Theorem 1.1 can be of independent interest,
since it is self-contained and does not require any previous knowledge on
linear algebraic groups beyond the basics.

In order to fix terminology, we recall some standard definitions. Let K be
a field. An n-dimensional K-vector space V equipped with a symplectic form
(i.e. nonsingular and alternating), denoted by xv, wy “ v ‚ w for v, w P V , is
called a symplectic K-space. A K-subspace W Ď V is called a symplectic
K-subspace if the restriction of xv, wy to W ˆ W is nonsingular (hence,
symplectic). The general symplectic group GSppV, x¨, ¨yq “: GSppV q consists
of those A P GLpV q for which, there is α P Kˆ, the multiplier (or similitude
factor) of A, such that pAvq‚pAwq “ αpv‚wq for all v, w P V . The multiplier
of A is denoted by mpAq. The symplectic group SppV, x¨, ¨yq “: SppV q is the
subgroup of GSppV q of elements with multiplier 1. An element τ P GLpV q is
a transvection if τ´idV has rank 1, i.e. if τ fixes a hyperplane pointwisely, and
there is a line U such that τpvq ´ v P U for all v P V . The fixed hyperplane
is called the axis of τ and the line U is the centre (or the direction). We
will consider the identity as a “trivial transvection”. Any transvection has
determinant 1. A symplectic transvection is a transvection in SppV q. Any
symplectic transvection has the form

Tvrλs P SppV q : u ÞÑ u` λxu, vyv

with direction vector v P V and parameter λ P K (see e.g. [4], pp. 137–138).
The main classification result of this note follows. A short proof, deriving

it from [6], is contained in [3].

Theorem 1.1. Let K be a finite field of characteristic at least 5 and
V a symplectic K-vector space of dimension n. Then any subgroup G of
GSppV q which contains a nontrivial symplectic transvection satisfies one of
the following assertions:

1. There is a proper K-subspace S Ă V such that GpSq “ S.
2. There are nonsingular symplectic K-subspaces Si Ă V with i “ 1, . . . , h

of dimension m for some m ă n such that V “
Àh

i“1 Si and for all g P G
there is a permutation σg P Symh pthe symmetric group on t1, . . . , huq
with gpSiq “ Sσgpiq. Moreover, the action of G on the set tS1, . . . , Shu
thus defined is transitive.

3. There is a subfield L of K such that the subgroup generated by the symplectic
transvections of G is conjugated pin GSppV qq to SpnpLq.

2. Symplectic transvections in subgroups
Recall that the full symplectic group is generated by all its transvections.

The main idea in this part is to identify the subgroups of the general symplectic
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Classification of subgroups of symplectic groups. . . 131

group containing a transvection by the centres of the transvections in the
subgroup.

Let K be a finite field of characteristic ` and let V be a symplectic
K-vector space of dimension n. Let G be a subgroup of GSppV q. The main
difficulty in this part stems from the fact that K need not be a prime field,
whence the set of direction vectors of the transvections contained in G need
not be a K-vector space. Suppose, for example, that we want to deal with the
subgroup G “ SpnpLq of SpnpKq with L a subfield of K. Then the directions
of the transvections of G form the L-vector space Ln contained in Kn. This
is what we have in mind when we introduce the term pL,Gq-rational subspace
below. In order to do so, we set up some more notation.

Write LpGq for the set of 0 ‰ v P V such that Tvrλs P G for some
λ P K. More naturally, this set should be considered as a subset of PpV q, the
projective space consisting of the lines in V . We call it the set of centres (or
directions) of the symplectic transvections in G. For a given nonzero vector
v P V , define the parameter group of direction v in G as

PvpGq :“ tλ P K | Tvrλs P Gu.

The fact that Tvrµs ˝ Tvrλs “ Tvrµ ` λs shows that PvpGq is a subgroup
of the additive group of K. If K is a finite field of characteristic `, then
PvpGq is a finite direct product of copies of Z{`Z. Denote the number of
factors by rkvpGq. Because PλvpGq “ 1

λ2
PvpGq for λ P Kˆ, it only depends

on the centre U :“ xvyK P LpGq Ď PpV q, and we call it the rank of U in G,
although we will not make use of this in our argument.

We find it useful to consider the surjective map

Φ : V ˆK
pv,λqÞÑTvrλs
ÝÝÝÝÝÝÝÝÑ tsymplectic transvections in SppV qu.

The multiplicative groupKˆ acts on V ˆK via xpv, λq :“ pxv, x´2λq. Passing
to the quotient modulo this action yields a bijection

pV zt0uˆKq{Kˆ pv,λqÞÑTvrλs
ÝÝÝÝÝÝÝÝÑtnontrivial symplectic transvections in SppV qu.

When we consider the first projection πV : V ˆK � V modulo the action of
Kˆ we obtain

πV : pV zt0u ˆKq{Kˆ � PpV q,
which corresponds to sending a nontrivial transvection to its centre. Let W
be a K-subspace of V . Then Φ gives a bijection

pW zt0u ˆKq{Kˆ pv,λqÞÑTvrλs
ÝÝÝÝÝÝÝÝÑ tnontrivial symplectic transvections

in SppV q with centre in W u.

Let L be a subfield of K. For a subset S Ď V , we denote by xSyL the L-span
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of the elements of S inside V . We call an L-vector space WL Ď V L-rational
if dimKWK “ dimLWL withWK :“ xWLyK and x¨, ¨y restricted toWLˆWL

takes values in L. An L-vector space WL Ď V is called pL,Gq-rational if WL

is L-rational and Φ induces a bijection

pWLzt0u ˆ Lq{L
ˆ pv,λqÞÑTvrλs
ÝÝÝÝÝÝÝÝÑ GX tnontrivial sympl. transvections

in SppV q with centre in WKu.

Note that pWLzt0u ˆ Lq{L
ˆ is naturally a subset of pWKzt0u ˆKq{K

ˆ.
A typical example of pL,SpnpLqq-rational subspace can be constructed as

follows: let VL be a symplectic L-vector space of dimension n, and consider
the symplectic K-vector space V “ VL bL K (where the symplectic form on
VL is extended K-linearly to V ). Then any L-subvector space WL of VL is
pL,SppVLqq-rational.

A K-subspace W Ď V is called pL,Gq-rationalisable if there exists an
pL,Gq-rationalWL withWK “W . We speak of an pL,Gq-rational symplectic
subspace WL if it is pL,Gq-rational and symplectic in the sense that the
restricted pairing is non-degenerate on WL. Let HL and IL be two pL,Gq-
rational symplectic subspaces of V . We say that HL and IL are pL,Gq-linked
if there is 0 ‰ h P HL and 0 ‰ w P IL such that h` w P LpGq.

3. Strategy
Now that we have set up all notation, we will describe the strategy behind

the proof of Theorem 1.1, as a service for the reader.
If one is not in case 1, then there are ‘many’ transvections in G, as

otherwise the K-span of LpGq would be a proper subspace of V stabilised
by G. The presence of ‘many’ transvection is used first in order to show
the existence of a subfield L Ď K and an pL,Gq-rational symplectic plane
HL Ď V . For this it is necessary to replace G by one of its conjugates inside
GSppV q. The main ingredient for the existence of pL,Gq-rational symplectic
planes, which is treated in Section 5, is Dickson’s classification of the finite
subgroups of PGL2pF`q.

The next main step is to show that two pL,Gq-linked symplectic spaces
in V can be merged into a single one. This is the main result of Section 6.
The main input is a result of Wagner for transvections in three dimensional
vector spaces, proved in Appendix A.

The merging results are applied to extend the pL,Gq-rational symplectic
plane further, using again the existence of ‘many’ transvections. We obtain
a maximal pL,Gq-rational symplectic space IL Ď V in the sense that LpGq Ă
IK Y IKK , which is proved in Section 7. The proof of Theorem 1.1 can be
deduced from this (see Section 8) because either IK equals V , that is the
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huge image case, or translating IK by elements of G gives the decomposition
in case 2.

4. Simple properties
We use the notation from the Introduction. In this subsection we list some

simple lemmas illustrating and characterising the definitions made above.

Lemma 4.1. Let v P LpGq. Then xvyL is an pL,Gq-rational line if and only
if PvpGq “ L.

Proof. This follows immediately from that fact that all transvections with
centre xvyK can be written uniquely as Tvrλs for some λ P K.

Lemma 4.2. Let WL Ď V be an pL,Gq-rational space and UL an L-vector
subspace of WL. Then UL is also pL,Gq-rational.

Proof. We first give two general statements about L-rational subspaces. Let
u1, . . . , ud be an L-basis of UL and extend it by w1, . . . , we to an L-basis
of WL. As WL is L-rational, the chosen vectors remain linearly independent
over K, and, hence, UL is L-rational. Moreover, we see, e.g. by writing down
elements in the chosen basis, that WL X UK “ UL.

It is clear that Φ sends elements in pULˆLq{Lˆ to symplectic transvections
in G with centres in UK . Conversely, let Tvrλs be such a transvection. As
WL is pL,Gq-rational, Tvrλs “ Turµs with some u P WL and µ P L. Due to
WL X UK “ UL, we have u P UL and the tuple pu, µq lies in UL ˆ L.

Lemma 4.3. Let WL Ď V be an L-rational subspace of V . Then the
following assertions are equivalent:

(i) WL is pL,Gq-rational.
(ii) (a) TWL

rLs :“ tTvrλs | λ P L, v PWLu Ď G and
(b) for each U P LpGq Ď PpV q with U Ď WK there is a u P U XWL

such that PupGq “ L (i.e. xuyL is an pL,Gq-rational line contained
in U by Lemma 4.1).

Proof. (i)ñ(ii). Note that (iia) is clear. For (iib), let U P LpGq with
U Ď WK . Hence, there is u P U and λ P Kˆ with Turλs P G. As WL is
pL,Gq-rational, we may assume that u PWL and λ P L. Lemma 4.2 implies
that xuyL is an pL,Gq-rational line.

(ii)ñ(i). Denote by ι the injection pWLzt0u ˆ Lq{Lˆ ↪Ñ pWKzt0u ˆ
Kq{Kˆ. By (iia), the image of Φ ˝ ι lies in G. It remains to prove the
surjectivity of this map onto the symplectic transvections of G with centres
in WK . Let Tvrλs be one such. Take U “ xvyK . By (iib), there is v0 P U
such that UL “ xv0yL ĎWL is an pL,Gq-rational line. In particular, Tvrλs “
Tv0rµs with some µ P L, finishing the proof.
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Lemma 4.4. Let A P GSppV q with multiplier α P Kˆ. Then ATvrλsA´1 “
TAvr

λ
α s. In particular, the notion of pL,Gq-rationality is not stable under

conjugation.

Proof. For all w P V , ATvrλsA´1pwq “ ApA´1w ` λpA´1w ‚ vqvq “ w `
λpA´1w ‚ vqAv. Since A has multiplier α, w ‚ Av “ αpA´1w ‚ vq, hence
ATvrλsA

´1pwq “ w ` λ
αpw ‚AvqAv “ TAvr

λ
α spwq.

Lemma 4.5. The group G maps LpGq into itself.

Proof. Let g P G and w P LpGq, say Twrλs P G. Then by Lemma 4.4 we have
gTwrλsg

´1 “ Tgwr
λ
α s, where α is the multiplier of g. Hence, gpwq P LpGq.

The following lemma shows that the natural projection yields a bijec-
tion between transvections in the symplectic group and their images in the
projective symplectic group.
Lemma 4.6. Let V be a symplectic K-vector space, 0 ‰ u1, u2 P V . If
Tu1rλ1s

´1Tu2rλ2s P ta ¨ Id : a P Kˆu, then Tu1rλ1s “ Tu2rλ2s.

Proof. Assume that Tu1rλ1s´1Tu2rλ2s “ aId. Then for all v P V ,
Tu2rλ2spvq ´ Tu1rλ1spavq “ 0.

In particular, taking v “ u1,
Tu2rλ2spu1q ´ Tu1rλ1spau1q “ u1 ` λ2pu1 ‚ u2qu2 ´ au1 “ 0,

hence either u1 and u2 are linearly dependent or a “ 1 (thus both transvec-
tions coincide). Assume then that u2 “ bu1 for some b P Kˆ. Then for all
v P V we have

Tbu1rλ2spvq ´ Tu1rλ1spavq “ v ` λ2b
2pv ‚ u1qu1 ´ av ´ λ1apv ‚ u1qu1

“ pa´ 1qv ` pλ2b
2 ´ aλ1qpv ‚ u1qu1 “ 0.

Choosing v linearly independent from u1, we obtain a “ 1, as we wished to
prove.

5. Existence of pL,Gq-rational symplectic planes
Let, as before, K be a finite field of characteristic `, let V be a n-

dimensional symplectic K-vector space and let G Ď GSppV q be a subgroup.
We will now prove the existence of pL,Gq-rational symplectic planes if there
are two transvections in G with nonorthogonal directions.

Note that any additive subgroup H Ď K can appear as a parameter
group of a direction. Just take G to be the subgroup of GSppV q generated
by the transvections in one fixed direction with parameters in H. It might
seem surprising that the existence of two nonorthogonal centres forces the
parameter group to be the additive group of a subfield L of K (up to
multiplication by a fixed scalar). This is the contents of Proposition 5.5,
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which is one of the main ingredients for this article. This proposition, in turn,
is based on Proposition 5.1, going back to Mitchell (cf. [8]). To make this
exposition self-contained we also include a proof of it, which essentially relies
on Dickson’s classification of the finite subgroups of PGL2pF`q. Recall that
an elation is the image in PGLpV q of a transvection in GLpV q.

Proposition 5.1. Let V be a 2-dimensional K-vector space with basis
te1, e2u and Γ Ď PGLpV q a subgroup that contains two nontrivial elations
whose centers U1 and U2 are different. Let `m be the order of an `-Sylow
subgroup of Γ.

Then K contains a subfield L with `m elements. Moreover, there exists
A P PGL2pKq such that AU1 “ xe1yK , AU2 “ xe2yK , and AΓA´1 is either
PGLpVLq or PSLpVLq, where VL “ xe1, e2yL.

Proof. Since there are two elations τ1 and τ2 with independent directions U1

and U2, Dickson’s classification of subgroups of PGL2pF`q (Section 260 of [5])
implies that there is B P PGL2pKq such that BΓB´1 is either PGLpVLq or
PSLpVLq, where L is a subfield of K. Note that the order of an `-Sylow of
Γ » PGL2pVLq (resp. Γ » PSL2pVLq) coincides with the cardinality of L;
this implies that L has exactly `m elements. By Lemma 4.4, the direction
of BτiB´1 is BUi for i “ 1, 2 and the lines BUi are of the form xdiyK
with di P VL for i “ 1, 2. As PSLpVLq acts transitively on VL, there is
C P PSLpVLq such that CU1 “ xe1yK and CU2 “ xe2yK . Setting A :“ CB
yields the proposition.

Although the preceding proposition is quite simple, the very important
consequence it has is that the conjugated elations AτiA´1 both have direction
vectors that can be defined over the same L-rational plane.

Lemma 5.2. Let V be a 2-dimensional K-vector space, G Ď GLpV q con-
taining two transvections with linearly independent directions U1 and U2. Let
`m be the order of any `-Sylow subgroup of G.

Then K contains a subfield L with `m elements and there are A P GLpV q
and an pL,AGA´1q-rational plane VL Ď V . Moreover, A can be chosen such
that AUi “ Ui for i “ 1, 2. Furthermore, if u1 P U1 and u2 P U2 are such
that u1 ‚ u2 P Lˆ, then VL can be chosen to be xu1, u2yL.

Proof. We apply Proposition 5.1 with e1 “ u1, e2 “ u2, and Γ the image of
G in PGLpV q, and obtain A P GLpV q (any lift of the matrix provided by the
proposition) such that AΓA´1 equals PSLpVLq or PGLpVLq for the L-rational
plane VL “ xu1, u2yL Ď V , and AUi “ Ui for i “ 1, 2. For PSLpVLq and
PGLpVLq it is true that the elations contained in them are precisely the
images of Tvrλs for v P VL and λ P L.
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First, we know that all such Tvrλs are contained in SLpVLq and, thus, in
AGA´1 (since AΓA´1 is PSLpVLq or PGLpVLq). Second, by Lemma 4.6 the
image of Tvrλs in AΓA´1 has a unique lift to a transvection in SLpVLq Ď
AGA´1, namely Tvrλs. This proves that the transvections of AGA´1 are
precisely the Tvrλs for v P VL and λ P L. Hence, VL is an pL,AGA´1q-rational
plane.

Lemma 5.3. Let U1, U2 P LpGq be such that H “ U1 ‘ U2 is a symplectic
plane in V . By G0 we denote the subgroup tg P G | gpHq Ď Hu and by G|H
the restrictions of the elements of G0 to H. Then LpG|Hq Ď LpGq (under
the inclusion PpHq Ď PpV q).

Proof. Let τi P G be transvections with directions Ui for i “ 1, 2. Clearly,
τ1, τ2 P G0 and their restrictions to H are symplectic transvections with the
same directions. Consequently, Lemma 5.2 provides us with A P GLpHq and
an pL,AGA´1q-rational plane HL Ď H.

Let U P LpG|Hq. This means that there is g P G0 such that g|H is a
transvection with direction U , so that Ag|HA´1 is a transvection in AG|HA´1
with direction AU by Lemma 4.4. As HL is pL,AG|HA´1q-rational, all
transvections Tvrλs for v P HL and λ P L lie in AG|HA´1, whence AG|HA´1
contains SLpHLq. Consequently, there is h P AG|HA´1 such that hAU “

AU1. But A´1hA P G|H , whence there is γ P G0 with restriction to H equal
to A´1hA. As γH Ď H, it follows that γU “ γ|HU “ A´1hAU “ U1. Now,
γ´1τ1γ is a transvection in G with centre γ´1U1 “ U , showing U P LpGq.
Corollary 5.4. Let U1, U2 P LpGq be such that H “ U1 ‘ U2 is a sym-
plectic plane in V . By G0 we denote the subgroup tg P G | gpHq Ď Hu and
by G|H the restrictions of the elements of G0 to H. Then the transvections
of G|H are the restrictions to H of the transvections of G with centre in H.

Proof. Let T be the subgroup of G generated by the transvections of G with
centre in H. We can naturally identify T with T |H . Let U be the subgroup
of G|H generated by the transvections of G|H . We have that T |H Ă U .

Apply Lemma 5.2 to the K-vector space H and the subgroup U Ă GLpHq.
There exists a subfield L Ă K, and an L-rational plane HL such that U
is conjugate to SLpHLq, hence U » SL2pLq. Applying Lemma 5.2 to the
K-vector space H and the subgroup T |H , we obtain a subfield L1 Ă K,
and an L1-rational plane HL1 such that T |H is conjugate to SLpHL1q, hence
H » SL2pL

1q. But LpT |Hq “ LpGq XH “ LpG|Hq “ LpUq by Lemma 5.3,
whence L “ L1 and the cardinalities of U and T |H coincide. Therefore they
are equal.

Proposition 5.5. Let U1, U2 P LpGq Ď PpV q which are not orthogonal.
Then there exist a subfield L ≤ K, A P GSppV q, and an L-rational symplectic
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plane HL such that AU1 Ď HK , AU2 Ď HK and such that HL is pL,AGA´1q-
rational. Moreover, if we fix u1 P U1, u2 P U2 such that u1 ‚ u2 P Lˆ, we can
choose HL “ xu1, u2yL and A satisfying AU1 “ U1, AU2 “ U2.

Proof. Let H “ U1‘U2 and note that this is a symplectic plane. Define G0

and G|H as in Lemma 5.3. Lemma 5.2 provides us with B P GLpHq such that
BUi “ Ui for i “ 1, 2 and such that HL “ xu1, u2yL is an pL,BG|HB´1q-
rational plane. We choose A P GSppV q such that AH Ď H and A|H “ B
(this is possible as any symplectic basis of H can be extended to a symplectic
basis of V ). We want to prove that HL is an pL,AGA´1q-rational symplectic
plane in V .

And, indeed, by Corollary 5.4, the nontrivial transvections of AGA´1
with direction in H coincide with the nontrivial transvections of BG|HB´1,
which in turn correspond bijectively to pHLzt0u ˆ Lq{L.

Note that Theorem 1.1 is independent of conjugating G inside SppV q.
Hence, we will henceforth work with pL,Gq-rational symplectic spaces (instead
of pL,AGA´1q-rational ones).

Corollary 5.6.

(a) Let HL be an L-rational plane which contains an pL,Gq-rational line U1,L

as well as an L-rational line U2,L not orthogonal to U1,L with U2,K P LpGq.
Then HL is an pL,Gq-rational symplectic plane.

(b) Let U1,L “ xu1yL be an pL,Gq-rational line and U2 “ xu2yK P LpGq such
that u1 ‚ u2 P Lˆ. Then xu1, u2yL is an pL,Gq-rational symplectic plane.

Proof. (a) Fix u1 P U1,L and u2 P U2,L such that u1 ‚ u2 “ 1, and call
WL “ xu1, u2yL. Apply Proposition 5.5: we get L Ď K and A P GSppV q
such that xAU1,LyK “ xu1yK , AU2 “ xu2yK and WL is pL,AGA´1q-rational.
Let a1, a2 P Kˆ be such that Au1 “ a1u1 and Au2 “ a2u2. The proof
will follow three steps: we will first see that Pu2pGq “ L, then we will see
that HL satisfies Lemma 4.3(iia) and finally we will see that HL satisfies
Lemma 4.3(iib).

Let α be the multiplier of A. First note the following equality between α,
a1 and a2:

1 “ u1 ‚ u2 “
1

α
pAu1 ‚Au2q “

1

α
pa1u1 ‚ a2u2q “

a1a2
α

.

Recall that PavpGq “ 1
a2
PvpGq. From Lemma 4.4 we have PAvpAGA´1q “

1
αPvpGq.

On the one hand, since U1,L is pL,Gq-rational and u1 P U1,L, we know that
Pu1pGq “ L by Lemma 4.1. On the other hand, since xu1yL is pL,AGA´1q-
rational, Pu1pAGA´1q “ L, hence Pu1pGq “ α

a21
L. We thus have α

a21
P L.
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Moreover, since xu2yL is pL,AGA´1q-rational (e.g. using Lemma 4.2), we
have that Pu2pAGA´1q “ L, hence Pu2pGq “ α

a22
L “

a21α
α2 L “

a21
α L “ L. This

proves that xu2yL is pL,Gq-rational by Lemma 4.1.
Next, we will see that THL

rLs Ď G. Let b1, b2 P L with b1 ‰ 0 and λ P Lˆ.
Consider the transvection Tb1u1`b2u2rλs. We want to prove that it belongs
to G. We compute

ATb1u1`b2u2rλsA
´1 “ TApb1u1`b2u2q

„

λ

α



“ Tb1a1u1`b2a2u2

„

λ

α



“ T
u1`

b2a2
b1a1

u2

„

b21a
2
1λ

α



.

Note that since a1
a2
“

a21
α P L and sinceWL “ xu1, u2yL is pL,AGA´1q-rational,

it follows that ATb1u1`b2u2rλsA´1 P AGA´1, and therefore Tb1u1`b2u2rλs P G.
Note that the same conclusion is valid for b1 “ 0 as xu2yL is pL,Gq-rational.

Finally, it remains to see that if U P LpGq X xHLyK , then there is
u P UXHL with PupGq “ L. Assume that U P LpGqXxHLyK . Since we have
seen that xu2yL is pL,Gq-rational, we can assume that U ­“ xu2yK . Therefore,
we can choose an element v P U with v “ u1` bu2, for some b P K. It suffices
to show that b P L. Let Tvrλs P G be a transvection with direction U . Then
computing ATvrλsA´1 as above, we get that ATvrλsA´1 “ T

u1`
ba2
a1
u2
r
a21λ
α s

is a transvection with direction in LpAGA´1q XWL, hence the pL,AGA´1q-
rationality of WL implies that b P L.

(b) follows from (a) by observing that the condition u1 ‚ u2 P Lˆ ensures
that xu1, u2yL is an L-rational symplectic plane.

The next corollary says that the translate of each vector in an pL,Gq-
rational symplectic space by some orthogonal vector w is the centre of a
transvection if this is the case for one of them.

Corollary 5.7. Let HL Ď V be an pL,Gq-rational symplectic space. Let
w P HKK and 0 ‰ h P HL such that xh` wyK P LpGq. Then xh1 ` wyL is an
pL,Gq-rational line for all 0 ‰ h1 P HL.

Proof. Assume first that HL is a plane. Let ĥ P HL with ĥ ‚ h “ 1 (hence
HL “ xh, ĥyL). As xĥyL is an pL,Gq-rational line and ĥ‚ph`wq “ 1, it follows
that xĥ, h` wyL is an pL,Gq-rational plane by Corollary 5.6. Consequently,
for all µ P L we have that xµĥ` h` wyL is an pL,Gq-rational line. Let now
µ P Lˆ. Then pµĥ ` h ` wq ‚ h “ µ ‰ 0, whence again by Corollary 5.6
xµĥ ` h ` w, hyL is an pL,Gq-rational plane. Thus, for all ν P L it follows
that xµĥ` pν ` 1qh` wyL is an pL,Gq-rational line. In order to get rid of
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the condition µ ‰ 0, we exchange the roles of h and ĥ, yielding the statement
for planes.

To extend it to any symplectic space HL, note that, if h1, h2 P HL are
nonzero elements, there exists an element ĥ P HL such that h1 ‚ ĥ ­“ 0,
h2 ‚ ĥ ­“ 0. Namely, let ĥ1, ĥ2 be such that h1 ‚ ĥ1 ­“ 0, h2 ‚ ĥ2 ­“ 0 (they
exist because on HL the symplectic pairing is nondegenerate). If h2 ‚ ĥ1 ­“ 0

or h1 ‚ ĥ2 ­“ 0, we are done. Otherwise ĥ “ ĥ1 ` ĥ2 satisfies the required
condition.

Returning to the proof, if h1 P HL is nonzero, take ĥ P HL such that
h ‚ ĥ ‰ 0 and h1 ‚ ĥ ‰ 0. First apply the corollary to the plane xh, ĥyL,
yielding that ĥ` w is an pL,Gq-rational line, and then apply it to the plane
xĥ, h1yL, showing that h1 ` w is an pL,Gq-rational line, as required.

In the next lemma, it is important that the characteristic of K is greater
than 2.

Lemma 5.8. Let HL be an pL,Gq-rational symplectic space. Let h, h̃ P HL

different from zero and let w, w̃ P HKK such that w‚ w̃ P Lˆ and h`w, h̃` w̃ P
LpGq. Then xw, w̃yL is an pL,Gq-rational symplectic plane.

Proof. By Corollary 5.7 we have that xh` w̃yL is an pL,Gq-rational line. As
ph`wq ‚ ph` w̃q “ w ‚ w̃ P Lˆ, by Corollary 5.6 it follows that xw ´ w̃yL is
an pL,Gq-rational line. Since x´h´ wyK P LpGq, by Corollary 5.7 we have
that x´h`wyL is pL,Gq-rational, and from p´h`wq ‚ ph` w̃q “ w ‚ w̃ P Lˆ

we conclude that xw` w̃yL is an pL,Gq-rational line. As pw´ w̃q ‚ pw` w̃q “
2w ‚ w̃ P Lˆ, we obtain that xw` w̃, w´ w̃yL “ xw, w̃yL is an pL,Gq-rational
symplectic plane, as claimed.

We now deduce that linking is an equivalence relation between mutually
orthogonal spaces. Note that reflexivity and symmetry are clear and only
transitivity need be shown.

Lemma 5.9. Let HL, IL and JL be mutually orthogonal pL,Gq-rational
symplectic subspaces of V . If HL and IL are pL,Gq-linked and also IL and
JL are pL,Gq-linked, then so are HL and JL.

Proof. By definition there exist nonzero h0 P HL, i0, i1 P IL and j0 P JL
such that h0 ` i0 P LpGq and i1 ` j0 P LpGq. There are ĥ0 P HL and î0 P IL
such that ĥ0 ‚ h0 “ 1 and î0 ‚ i0 “ 1.

By Corollary 5.7 we have, in particular, that xh0 ` i0yL, x̂i0 ` j0yL and
xĥ0 ` pi0 ` î0qyL are pL,Gq-rational lines. As ph0 ` î0q ‚ pi0 ` j0q “ 1, by
Corollary 5.6 also xh0 ` pi0 ` î0q ` j0yL is pL,Gq-rational. Furthermore, due
to pĥ0` pi0` î0qq ‚ ph0` pi0` î0q ` j0q “ 1, it follows that xph0´ ĥ0q ` j0yL
is pL,Gq-rational, whence HL and JL are pL,Gq-linked.
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6. Merging linked orthogonal pL,Gq-rational symplectic subspaces
We continue using our assumptions: K is a finite field of characteristic

at least 5, L Ď K a subfield, V an n-dimensional symplectic K-vector
space, G Ď GSppV q a subgroup. In the previous section, we established the
existence of pL,Gq-rational symplectic planes in many cases (after allowing
a conjugation of G inside GSppV q). In this section, we aim at merging
pL,Gq-linked pL,Gq-rational symplectic planes into pL,Gq-rational symplectic
subspaces.

It is important to remark that no new conjugation of G is required. The
only conjugation that is needed is the one from the previous section in order
to have an pL,Gq-rational plane to start from.

Lemma 6.1. Let HL and IL be two pL,Gq-rational symplectic subspaces
of V which are pL,Gq-linked. Suppose that HL and IL are orthogonal to each
other. Then all lines in HL ‘ IL are pL,Gq-rational.

Proof. The pL,Gq-linkage implies the existence of h1 P HL and w1 P IL such
that xh1 ` w1yK P LpGq. By Corollary 5.7 xh ` w1yL is an pL,Gq-rational
line for all h P HL. The same reasoning now gives that xh ` wyL is an
pL,Gq-rational line for all h P HL and all w P IL.

In view of Lemma 4.3 the above is (iia). In order to obtain (iib), we need
to invoke a result of Wagner (see Proposition A.1 in Appendix A).

Proposition 6.2. Let U1, U2, U3 P LpGq and W “ U1`U2`U3. Assume
that dimW “ 3, U1 and U2 not orthogonal and let U be a line in W XWK

which is linearly independent from U3 and is not contained in U1 ‘U2. Then
pU1 ‘ U2q X pU ‘ U3q is a line in LpGq.
Proof. Fix transvections Ti P G with centre Ui, i “ 1, 2, 3. These transvec-
tions fix W ; let H Ď SLpW q be the group generated by the restrictions of the
Ti toW . The condition U ĎWK guarantees that the Ti fix U pointwise. Note
that furthermore U ­“ U3 and U Ę U1 ‘ U2. We can apply Proposition A.1,
and conclude that pU1 ‘ U2q X pU ‘ U3q is the centre of a transvection T
of H. This transvection fixes the symplectic plane U1 ‘ U2. Call T0 the
restriction of T to this plane. It is a nontrivial transvection (since no line
of U1 ‘ U2 can be orthogonal to all U1 ‘ U2). Hence by Lemma 5.3 the line
pU1 ‘ U2q X pU ‘ U3q belongs to LpGq.

We now deduce rationality statements from it.

Corollary 6.3. Let HL be an pL,Gq-rational symplectic plane and let
U3 and U4 be linearly independent lines not contained in HK . Assume that
U4 Ď HK ‘ U3 is orthogonal to HK and to U3 and assume that U3 P LpGq.
Then the intersection HK X pU3 ‘ U4q “ IK for some line IL Ď HL.
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Proof. Choose two pL,Gq-rational lines U1,L and U2,L such that HL “

U1,L ‘ U2,L. With U “ U4 we can apply Proposition 6.2 in order to obtain
that I :“ HK X pU3 ‘ U4q is a line in LpGq contained in HK . As HL is
pL,Gq-rational, it follows that I is pL,Gq-rationalisable.

Corollary 6.4. Let HL Ď V be an pL,Gq-rational symplectic space. Let
h` w P LpGq with 0 ‰ h P HK and w P HKK . Then h P LpGq. In particular,
xhyK is an pL,Gq-rationalisable line, i.e. there is µ P Kˆ such that µh P HL.

Proof. Replacing, if necessary HL by any pL,Gq-rational plane contained
in HL, we may without loss of generality assume that HL is an pL,Gq-rational
plane. Let y :“ h`w. If w “ 0, the claim follows from the pL,Gq-rationality
of HL. Hence, we suppose that w ‰ 0. Then U3 :“ xyyK is not contained
in HK . Note that w is perpendicular to U3 and to HK , and w P Hk ‘ xyyK .
Hence, Corollary 6.3 gives that the intersection HK X pU3 ‘ xwyKq “ xhyK
is in LpGq.

Corollary 6.4 gives the rationalisability of a line. In order to actually
find a direction vector for a parameter in L, we need something extra to
rigidify the situation. For this, we now take a second link which is sufficiently
different from the first link.

Corollary 6.5. Let HL Ď V be an pL,Gq-rational symplectic space. Let
0 ‰ h̃ P HK and w̃ P HKK such that h̃ ` w̃ P LpGq. Suppose that there are
nonzero h P HL and w P HKK such that h` w P LpGq and w ‚ w̃ P Lˆ. Then
h̃ P HL.

Proof. By Corollary 6.4 there is some β P Kˆ such that βh̃ P HL. We
want to show that β P L. By Corollary 5.7 we may assume that h ‚ h̃ ‰ 0,
more precisely, h ‚ pβh̃q “ 1; and we have furthermore that xh ` wyL is
an pL,Gq-rational line. By Corollary 5.6 (b), xh, βh̃yL is an pL,Gq-rational
symplectic plane contained in HL. Let c :“ w ‚ w̃ P Lˆ. We have

ph` wq ‚ ph̃` w̃q “ h ‚ h̃` w ‚ w̃ “
1

β
` c “: µ.

If µ “ 0, then β P L and we are done. Assume that µ ‰ 0. By Corollary 5.6 (b)
it follows that xh` w, µ´1ph̃` w̃qyL is an pL,Gq-rational symplectic plane.
Thus, xh ` w ` µ´1ph̃ ` w̃qyL is an pL,Gq-rational line. By Corollary 6.4
there is some ν P Kˆ such that νph ` µ´1h̃q P HL. Consequently, ν P Lˆ,
whence µ P L, so that β P L.

The main result of this section is the following merging result.

Proposition 6.6. Let HL and IL be orthogonal pL,Gq-rational symplectic
subspaces of V that are pL,Gq-linked. Then HL ‘ IL is an pL,Gq-rational
symplectic subspace of V .
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Proof. We use Lemma 4.3. Part (iia) follows directly from Lemma 6.1. We
now show (iib). Let h`w P LpGq with nonzero h P HK and w P IK be given.
Corollary 6.4 yields µ, ν P Kˆ such that µh P HL and νw P IL. Let ĥ P HL

with pµhq ‚ ĥ “ 1, as well as ŵ P IL with pνwq ‚ ŵ “ 1. Lemma 6.1 tells us
that ĥ` ŵ P LpGq. Together with pνhq ` pνwq P LpGq, Corollary 6.5 yields
νh P HL, whence νh` νw P HL ‘ IL.

7. Extending pL,Gq-rational spaces
We continue using the same notation as in the previous sections. Here,

we will use the merging results in order to extend pL,Gq-rational symplectic
spaces.

Proposition 7.1. Let HL be a nonzero pL,Gq-rational symplectic subspace
of V . Let nonzero h, h̃ P HK , w, w̃ P HKK be such that h` w, h̃` w̃ P LpGq
and w ‚ w̃ ‰ 0. Then there exist α, β P Kˆ such that xαw, βw̃yL is an
pL,Gq-rational symplectic plane which is pL,Gq-linked with HL.

Proof. By Corollary 6.4 we may and do assume by scaling h`w that h P HL.
Furthermore, we assume by scaling h̃` w̃ that w ‚ w̃ “ 1. Then Corollary 6.5
yields that h̃ P HL. We may appeal to Lemma 5.8 yielding that xw, w̃yL is
an pL,Gq-rational plane. The pL,Gq-link is just given by h` w.

Corollary 7.2. Let HL be a non-zero pL,Gq-rational symplectic subspace
of V . Let nonzero h, h̃ P HK , w, w̃ P HKK be such that h` w, h̃` w̃ P LpGq
and w ‚ w̃ ‰ 0. Then there is an pL,Gq-rational symplectic subspace IL of V
containing HL and such that IK “ xHK , w, w̃yK .

Proof. This follows directly from Propositions 7.1 and 6.6.

Proposition 7.3. Assume that xLpGqyK “ V . Let HL be a nonzero
pL,Gq-rational symplectic space. Let 0 ‰ v P LpGqzpHK YH

K
Kq. Then there

is an pL,Gq-rational symplectic space IL containing HL such that v P IK .

Proof. We write v “ h`w with h P HK and w P HKK . Note that both h and
w are nonzero by assumption. As xLpGqyK “ V , we may choose ṽ P LpGq
such that ṽ ‚ w ‰ 0. We again write ṽ “ h̃` w̃ with h̃ P HK and w̃ P HKK .

We, moreover, want to ensure that h̃ ‰ 0. If h̃ “ 0, then we proceed as
follows. Corollary 6.4 implies the existence of µ P Kˆ such that µh P HL.
Now replace h by µh and w be µw. Then Corollary 5.7 ensures that xh`wyL
is an pL,Gq-rational line. Furthermore, scale w̃ so that ph ` wq ‚ w̃ P Lˆ,
whence by Corollary 5.6 h`w` w̃ P LpGq. We use this element as ṽ instead.
Note that it still satisfies ṽ ‚ w ‰ 0, but now h̃ ‰ 0.

Now we are done by Corollary 7.2.
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Corollary 7.4. Assume that xLpGqyK “ V , and let HL be an pL,Gq-
rational symplectic space. Then there is an pL,Gq-rational symplectic space IL
containing HL such that LpGq Ď IK Y I

K
K .

Proof. Iterate Proposition 7.3.

8. Proof of Theorem 1.1
In this section we will finish the proof of Theorem 1.1.

Lemma 8.1. Let V “ S1 ‘ ¨ ¨ ¨ ‘ Sh be a decomposition of V into linearly
independent, mutually orthogonal subspaces such that LpGq Ď S1 Y ¨ ¨ ¨ Y Sh.

(a) If v1, v2 P LpGq X S1 are such that v1 ` v2 P LpGq, then for all g P G
there exists an index i P t1, . . . , hu such that gpv1q and gpv2q belong to
the same Si.

(b) If S1 is pL,Gq-rationalisable, then for all g P G there exists an index
i P t1, . . . , hu such that gS1 Ď Si.

Proof. (a) Assume that gpv1q P Si and gpv2q P Sj with i ‰ j. Then
gpv1q ` gpv2q “ gpv1 ` v2q P LpGq satisfies gpv1 ` v2q P Si ‘ Sj , but it
neither belongs to Si nor to Sj . This contradicts the assumption that
LpGq Ď S1 Y ¨ ¨ ¨ Y Sh.

(b) If S1 “ S1,L with S1,L an pL,Gq-rational space, we can apply (a) to
an L-basis of S1,L.

Corollary 8.2. Let IL Ď V be an pL,Gq-rational symplectic subspace
such that LpGq Ď IK Y IKK and let g P G. Then either gpIKq “ IK or
gpIKq Ď IKK ; in the latter case IK X gpIKq “ 0.

Proof. This follows from Lemma 8.1 with S1 “ IK and S2 “ IKK .

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. As we assume that G contains some transvection,
it follows that LpGq is nonempty and consequently xLpGqyK is a nonzero
K-vector space stabilised by G due to Lemma 4.5. Hence, either we are in
case 1 of Theorem 1.1 or xLpGqyK “ V , which we assume now.

From Proposition 5.5, we obtain that there is some A P GSppV q, a subfield
L ≤ K such that there is an pL,AGA´1q-rational symplectic plane HL. Since
the statements of Theorem 1.1 are not affected by this conjugation, we may
now assume that HL is pL,Gq-rational.

From Corollary 7.4, we obtain an pL,Gq-rational symplectic space I1,L
such that LpGq Ď I1,K Y IK1,K . If I1,K “ V , then it follows that I1,L – Ln,
thus G contains a transvection whose direction is any vector of I1,L. As
the transvections generate the symplectic group, it follows that G contains
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SppI1,Lq – SpnpLq and we are in Case 3 of Theorem 1.1. Hence, suppose
now that I1,K ‰ V .

Either every g P G stabilises I1,K , and we are in Case 1 and done, or
there is g P G and v P I1,L with gpvq R I1,K . Set I2,L :“ gI1,L. Note that
I2,L Ď LpGq because of Lemma 4.4. Now we apply Corollary 8.2 to the
decomposition V “ I1,K ‘ I

K
1,K and obtain that gpI1,Kq Ď IK1,K . Moreover

LpGq “ LpgGg´1q Ď gI1,K Y gI
K
1,K “ I2,K Y I

K
2,K .

We now have LpGq Ď I1,KYI2,KYpI1,K‘I2,Kq
K. Either I1,K‘I2,K “ V

and pI1,K ‘ I2,KqK “ 0, or there are two possibilities:

• For all g P G, gI1,L Ď I1,K Y I2,K . If this is the case, then G fixes the space
I1,K ‘ I2,K , and we are in Case 1, and done.

• There exists g P G, v P I1,L such that gpvq R I1,K Y I2,K . Set I3,L “ gI1,L.
Due to LpGq Ď I3,K Y I

K
3,K , we then have

LpGq Ď I1,K Y I2,K Y I3,K Y pI1,K ‘ I2,K ‘ I3,Kq
K.

Hence, iterating this procedure, we see that either we are in Case 1, or
we obtain a decomposition V “ I1,K ‘ ¨ ¨ ¨ ‘ Ih,K with mutually orthogonal
symplectic spaces such that LpGq Ď I1,K Y ¨ ¨ ¨ Y Ih,K .

Note that Lemma 8.1 implies that G respects this decomposition in the
sense that for all i P t1, . . . , hu there is j P t1, . . . , hu such that gpIi,Kq “ Ij,K .
If the resulting action of G on the index set t1, . . . , hu is not transitive, then
we are again in case 1, otherwise in case 2.

A. A result on transvections in a 3-dimensional vector space
In this appendix, we provide a proof of the following result concerning

subgroups in a 3-dimensional vector space that was used in Section 6:

Proposition A.1. Let V be a 3-dimensional vector space over a finite
field K of characteristic ` ≥ 5, and let G Ď SLpV q be a subgroup satisfying:

1. There exists a 1-dimensional K-vector space U such that G|U “ tidUu.
2. There exist U1, U2, U3 three distinct centres of transvections in G such that
U Ę U1 ‘ U2 and U ­“ U3.

Then pU1 ‘ U2q X pU ‘ U3q is the centre of a transvection of G.

This result is Theorem 3.1(a) of [10]. Below, we have written the proof in
detail. We will essentially follow the original proof of Wagner [10], reformu-
lating it with the terminology developed in this paper. We follow [8] when
Wagner refers to the results proven there. We also used [9] to ‘get a feeling’
of the ideas used in [10].
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The setting differs from that of the rest of the paper, since there is no
symplectic structure. One consequence of this is that the axis of a transvection
τ in SLpV q is not determined by its centre. Given any plane W Ă V and
any line U Ă V , there exist transvections with axis W and centre U ; namely,
fixing an element ϕ P HompV,Kq “ V ˚ of the dual vector space of V such
that W “ kerpϕq, and fixing a nonzero vector u P U , then all transvections in
SLpV q with axis W and centre U are given by τpvq :“ v ` λϕpvqu for some
λ P K (cf. [4], p. 160).

A key input in the proof is Lemma 5.2. In order to apply it to a subplane
W Ă V , we need to endow it with some symplectic structure. We do so by
choosing any two linearly independent vectors e1, e2 and considering the
symplectic structure defined by declaring te1, e2u to be a symplectic basis.

Proof of Proposition A.1. Without loss of generality, we may assume
that G is generated by transvections. In particular, we may assume that
G Ď SLpV q.

The hypotheses imply that the inclusion U3 Ď pU1 ‘ Uq X pU2 ‘ Uq does
not hold. Indeed, assume that U3 Ď pU1 ‘ Uq X pU2 ‘ Uq. We know that
V “ U1 ‘U2 ‘U , hence U1 ‘U ­“ U2 ‘U , so that pU1 ‘Uq X pU2 ‘Uq has
dimension 1. Therefore U3 “ pU1 ‘ Uq X pU2 ‘ Uq “ U , but by hypothesis
U3 ­“ U . Interchanging U1 and U2 if necessary we can assume that U3 Ę

U1 ‘ U .
For i “ 2, 3, let W1,i “ U1 ‘ Ui and G1,i be the subgroup of GLpW1,iq

generated by the transvections in G that preserve the plane W1,i. We want
to endow W1,i with a suitable pL,G1,iq-rational structure. In particular, we
want that these structures be compatible.

For each i “ 1, 2, 3, fix a transvection Ti P G with centre Ui. Note that,
since G|U is the identity and U ­“ Ui, the axis of Ti (that is, the plane
pointwise fixed by it) must be Ui ‘ U .

The transvections T1 and T2 preserve the plane U1 ‘ U2, and since this
plane does not coincide with the axis of T1 or T2, they both act as nontrivial
transvections on U1‘U2. We apply Lemma 5.2 to the 2-dimensional K-vector
space W1,2 (which we endow with a symplectic structure with symplectic
basis tu1, u2u such that u1 P U1 and u2 P U2) and the group G1,2 and obtain
a matrix A P GL2pKq such that AU1 “ U1, AU2 “ U2 and a subfield L of
K such that pW1,2qL is an pL,AG1,2A

´1q-rational plane. Since U is linearly
independent from U1 ‘ U2, we can extend A to an element of GLpV q such
that AU “ U . Without loss of generality, we can replace G by AGA´1 and
U3 by AU3. Thus pW1,2qL “ xu1, u2yL is an pL,G1,2q-rational plane.

Since V “ U1‘U2‘U , we find a1, a2 P K such that 0 ‰ u`a1u1`a2u2 P
U3 with some u P U . By hypothesis a2 ‰ 0. Hence by normalising, we can
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assume 0 ‰ u3 :“ ´u` a1u1 ` u2 P U3, so that we have the relation

(1.1) u “ a1u1 ` u2 ` u3.

The set B “ tu1, u2, uu is a K-basis of V . The proof will be finished if we
show that G contains a transvection of direction u3 ´ u “ ´a1u1 ´ u2 P
pU ‘ U3q X pU1 ‘ U2q.

Now we consider the planeW1,3, and endow it with a symplectic structure
with symplectic basis tu1, u3u. We claim that xu1, u3yL is an pL,G1,3q-
rational plane. Indeed, if we show that xu1yL is an pL,G1,3q-rational line,
then Corollary 5.6(b) applied to U1,L “ xu1yL and U3 (which lies in LpG1,3q

because by hypothesis G contains a transvection with centre U3) yields the
result. Consider the set of transvections of G with centre U1. As discussed
above, their axis is U ‘ U1 “ tv P V : p2pvq “ 0u, where p2 denotes the
projection in the second coordinate with respect to the basis B. Thus any
transvection of G with direction U1 can be written as T1pvq “ v ` λp2pvqu1
for some λ P K. Restricting T1 to W1,2, and taking into account that
p2pvq “ ´v ‚ u1 with v P W1,2 for the symplectic structure on W1,2 with
symplectic basis tu1, u2u, it follows from the pL,G1,2q-rationality of xu1, u2yL
that λ P L. Now we restrict to W1,3. Note that p2pvq “ v ‚ u1 for v PW1,3,
where ‚ denotes the symplectic structure on W1,3 defined by the symplectic
basis tu1, u3u. Thus the restriction of T1 to W1,3 is T1pvq “ v ` λpv ‚ u1qu1.
This proves the pL,G1,3q-rationality of xu1yL.

The discussion above shows that, if we fix the basis tu1, uiu of W1,i,
then G1,i contains SL2pLq; in particular it contains the reflection given by
pu1 ÞÑ ´u1, ui ÞÑ ´uiq. Since G acts as the identity on U , we obtain that
G contains the element δ1,i given by pu1 ÞÑ ´u1, ui ÞÑ ´ui, u ÞÑ uq. With
respect to the basis B, these elements have the shape

δ1,2 “

¨

˚

˝

´1 0 0

0 ´1 0

0 0 1

˛

‹

‚

and δ1,3 “

¨

˚

˝

´1 0 0

0 ´1 0

0 2 1

˛

‹

‚

.

Thus

T :“ δ1,2δ1,3 “

¨

˚

˝

1 0 0

0 1 0

0 2 1

˛

‹

‚

is a transvection of centre U and axis U ‘ U1. Since 2 is invertible in F`, we
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can find k P Z such that

T k “

¨

˚

˝

1 0 0

0 1 0

0 1 1

˛

‹

‚

.

The transvection T k ˝ T3 ˝ T´k P G has direction T kpu3q “ u3 ´ u; this is
the transvection we were seeking.
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