DE

G

DE GRUYTER
OPEN

DEMONSTRATIO MATHEMATICA
Vol. 49 No 2 2016

Sara Arias-de-Reyna, Luis Dieulefait, Gabor Wiese

CLASSIFICATION OF SUBGROUPS OF SYMPLECTIC
GROUPS OVER FINITE FIELDS CONTAINING
A TRANSVECTION

Communicated by J. Smith

Abstract. In this note, we give a self-contained proof of the following classification
(up to conjugation) of finite subgroups of GSp,, (F;) containing a nontrivial transvection
for £ > 5, which can be derived from work of Kantor: G is either reducible, symplectically
imprimitive or it contains Sp,,(F¢). This result is for instance useful for proving ‘big image’
results for symplectic Galois representations.

1. Introduction

In this paper, we provide a self-contained proof of a classification result of
subgroups of the general symplectic group over a finite field of characteristic
¢ > 5 that contain a nontrivial transvection (cf. Theorem 1.1 below).

The motivation for this work came originally from Galois representations
attached to automorphic forms and the applications to the inverse Galois
problem. In a series of papers, we prove that for any even positive integer n
and any positive integer d, PSp,,(Fsa) or PGSp,, (Fa) occurs as a Galois group
over the rational numbers for a positive density set of primes ¢ (cf. [2], [3], [1]).
A key ingredient in our proof is Theorem 1.1. When we were working on this
project, we were not aware that this result could be obtained as a particular
case of some results of Kantor [6], hence we worked out a complete proof,
inspired by the work of Mitchell on the classification of subgroups of classical
groups. More precisely, in an attempt to generalise Theorem 1 of [9] to
arbitrary dimension, one of us (S. A.-d.-R.) came up with a precise strategy
for Theorem 1.1. Several ideas and some notation are borrowed from [7].
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130 S. Arias-de-Reyna, L. Dieulefait, G. Wiese

We believe that our proof of Theorem 1.1 can be of independent interest,
since it is self-contained and does not require any previous knowledge on
linear algebraic groups beyond the basics.

In order to fix terminology, we recall some standard definitions. Let K be
a field. An n-dimensional K-vector space V equipped with a symplectic form
(i.e. nonsingular and alternating), denoted by (v, w) = v e w for v,w e V, is
called a symplectic K-space. A K-subspace W < V is called a symplectic
K -subspace if the restriction of (v,w) to W x W is nonsingular (hence,
symplectic). The general symplectic group GSp(V,{-,-)) =: GSp(V') consists
of those A € GL(V) for which, there is a € K*, the multiplier (or similitude
factor) of A, such that (Av)e(Aw) = a(vew) for all v,w € V. The multiplier
of A is denoted by m(A). The symplectic group Sp(V,{-,-)) =: Sp(V) is the
subgroup of GSp(V) of elements with multiplier 1. An element 7 € GL(V) is
a transvection if T—idy has rank 1, i.e. if 7 fixes a hyperplane pointwisely, and
there is a line U such that 7(v) —v € U for all v € V. The fixed hyperplane
is called the azis of 7 and the line U is the centre (or the direction). We
will consider the identity as a “trivial transvection”. Any transvection has
determinant 1. A symplectic transvection is a transvection in Sp(V'). Any
symplectic transvection has the form

Ty[A] € Sp(V) : u— u + Xu, v)v

with direction vector v e V and parameter X € K (see e.g. [4], pp. 137-138).
The main classification result of this note follows. A short proof, deriving
it from [6], is contained in [3].

THEOREM 1.1. Let K be a finite field of characteristic at least 5 and
V' a symplectic K-vector space of dimension n. Then any subgroup G of
GSp(V) which contains a nontrivial symplectic transvection satisfies one of
the following assertions:

1. There is a proper K-subspace S <V such that G(S) = S.

2. There are nonsingular symplectic K-subspaces S; ¢ 'V with i =1,...,h
of dimension m for some m < n such that V = @?:1 S; and for all g€ G
there is a permutation o4 € Symy, (the symmetric group on {1,...,h})

with g(S;) = Sg,5)- Moreover, the action of G on the set {S1,...,Sh}
thus defined is transitive.

3. There is a subfield L of K such that the subgroup generated by the symplectic
transvections of G is conjugated (in GSp(V')) to Sp,(L).

2. Symplectic transvections in subgroups

Recall that the full symplectic group is generated by all its transvections.
The main idea in this part is to identify the subgroups of the general symplectic
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Classification of subgroups of symplectic groups. .. 131

group containing a transvection by the centres of the transvections in the
subgroup.

Let K be a finite field of characteristic £ and let V' be a symplectic
K-vector space of dimension n. Let G be a subgroup of GSp(V'). The main
difficulty in this part stems from the fact that K need not be a prime field,
whence the set of direction vectors of the transvections contained in G need
not be a K-vector space. Suppose, for example, that we want to deal with the
subgroup G = Sp,,(L) of Sp,,(K) with L a subfield of K. Then the directions
of the transvections of G form the L-vector space L™ contained in K™. This
is what we have in mind when we introduce the term (L, G)-rational subspace
below. In order to do so, we set up some more notation.

Write £(G) for the set of 0 # v € V such that T,[\] € G for some
A € K. More naturally, this set should be considered as a subset of P(V'), the
projective space consisting of the lines in V. We call it the set of centres (or
directions) of the symplectic transvections in G. For a given nonzero vector
v € V, define the parameter group of direction v in G as

Pu(G) :={\e K | T,[\] € G}.
The fact that T,[p] o Ty[A] = Ty[p + A] shows that P,(G) is a subgroup
of the additive group of K. If K is a finite field of characteristic ¢, then
Py(G) is a finite direct product of copies of Z/¢Z. Denote the number of
factors by rk,(G). Because Py, (G) = 53 Py(G) for A € K*, it only depends
on the centre U := (v)g € L(G) < P(V), and we call it the rank of U in G,
although we will not make use of this in our argument.
We find it useful to consider the surjective map

(’Uv)‘)’_’Tu
—_—_—

®:VxK i {symplectic transvections in Sp(V')}.

The multiplicative group K< acts on V x K via x(v, \) := (zv, 2~ 2)). Passing
to the quotient modulo this action yields a bijection

(V{0 x K/ SRR

A
] {nontrivial symplectic transvections in Sp(V)}.

When we consider the first projection 7y : V' x K — V modulo the action of
K> we obtain

my 2 (VA{0} x K)/K™ — P(V),
which corresponds to sending a nontrivial transvection to its centre. Let W
be a K-subspace of V. Then ® gives a bijection

(W\{0} x K)/K* A2 ToA, {nontrivial symplectic transvections

in Sp(V') with centre in W}.
Let L be a subfield of K. For a subset S € V, we denote by {(S), the L-span
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132 S. Arias-de-Reyna, L. Dieulefait, G. Wiese

of the elements of S inside V. We call an L-vector space Wy € V L-rational
if dimg Wg = dimy Wy with Wy := (Wp )k and (-, -) restricted to W, x W,
takes values in L. An L-vector space Wy, € V is called (L, G)-rational if Wp,
is L-rational and ® induces a bijection

v,\)—Ty[A]

(Wr\{0} x L)/L* ( G n {nontrivial sympl. transvections

in Sp(V') with centre in Wi }.

Note that (Wr\{0} x L)/L* is naturally a subset of (Wx\{0} x K)/K*.

A typical example of (L, Sp,,(L))-rational subspace can be constructed as
follows: let Vi, be a symplectic L-vector space of dimension n, and consider
the symplectic K-vector space V =V, ®7 K (where the symplectic form on
V1 is extended K-linearly to V). Then any L-subvector space Wr, of V7, is
(L, Sp(Vy))-rational.

A K-subspace W < V is called (L,G)-rationalisable if there exists an
(L, G)-rational Wy, with Wy = W. We speak of an (L, G)-rational symplectic
subspace Wy, if it is (L, G)-rational and symplectic in the sense that the
restricted pairing is non-degenerate on Wp. Let Hy and Iy, be two (L, G)-
rational symplectic subspaces of V. We say that Hy, and I, are (L, G)-linked
if there is 0 # h € Hy, and 0 # w € I, such that h + w € L(G).

3. Strategy

Now that we have set up all notation, we will describe the strategy behind
the proof of Theorem 1.1, as a service for the reader.

If one is not in case 1, then there are ‘many’ transvections in G, as
otherwise the K-span of £L(G) would be a proper subspace of V stabilised
by G. The presence of ‘many’ transvection is used first in order to show
the existence of a subfield L € K and an (L, G)-rational symplectic plane
Hp < V. For this it is necessary to replace G by one of its conjugates inside
GSp(V). The main ingredient for the existence of (L, G)-rational symplectic
planes, which is treated in Section 5, is Dickson’s classification of the finite
subgroups of PGLy(TFy).

The next main step is to show that two (L, G)-linked symplectic spaces
in V' can be merged into a single one. This is the main result of Section 6.
The main input is a result of Wagner for transvections in three dimensional
vector spaces, proved in Appendix A.

The merging results are applied to extend the (L, G)-rational symplectic
plane further, using again the existence of ‘many’ transvections. We obtain
a maximal (L, G)-rational symplectic space I, € V in the sense that £L(G) <
Igxul I%, which is proved in Section 7. The proof of Theorem 1.1 can be
deduced from this (see Section 8) because either Ik equals V, that is the

Brought to you by | Biblioteca de la Universidad de Sevilla
Authenticated
Download Date | 10/13/16 7:54 AM



Classification of subgroups of symplectic groups. .. 133

huge image case, or translating I by elements of G gives the decomposition
in case 2.

4. Simple properties
We use the notation from the Introduction. In this subsection we list some
simple lemmas illustrating and characterising the definitions made above.

LEMMA 4.1. Letv e L(G). Then {vyr, is an (L, G)-rational line if and only
if Po(G) = L.

Proof. This follows immediately from that fact that all transvections with
centre (V) can be written uniquely as T,,[A] for some A € K. m

LEMMA 4.2. Let Wi, €V be an (L, G)-rational space and U, an L-vector
subspace of Wr,. Then Uy, is also (L, G)-rational.

Proof. We first give two general statements about L-rational subspaces. Let
ui,...,uqg be an L-basis of U;, and extend it by wq,...,w, to an L-basis
of Wr. As Wy is L-rational, the chosen vectors remain linearly independent
over K, and, hence, Uy, is L-rational. Moreover, we see, e.g. by writing down
elements in the chosen basis, that Wi, n Ug = Uy,

It is clear that ® sends elements in (U, x L)/L* to symplectic transvections
in G with centres in Ug. Conversely, let T,,[A] be such a transvection. As
Wy, is (L, G)-rational, T,[A] = Ty, [p] with some u € Wy, and € L. Due to
Wi n Uk = Ur, we have u € Uy, and the tuple (u, u) liesin Uy x L. =

LEMMA 4.3. Let Wi, € V be an L-rational subspace of V. Then the
following assertions are equivalent:

(i) Wy, is (L, G)-rational.
(i) (a) Tw,[L] :={Tu[\] | A€ L, ve Wi} < G and
(b) for each U € L(G) < P(V) with U < Wi there is a w e U n W,
such that Py (G) = L (i.e. {uyr, is an (L, G)-rational line contained
in U by Lemma 4.1).

Proof. (i)=(ii). Note that (iia) is clear. For (iib), let U € L(G) with
U < Wgk. Hence, there is u € U and A € K* with T,[A\] € G. As W is
(L, G)-rational, we may assume that uw € Wy, and A € L. Lemma 4.2 implies
that (uyr, is an (L, G)-rational line.

(ii)=>(i). Denote by ¢ the injection (W\{0} x L)/L* — (Wg\{0} x
K)/K*. By (iia), the image of ® o lies in G. It remains to prove the
surjectivity of this map onto the symplectic transvections of G with centres
in Wg. Let T,[\] be one such. Take U = (v)i. By (iib), there is vg € U
such that U, = (voyr, € Wy, is an (L, G)-rational line. In particular, T,,[A] =
T[] with some p € L, finishing the proof. m
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134 S. Arias-de-Reyna, L. Dieulefait, G. Wiese

LEMMA 4.4. Let A e GSp(V) with multiplier « € K*. Then AT,[A\]A™! =
TAv[g]. In particular, the notion of (L,G)-rationality is not stable under
conjugation.

Proof. For all w € V, AT, [A|A" (w) = A(A " 'w + AM(A7lw e v)v) = w +
AM(A™lw e v)Av. Since A has multiplier o, w e Av = (A~ w e v), hence
AT, [N A H(w) = w + %(w o Av)Av = TAv[g](w). .

LEMMA 4.5. The group G maps L(G) into itself.

Proof. Let g € G and w € L(G), say Ty,[A] € G. Then by Lemma 4.4 we have
9Tw[N g™ = Tyw[2], where a is the multiplier of g. Hence, g(w) € £(G). u

The following lemma shows that the natural projection yields a bijec-
tion between transvections in the symplectic group and their images in the
projective symplectic group.

LEMMA 4.6. Let V be a symplectic K-vector space, 0 # uy,us € V. If
T, [M] 1 Tu,[M2] € {a-1d : a € K*}, then Ty, [M] = Tuy[ o]

Proof. Assume that T, [A1]7'Ty,[A2] = ald. Then for all v e V,
Ty [A2](v) — Ty [M1](av) = 0.
In particular, taking v = w1,
Ty [A2](u1) — Ty [M1](aur) = ur + A2(ug @ ug)ug — aug = 0,
hence either u; and ugy are linearly dependent or @ = 1 (thus both transvec-

tions coincide). Assume then that uy = buy for some b € K*. Then for all
v €V we have

Tou, [A2](v) — Ty [A1](av) = v + )\sz(v o up)u; — av — Aa(v e uy)ug
= (a — 1)1) + ()\262 — a)\l)(v ° ul)ul =0.

Choosing v linearly independent from u;, we obtain a = 1, as we wished to
prove. m

5. Existence of (L, G)-rational symplectic planes

Let, as before, K be a finite field of characteristic ¢, let V be a n-
dimensional symplectic K-vector space and let G € GSp(V') be a subgroup.
We will now prove the existence of (L, G)-rational symplectic planes if there
are two transvections in G with nonorthogonal directions.

Note that any additive subgroup H < K can appear as a parameter
group of a direction. Just take G to be the subgroup of GSp(V') generated
by the transvections in one fixed direction with parameters in H. It might
seem surprising that the existence of two nonorthogonal centres forces the
parameter group to be the additive group of a subfield L of K (up to
multiplication by a fixed scalar). This is the contents of Proposition 5.5,
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which is one of the main ingredients for this article. This proposition, in turn,
is based on Proposition 5.1, going back to Mitchell (cf. [8]). To make this
exposition self-contained we also include a proof of it, which essentially relies
on Dickson’s classification of the finite subgroups of PGLy(F,). Recall that
an elation is the image in PGL(V) of a transvection in GL(V).

PROPOSITION 5.1. Let V' be a 2-dimensional K-vector space with basis
{e1,ea} and I' € PGL(V) a subgroup that contains two nontrivial elations
whose centers Uy and Us are different. Let £™ be the order of an £-Sylow
subgroup of T'.

Then K contains a subfield L with £™ elements. Moreover, there exists
A € PGLy(K) such that AUy = {e1), AUs = {ea), and AT A~ is either
PGL(VL) or PSL(VL), where Vi, = {e1,ea)r.

Proof. Since there are two elations 7, and 7o with independent directions Uy
and Uz, Dickson’s classification of subgroups of PGLa(FFy) (Section 260 of [5])
implies that there is B € PGLy(K) such that BT B~! is either PGL(Vy) or
PSL(VL), where L is a subfield of K. Note that the order of an ¢-Sylow of
I' ~ PGL2(Vy) (resp. T' ~ PSLy (V7)) coincides with the cardinality of L;
this implies that L has exactly ¢™ elements. By Lemma 4.4, the direction
of Br;B~! is BU; for i = 1,2 and the lines BU; are of the form (d;)f
with d; € Vg for i = 1,2. As PSL(Vy) acts transitively on V7, there is
C € PSL(Vy) such that CU; = {e1)x and CUs = {ea)i. Setting A := CB
yields the proposition. m

Although the preceding proposition is quite simple, the very important
consequence it has is that the conjugated elations A7; A~! both have direction
vectors that can be defined over the same L-rational plane.

LEMMA 5.2. Let V' be a 2-dimensional K -vector space, G < GL(V') con-
taining two transvections with linearly independent directions Uy and Usy. Let
£ be the order of any £-Sylow subgroup of G.

Then K contains a subfield L with ¢™ elements and there are A € GL(V)
and an (L, AGA™Y)-rational plane Vi, € V. Moreover, A can be chosen such
that AU; = U; for i = 1,2. Furthermore, if uy € Uy and us € Uy are such
that uy e ug € L, then Vi, can be chosen to be {uy,u2)r.

Proof. We apply Proposition 5.1 with e; = u1, e = ug, and I' the image of
G in PGL(V), and obtain A € GL(V') (any lift of the matrix provided by the
proposition) such that AT A~! equals PSL(V) or PGL(V}) for the L-rational
plane Vi, = (uj,ugyr, < V, and AU; = U; for i = 1,2. For PSL(Vy) and
PGL(Vy) it is true that the elations contained in them are precisely the
images of T,,[A] for v e Vi, and A € L.
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First, we know that all such T, [A] are contained in SL(V7) and, thus, in
AGA™? (since ATA™! is PSL(Vy) or PGL(VL)). Second, by Lemma 4.6 the
image of T,[\] in ATA™! has a unique lift to a transvection in SL(Vy) <
AGA™!, namely T,[\]. This proves that the transvections of AGA™! are
precisely the T,[A] for v € Vi, and A € L. Hence, V7, is an (L, AGA™!)-rational
plane. =

LEMMA 5.3. Let Uy, Us € L(G) be such that H = Uy @ Uz is a symplectic
plane in V. By Gy we denote the subgroup {g € G | g(H) < H} and by G|g
the restrictions of the elements of Gy to H. Then L(G|g) € L(G) (under
the inclusion P(H) < P(V)).

Proof. Let 7; € G be transvections with directions U; for ¢ = 1,2. Clearly,
T1,T9 € Gy and their restrictions to H are symplectic transvections with the
same directions. Consequently, Lemma 5.2 provides us with A € GL(H) and
an (L, AGA™!)-rational plane H;, < H.

Let U € L(G|g). This means that there is g € Go such that g|g is a
transvection with direction U, so that Ag|yA~! is a transvection in AG|yA~1
with direction AU by Lemma 4.4. As Hy is (L, AG|gA~1)-rational, all
transvections T, [A] for v € Hy, and A € L lie in AG|gA~!, whence AG|gA~!
contains SL(Hy). Consequently, there is h € AG|gA~! such that hAU =
AU;. But A'hA € G|y, whence there is v € Gy with restriction to H equal
to A='hA. As vH € H, it follows that YU = v|gU = A~'hAU = U;. Now,
=177 is a transvection in G with centre y~1U; = U, showing U € £L(G). =

COROLLARY 5.4. Let Uy,Us € L(G) be such that H = Uy @ Uy is a sym-
plectic plane in V. By Gy we denote the subgroup {g € G | g(H) < H} and
by G|g the restrictions of the elements of Go to H. Then the transvections
of G| are the restrictions to H of the transvections of G with centre in H.

Proof. Let T be the subgroup of GG generated by the transvections of G with
centre in H. We can naturally identify T with T'|z. Let U be the subgroup
of G|y generated by the transvections of G|g. We have that T'|g < U.

Apply Lemma 5.2 to the K-vector space H and the subgroup U < GL(H).
There exists a subfield L < K, and an L-rational plane Hj such that U
is conjugate to SL(Hp), hence U ~ SLo(L). Applying Lemma 5.2 to the
K-vector space H and the subgroup 7|y, we obtain a subfield L' ¢ K,
and an L'-rational plane Hy, such that T'|g is conjugate to SL(Hp/), hence
H ~ SLy(L"). But L(T|g) = L(G) n H = L(G|g) = L(U) by Lemma 5.3,
whence L = L' and the cardinalities of U and T|g coincide. Therefore they
are equal. m

PROPOSITION 5.5. Let Uy,Us € L(G) < P(V) which are not orthogonal.
Then there exist a subfield L < K, A € GSp(V), and an L-rational symplectic
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plane Hy, such that AUy € Hg, AUy € Hg and such that Hy, is (L, AGAfl)—
rational. Moreover, if we fix uy € Uy, ug € Uy such that uy e us € L™, we can
choose Hy, = {uy,uz)r, and A satisfying AU, = Uy, AUy = Us.

Proof. Let H = U; ® Us and note that this is a symplectic plane. Define G
and G|p as in Lemma 5.3. Lemma 5.2 provides us with B € GL(H) such that
BU; = U; for i = 1,2 and such that Hj, = (uj,us2)r, is an (L, BG|yB™1)-
rational plane. We choose A € GSp(V') such that AH < H and Alg = B
(this is possible as any symplectic basis of H can be extended to a symplectic
basis of V). We want to prove that Hp, is an (L, AGA™!)-rational symplectic
plane in V.

And, indeed, by Corollary 5.4, the nontrivial transvections of AGA~!
with direction in H coincide with the nontrivial transvections of BG|yB~!,
which in turn correspond bijectively to (H \{0} x L)/L. =

Note that Theorem 1.1 is independent of conjugating G inside Sp(V').
Hence, we will henceforth work with (L, G)-rational symplectic spaces (instead
of (L, AGA™1)-rational ones).

COROLLARY 5.6.

(a) Let Hy, be an L-rational plane which contains an (L, G)-rational line Uy 1,
as well as an L-rational line Uy 1, not orthogonal to Uy 1, with Us € L(G).
Then Hy, is an (L, G)-rational symplectic plane.

(b) Let Uy, = (u1)r, be an (L, G)-rational line and Uy = {ug)k € L(G) such
that uy @ ug € L*. Then {ui,ug)r, is an (L, G)-rational symplectic plane.

Proof. (a) Fix u; € Uy, and up € Uy, such that u; e ug = 1, and call
Wi, = {ui,u2yr. Apply Proposition 5.5: we get L € K and A € GSp(V)
such that (AU 1)k = (u1)k, AUz = (ugyk and Wy, is (L, AGA~1)-rational.
Let ai,a9 € K* be such that Auy = aju; and Aus = asus. The proof
will follow three steps: we will first see that P,,(G) = L, then we will see
that Hj, satisfies Lemma 4.3(iia) and finally we will see that Hj, satisfies
Lemma 4.3(iib).

Let « be the multiplier of A. First note the following equality between «,
a1 and ag:

1 1
1=wujeuy =—(Auj o Aug) = —(ajuy ® aguz) = adz
o o o

Recall that Pay(G) = 25Py(G). From Lemma 4.4 we have Pa,(AGA™) =
1
2Pu(G).

On the one hand, since U; 1, is (L, G)-rational and u; € U; 1, we know that
Py, (G) = L by Lemma 4.1. On the other hand, since (u1)y, is (L, AGA™1)-
rational, P, (AGA™) = L, hence P,,(G) = % L. We thus have % € L.

1

a ay
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Moreover, since (us)y, is (L, AGA™!)-rational (e.g. using Lemma 4.2), we
2 2
have that Py, (AGA™") = L, hence Py, (G) = SL = 97 L = “L = L. This
2

a2
proves that (usyr, is (L, G)-rational by Lemma 4.1.
Next, we will see that Ty, [L] < G. Let by,by € L with by # 0 and A € L*.
Consider the transvection Tp,q, +bous[A]. We want to prove that it belongs

to G. We compute

_ A
ATb1u1+b2u2 [/\]A ! = TA(b1u1+b2uz) |: :|

o

. Mo B2a2\
= Lbjajuy+beasus a - U1+b2af us .

bija (6%

Note that since § = %% € L and since Wy, = {uy,us)y, is (L, AGA~!)-rational,
it follows that AT}, 1y, [NA™! € AGA™L, and therefore Ty, 1+ pyu, [A] € G.
Note that the same conclusion is valid for by = 0 as (ug)r, is (L, G)-rational.

Finally, it remains to see that if U € L(G) n (HL)k, then there is
ue UnHp, with P,(G) = L. Assume that U € L(G)n{(H)k. Since we have
seen that (ugyr, is (L, G)-rational, we can assume that U # (ugyx. Therefore,
we can choose an element v € U with v = uy + bug, for some b € K. It suffices
to show that be L. Let T;,[A\] € G be a transvection with direction U. Then

computing AT,[A]A~! as above, we get that AT, [M\]A™! = Tu1+bﬂu2[a%]
al

is a transvection with direction in L(AGA™') n Wy, hence the (L, AGA™!)-
rationality of W, implies that b € L.

(b) follows from (a) by observing that the condition u; @ ug € L* ensures
that (u1,ug)r, is an L-rational symplectic plane. =

The next corollary says that the translate of each vector in an (L, G)-
rational symplectic space by some orthogonal vector w is the centre of a
transvection if this is the case for one of them.

COROLLARY 5.7. Let Hp <V be an (L, G)-rational symplectic space. Let
we Hy and 0 # h e Hy, such that (h+ w)i € L(G). Then (hy +w)y, is an
(L, G)-rational line for all 0 # hy € Hy,.

Proof. Assume first that Hy, is a plane. Let he Hj with heh=1 (hence
Hy, = (h,h)1). As{(h)y is an (L, G)-rational line and he(h+w) = 1, it follows
that <ﬁ, h +w)y, is an (L, G)-rational plane by Corollary 5.6. Consequently,
for all 4 € L we have that (uh + h + w)y, is an (L, G)-rational line. Let now
u e L*. Then (uﬁ + h +w) e h = p # 0, whence again by Corollary 5.6
{uh + h + w,h)p is an (L, G)-rational plane. Thus, for all v € L it follows
that (uh + (v + 1)h + w)y, is an (L, G)-rational line. In order to get rid of
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the condition p # 0, we exchange the roles of A and iL, yielding the statement
for planes.

To extend it to any symplectic space Hy, note that, if hy, ho € Hp, are
nonzero elements, there exists an element heH 1, such that hq e h £ 0,
ho @ h 4+ 0. Namely, let hyi, hy be such that hy e hy + 0, hy  hy + 0 (they
exist because on Hj, the symplectic pairing is nondegenerate). If ho o hy +0
or hy e ho % 0, we are done. Otherwise h = h1 + hs satisfies the required
condition.

Returnlng to the proof, if hy € Hp, is nonzero, take h e Hj such that
heh # 0 and h; e h # 0. First apply the corollary to the plane (h, h>L,
yielding that h +w is an (L, G)-rational line, and then apply it to the plane
<ﬁ, hi)r, showing that hy + w is an (L, G)-rational line, as required. m

In the next lemma, it is important that the characteristic of K is greater
than 2.

LEMMA 5.8. Let Hy, be an (L, G)-rational symplectic space. Let h, he Hp,
different from zero and let w,w € H[L( such that wew € L* and h+w, h+w €
L(G). Then {w, W)y, is an (L G)-rational symplectic plane.

Proof. By Corollary 5.7 we have that (h+ @)y, is an (L, G)-rational line. As
(h+w)e (h+w)=wewe L*, by Corollary 5.6 it follows that (w — W), is
an (L, G)-rational line. Since (—h — w)k € L(G), by Corollary 5.7 we have
that (—h+w)r, is (L, G)-rational, and from (—h+w)e (h+w) = wew € L*
we conclude that (w + @), is an (L, G)-rational line. As (w —w) e (w+w) =
2wew € L™, we obtain that (w + @, w —w)r, = {w, W)y, is an (L, G)-rational
symplectic plane, as claimed. =

We now deduce that linking is an equivalence relation between mutually
orthogonal spaces. Note that reflexivity and symmetry are clear and only
transitivity need be shown.

LEMMA 5.9. Let Hp, I, and Jp be mutually orthogonal (L,G)-rational

symplectic subspaces of V.. If Hy, and Iy, are (L,G)-linked and also Iy, and
Jr, are (L, G)-linked, then so are Hy, and J,.

Proof. By definition there exist nonzero hg € Hyp, 10,21 e Ir, and j() e Jg
such that hg + ip € £(G) and i1 + jo € L(G). There are hg € Hy, and ig € I,
such that ﬁg ehy=1and igeig=1.

By Corollary 5.7 we have, in particular, that (hg + i9)r, <§o + joyr, and
(ho + (i + 10)dr are (L, G)-rational lines. As (ho + ig) ® (io + jo) = 1, by
Corollary 5.6 also (hg + (i + 19) + jo)r is (L, G)-rational. Furthermore, due
to (ilo + (io + %0)) . (h() + (io + %0) + ][)) = 1, it follows that <(h0 — il()) +j0>L
is (L, G)-rational, whence Hy, and J, are (L,G)-linked. u
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6. Merging linked orthogonal (L,G)-rational symplectic subspaces

We continue using our assumptions: K is a finite field of characteristic
at least 5, L € K a subfield, V an n-dimensional symplectic K-vector
space, G < GSp(V) a subgroup. In the previous section, we established the
existence of (L, G)-rational symplectic planes in many cases (after allowing
a conjugation of G inside GSp(V')). In this section, we aim at merging
(L, G)-linked (L, G)-rational symplectic planes into (L, G)-rational symplectic
subspaces.

It is important to remark that no new conjugation of G is required. The
only conjugation that is needed is the one from the previous section in order
to have an (L, G)-rational plane to start from.

LEMMA 6.1. Let Hy and Iy, be two (L,G)-rational symplectic subspaces
of V which are (L, G)-linked. Suppose that Hy, and Iy, are orthogonal to each
other. Then all lines in Hy, @ I, are (L, G)-rational.

Proof. The (L, G)-linkage implies the existence of h; € Hy, and wy € Iy, such
that (hy + wi)rx € L(G). By Corollary 5.7 (h + wy )y, is an (L, G)-rational
line for all h € Hy. The same reasoning now gives that (h + w)y, is an
(L, G)-rational line for all he Hy and all w e I1,. m

In view of Lemma 4.3 the above is (iia). In order to obtain (iib), we need
to invoke a result of Wagner (see Proposition A.1 in Appendix A).

PROPOSITION 6.2. Let Uy, Us,Us € L(G) and W = Uy + Us + Us. Assume
that dim W = 3, Uy and Us not orthogonal and let U be a line in W N wt
which is linearly independent from Us and is not contained in Uy @ Us. Then
(U@ Usz) n (U@ Us) is a line in L(G).

Proof. Fix transvections T; € G with centre U;, 1 = 1,2,3. These transvec-
tions fix W; let H < SL(W) be the group generated by the restrictions of the
T; to W. The condition U € W+ guarantees that the T} fix U pointwise. Note
that furthermore U £ Us and U & Uy @ Uz. We can apply Proposition A.1,
and conclude that (U; @ Us) n (U @ Us) is the centre of a transvection T'
of H. This transvection fixes the symplectic plane U; @ Us. Call Ty the
restriction of 7' to this plane. It is a nontrivial transvection (since no line
of U; @ Uz can be orthogonal to all U; @ Uz). Hence by Lemma 5.3 the line
(U ®Us) n (U @ Us) belongs to L(G). =

We now deduce rationality statements from it.

COROLLARY 6.3. Let Hy be an (L,G)-rational symplectic plane and let
Us and Uy be linearly independent lines not contained in Hy . Assume that
Uy € Hg @ Us is orthogonal to Hi and to Us and assume that Us € L(G).
Then the intersection Hx n (Us @ Uy) = I for some line I, < H,.
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Proof. Choose two (L,G)-rational lines Uy and Uy such that Hp =
Ui ®Us . With U = Us we can apply Proposition 6.2 in order to obtain
that I := Hg n (U3 @ Uy) is a line in £(G) contained in Hi. As Hj, is
(L, G)-rational, it follows that I is (L, G)-rationalisable. m

COROLLARY 6.4. Let Hp, €V be an (L, G)-rational symplectic space. Let
h+we L(G) with0# he Hg and we Hj. Then h e L(G). In particular,
(hyk is an (L, G)-rationalisable line, i.e. there is pn € K* such that ph € Hr,.

Proof. Replacing, if necessary Hy, by any (L, G)-rational plane contained
in Hy,, we may without loss of generality assume that Hy, is an (L, G)-rational
plane. Let y := h+w. If w = 0, the claim follows from the (L, G)-rationality
of Hy. Hence, we suppose that w # 0. Then Us := (y)i is not contained
in Hg. Note that w is perpendicular to Us and to Hg, and w € Hy ® {y k.
Hence, Corollary 6.3 gives that the intersection Hx n (Us @ (w)k) = {(h)k
is in E(G) ]

Corollary 6.4 gives the rationalisability of a line. In order to actually
find a direction vector for a parameter in L, we need something extra to
rigidify the situation. For this, we now take a second link which is sufficiently
different from the first link.

COROLLARY 6.5. Let Hy, €V be an (L, G)-rational symplectic space. Let
0# he Hg and w € Hi such that h + @ € L(G). Suppose that there are
nonzero h € Hy, and w € Hy such that h +w € L(G) and w e € L*. Then
iL € HL.

Proof. By Corollary 6.4 there is some 8 € K* such that Sh € Hy. We
want to show that 8 € L. By Corollary 5.7 we may assume that h e h # 0,
more precisely, h e (Bﬁ) = 1; and we have furthermore that (h + w), is
an (L, G)-rational line. By Corollary 5.6 (b), (h, Sh)y, is an (L, G)-rational
symplectic plane contained in Hy. Let ¢ := w e w € L>*. We have

- ~ 1
(h+w)e(h+w)=heh+wew = B+c=:u.
If p = 0, then 8 € L and we are done. Assume that p # 0. By Corollary 5.6 (b)
it follows that (h 4+ w,u~*(h + w))y, is an (L, G)-rational symplectic plane.
Thus, (h +w + p~t(h + @)Yy, is an (L, G)-rational line. By Corollary 6.4
T

there is some v € K* such that v(h + u~'h) € Hy. Consequently, v € L*,
whence p € L, so that e L.

The main result of this section is the following merging result.

PROPOSITION 6.6. Let Hy, and Iy, be orthogonal (L, G)-rational symplectic
subspaces of V' that are (L, G)-linked. Then Hy, @ Iy, is an (L, Q)-rational
symplectic subspace of V.
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Proof. We use Lemma 4.3. Part (iia) follows directly from Lemma 6.1. We
now show (iib). Let h +w € £L(G) with nonzero h € Hi and w € Ik be given.
Corollary 6.4 yields pu, v € K* such that uh € Hy, and vw € Iy. Let he Hp
with (uh) e h =1, as well as @ € I, with (vw) e @ = 1. Lemma 6.1 tells us
that h + w € £(G). Together with (vh) + (vw) € L(G), Corollary 6.5 yields
vh € Hy,, whence vh+vwe H, ® I;,. u

7. Extending (L,G)-rational spaces

We continue using the same notation as in the previous sections. Here,
we will use the merging results in order to extend (L, G)-rational symplectic
spaces.

PROPOSITION 7.1. Let Hy, be a nonzero (L, G)-rational symplectic subspace
of V. Let nonzero h,h € Hg, w, € Hp be such that h +w, h + w € L(G)
and w e w # 0. Then there exist a, € K* such that {aw, W)y, is an
(L, G)-rational symplectic plane which is (L, G)-linked with Hr,.

Proof. By Corollary 6.4 we may and do assume by scaling A+ w that h € Hy,.
Furthermore, we assume by scaling & -+ @ that w e @ = 1. Then Corollary 6.5
yields that h € Hy. We may appeal to Lemma 5.8 yielding that {w, W)y, is
an (L, G)-rational plane. The (L, G)-link is just given by h + w. =

COROLLARY 7.2. Let Hy, be a non-zero (L, G)-rational symplectic subspace
of V. Let nonzero h,h € Hg, w,w € Hp be such that h + w, h + 1w € L(G)
and w e w # 0. Then there is an (L,G)- mtzonal symplectic subspace I, of V
containing Hy, and such that Ix = (Hg,w,W)k.

Proof. This follows directly from Propositions 7.1 and 6.6. =

PROPOSITION 7.3. Assume that (L(G))x = V. Let Hr be a nonzero
(L, G)-rational symplectic space. Let 0 # v e L(G)\(Hk u Hi). Then there
is an (L, G)-rational symplectic space Iy, containing Hy, such that v € Ik.

Proof. We write v = h+w with h € Hg and w € Hl Note that both h and
w are nonzero by assumption. As (L(G))x =V, we may choose 0 € [,(G)
such that v e w # 0. We again write v = h + w with he Hyg and o € HK

We, moreover, want to ensure that h#0. Ifh= 0, then we proceed as
follows. Corollary 6.4 implies the existence of yu € K* such that uh € Hy,.
Now replace h by ph and w be pw. Then Corollary 5.7 ensures that (h +w)y,
is an (L, G)-rational line. Furthermore, scale @ so that (h + w) e w € L*,
whence by Corollary 5.6 h +w + W € L(G). We use this element as ¢ instead.
Note that it still satisfies © ® w # 0, but now h % 0.

Now we are done by Corollary 7.2. =

Brought to you by | Biblioteca de la Universidad de Sevilla
Authenticated
Download Date | 10/13/16 7:54 AM



Classification of subgroups of symplectic groups. .. 143

COROLLARY 7.4. Assume that {L(G))x =V, and let Hy, be an (L,G)-
rational symplectic space. Then there is an (L, G)-rational symplectic space I,
containing Hy, such that L(G) € Ix U I.

Proof. Iterate Proposition 7.3.

8. Proof of Theorem 1.1
In this section we will finish the proof of Theorem 1.1.

LEMMA 8.1. Let V =51 ®---@® Sy be a decomposition of V into linearly
independent, mutually orthogonal subspaces such that L(G) € S1 U -+ U Sp.

(a) If vi,v2 € L(G) N S1 are such that v1 + va2 € L(G), then for all g € G
there exists an index i € {1,...,h} such that g(vi) and g(vy) belong to
the same S;.

(b) If Sy is (L, G)-rationalisable, then for all g € G there exists an index
i€ {l,...,h} such that gS1 < S;.

Proof. (a) Assume that g(vi) € S; and g(v2) € S; with ¢ # j. Then
g(v1) + g(v2) = g(v1 + v2) € L(G) satisfies g(v1 + v2) € S; @ 5, but it
neither belongs to S; nor to S;. This contradicts the assumption that
LG)SSiu---U Sy

(b) If S; = 51,1, with Sq 1 an (L, G)-rational space, we can apply (a) to
an L-basis of S17,. =

COROLLARY 8.2. Let I, € V be an (L, G)-rational symplectic subspace
such that L(G) € Ik U IIL( and let g € G. Then either g(Ix) = Ix or
g(Ix) S I#; in the latter case Ic n g(Ix) = 0.

Proof. This follows from Lemma 8.1 with S; = Ix and Sy = IIJ'{. "
We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. As we assume that G contains some transvection,
it follows that £(G) is nonempty and consequently (£(G))k is a nonzero
K-vector space stabilised by G due to Lemma 4.5. Hence, either we are in
case 1 of Theorem 1.1 or (£(G))x =V, which we assume now.

From Proposition 5.5, we obtain that there is some A € GSp(V), a subfield
L < K such that there is an (L, AGA~!)-rational symplectic plane Hp,. Since
the statements of Theorem 1.1 are not affected by this conjugation, we may
now assume that Hy, is (L, G)-rational.

From Corollary 7.4, we obtain an (L, G)-rational symplectic space I; p,
such that £(G) < I1 x U IfK. If I g = V, then it follows that I ; =~ L",
thus G contains a transvection whose direction is any vector of Iy . As
the transvections generate the symplectic group, it follows that G contains
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Sp(I1,1) = Sp,,(L) and we are in Case 3 of Theorem 1.1. Hence, suppose
now that I1 g # V.

Either every g € G stabilises I1 i, and we are in Case 1 and done, or
there is g € G and v € I 1, with g(v) ¢ I1 k. Set Iy := gl; . Note that
I, < L(G) because of Lemma 4.4. Now we apply Corollary 8.2 to the
decomposition V' = I g @ IiK and obtain that g(I1 k) < IiK. Moreover

L(G) = E(gGgil) c gl kv gIll’K =Ihgu IQL’K.

We now have L(G) € I1 g Ul g U (ILKGBIZK)L. Either Iy k ®@Ir k =V
and (I1 x @ IQ’K)l = 0, or there are two possibilities:

o Forall ge G, gl1 1, < I kU I k. If this is the case, then G fixes the space
Ik ® I i, and we are in Case 1, and done.

o There exists g € G, v € I 1, such that g(v) ¢ I} k U Io k. Set I3, = gl1 1.
Due to L(G) € I3 x v IiK, we then have

LG) S hkxulkvlskg oIk @k ®Is k)"

Hence, iterating this procedure, we see that either we are in Case 1, or
we obtain a decomposition V' = I1 x @ - - - ® I x with mutually orthogonal
symplectic spaces such that L(G) S L1 g U -+ U I k.

Note that Lemma 8.1 implies that G respects this decomposition in the
sense that for all i € {1,..., h} thereis j € {1,...,h} such that g(I; k) = I; k-
If the resulting action of G on the index set {1,...,h} is not transitive, then
we are again in case 1, otherwise in case 2. =

A. A result on transvections in a 3-dimensional vector space

In this appendix, we provide a proof of the following result concerning
subgroups in a 3-dimensional vector space that was used in Section 6:

PROPOSITION A.l. Let V be a 3-dimensional vector space over a finite
field K of characteristic £ > 5, and let G < SL(V') be a subgroup satisfying:

1. There exists a 1-dimensional K -vector space U such that G|y = {idy}.
2. There exist Uy, Us, Us three distinct centres of transvections in G such that
UcU ®U; and U + Us.

Then (Uy @ Us) n (U @ Us) is the centre of a transvection of G.

This result is Theorem 3.1(a) of [10]. Below, we have written the proof in
detail. We will essentially follow the original proof of Wagner [10], reformu-
lating it with the terminology developed in this paper. We follow [8] when
Wagner refers to the results proven there. We also used [9] to ‘get a feeling’
of the ideas used in [10].
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The setting differs from that of the rest of the paper, since there is no
symplectic structure. One consequence of this is that the axis of a transvection
7 in SL(V) is not determined by its centre. Given any plane W < V and
any line U < V, there exist transvections with axis W and centre U; namely,
fixing an element ¢ € Hom(V, K') = V* of the dual vector space of V' such
that W = ker(y), and fixing a nonzero vector u € U, then all transvections in
SL(V) with axis W and centre U are given by 7(v) := v + Ap(v)u for some
A€ K (cf. [4], p. 160).

A key input in the proof is Lemma 5.2. In order to apply it to a subplane
W < V, we need to endow it with some symplectic structure. We do so by
choosing any two linearly independent vectors e;, e and considering the
symplectic structure defined by declaring {e1,e2} to be a symplectic basis.

Proof of Proposition A.1. Without loss of generality, we may assume
that G is generated by transvections. In particular, we may assume that
G < SL(V).

The hypotheses imply that the inclusion Uz < (U @ U) n (U2 @ U) does
not hold. Indeed, assume that U3 € (U @ U) n (U2 @ U). We know that
V=U®Uy®U, hence Uy ®U + Uy ®U, so that (U1 ®U) n (U2 U) has
dimension 1. Therefore Us = (U @ U) n (Us @ U) = U, but by hypothesis
Us #+ U. Interchanging U; and Uj if necessary we can assume that Us &
U,eU.

For i = 2,3, let Wy ; = Uy @ U; and Gy; be the subgroup of GL(W1 ;)
generated by the transvections in G' that preserve the plane Wi ;. We want
to endow Wy ; with a suitable (L, Gy ;)-rational structure. In particular, we
want that these structures be compatible.

For each i = 1,2, 3, fix a transvection T; € G with centre U;. Note that,
since G|y is the identity and U # Uj, the axis of T; (that is, the plane
pointwise fixed by it) must be U; @ U.

The transvections T} and T5 preserve the plane U; @ Us, and since this
plane does not coincide with the axis of T} or 15, they both act as nontrivial
transvections on U1 @Us. We apply Lemma 5.2 to the 2-dimensional K-vector
space Wi (which we endow with a symplectic structure with symplectic
basis {u1,u2} such that u; € Uy and ug € Uz) and the group G2 and obtain
a matrix A € GLy(K) such that AUy = Uy, AUy = Us and a subfield L of
K such that (Wi 2)g is an (L, AG1 2A™1)-rational plane. Since U is linearly
independent from U; @ Us, we can extend A to an element of GL(V') such
that AU = U. Without loss of generality, we can replace G by AGA™! and
Us by AUs. Thus (WLQ)L = <U1,UQ>L is an (L, GLQ)—rational plane.

Since V = U1 @U@ U, we find a1, as € K such that 0 # u+ajuy +asus €
Us with some v € U. By hypothesis as # 0. Hence by normalising, we can
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assume 0 # ug := —u + aju1 + ug € Us, so that we have the relation
(1.1) U = ai1uy + ug + us.

The set B = {uj,uz,u} is a K-basis of V. The proof will be finished if we
show that G contains a transvection of direction uz — u = —aju; — ug €

(U Us)n (U@ Us).

Now we consider the plane W 3, and endow it with a symplectic structure
with symplectic basis {ui,us}. We claim that (ui,us)r is an (L,G13)-
rational plane. Indeed, if we show that (u;)r is an (L, Gj 3)-rational line,
then Corollary 5.6(b) applied to Uy, = (u1)r, and Us (which lies in £(G13)
because by hypothesis G contains a transvection with centre Us) yields the
result. Consider the set of transvections of G with centre U;. As discussed
above, their axis is U ® Uy = {v € V : pa(v) = 0}, where py denotes the
projection in the second coordinate with respect to the basis B. Thus any
transvection of G with direction U; can be written as 71 (v) = v + Apa(v)uy
for some A € K. Restricting T to Wi 2, and taking into account that
p2(v) = —v e uy with v € Wy for the symplectic structure on Wi o with
symplectic basis {u1, ua}, it follows from the (L, G 2)-rationality of (u1,u2)r,
that A € L. Now we restrict to W 3. Note that pa(v) = v e u; for v e Wy,
where o denotes the symplectic structure on W 3 defined by the symplectic
basis {u1,uz}. Thus the restriction of T7 to Wy 3 is T1(v) = v + A(v ® ug)uy.
This proves the (L, Gy 3)-rationality of (u1)r.

The discussion above shows that, if we fix the basis {ui,u;} of Wy,
then G1; contains SLg(L); in particular it contains the reflection given by
(ug — —uq,u; — —u;). Since G acts as the identity on U, we obtain that
G contains the element 07 ; given by (u; — —uy,u; — —uj,u — u). With
respect to the basis B, these elements have the shape

-1 0 0 -1 0 0
2= 0 -1 0 and d13=1]0 -1 0
0 0 1 0 2 1
Thus
1 00
T := 5172(51’3 =10 1 0
0 2 1

is a transvection of centre U and axis U @ U;. Since 2 is invertible in Fy, we
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can find k € Z such that

Th =

S O =
= = O
= o O

The transvection T% o T3 0 T~% € G has direction T*(u3) = u3 — u; this is
the transvection we were seeking. m
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