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IMPROVING BOUNDS FOR SINGULAR OPERATORS VIA

SHARP REVERSE HÖLDER INEQUALITY FOR A∞

CARMEN ORTIZ-CARABALLO, CARLOS PÉREZ, AND EZEQUIEL RELA

Dedicated To Prof. Samko

Abstract. In this expository article we collect and discuss some recent re-
sults on different consequences of a Sharp Reverse Hölder Inequality for A∞

weights. For two given operators T and S, we study Lp(w) bounds of Coifman-
Fefferman type:

‖Tf‖Lp(w) ≤ cn,w,p‖Sf‖Lp(w),

that can be understood as a way to control T by S.
We will focus on a quantitative analysis of the constants involved and show

that we can improve classical results regarding the dependence on the weight
w in terms of Wilson’s A∞ constant

[w]A∞ := sup
Q

1

w(Q)

∫
Q

M(wχQ).

We will also exhibit recent improvements on the problem of finding sharp
constants for weighted norm inequalities involving several singular operators.
In the same spirit as in [10], we obtain mixed A1–A∞ estimates for the com-
mutator [b, T ] and for its higher order analogue T k

b
. A common ingredient

in the proofs presented here is a recent improvement of the Reverse Hölder
Inequality for A∞ weights involving Wilson’s constant from [10].

1. Introduction

The purpose of this survey is to exhibit and discuss some recent results involving
improvements in two closely related topics in weight theory: Coifman–Fefferman
type inequalities for weighted Lp spaces and boundedness of Calderón–Zygmund
(C–Z) operators and their commutators with BMO functions. More generally, we
present several examples of the so called “Calderón–Zygmund Principle” which
says, essentially, that any C–Z operator is controlled (in some sense) by an adequate
maximal operator. Typically, those inequalities provide control over an operator
T with some singularity, like a singular integral operator, by means of a “better”
operator S, like a maximal operator. As a model example of this phenomenom, we
can take the classical Coifman–Fefferman inequality involving a C–Z operator and
the usual Hardy-Littlewood maximal function M (see [5], [6]). Throughout this
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paper, we will denote Lp(Rn, w) as Lp(w). As usual, for 1 < p < ∞, we will denote
with p′ the dual index of p, defined by the equation 1

p + 1
p′ = 1.

Theorem 1.1 (Coifman-Fefferman). For any weight w in the Muckenhoupt class
A∞, the following norm inequality holds:

(1.1) ‖Tf‖Lp(w) ≤ c ‖Mf‖Lp(w),

where 0 < p < ∞ and c = cn,w,p is a positive constant depending on the dimension
n, the exponent p and on the weight w.

Let us recall that a weight w is a non-negative measurable function. Such a
function w belongs to the Muckenhoupt class Ap, 1 < p < ∞ if

[w]Ap
:= sup

Q

(
1

|Q|

∫

Q

w(y) dy

)(
1

|Q|

∫

Q

w(y)1−p′

dy

)p−1

< ∞,

where the supremum is taken over all the cubes in R
n. This number is called the

Ap constant or characteristic of the weight w. For p = 1, the condition is that
there exists a constant c > 0 such that the Hardy-Littlewood maximal function M
satisfies the bound

Mw(x) ≤ cw(x) a.e. x ∈ R
n.

In that case, [w]A1
will denote the smallest of these constants. Since the Ap classes

are increasing with respect to p, we can define the A∞ class in the natural way by

A∞ :=
⋃

p>1

Ap.

For any weight in this larger class, the A∞ constant can be defined as follows:

‖w‖A∞ := sup
Q

( 1

|Q|

∫

Q

w
)
exp

( 1

|Q|

∫

Q

logw−1
)
.

This constant was introduced by Hruščev [9] (see also [8]) and has been the
standard A∞ constant until very recently when a “new” A∞ constant was found
to be better suited. This new constant is defined as

[w]A∞ := sup
Q

1

w(Q)

∫

Q

M(wχQ).

However, this constant was introduced by M. Wilson a long time ago (see [26,
27, 28]) with a different notation. This constant is more relevant since there are
examples of weights w ∈ A∞ so that [w]A∞ is much smaller than ‖w‖A∞ . Indeed,
first it can be shown that

(1.2) cn [w]A∞ ≤ ‖w‖A∞ ≤ [w]Ap
, 1 < p < ∞,

where cn is a constant depending only on the dimension. The first inequality is
the only nontrivial part and can be found in [10] where a more interesting fact is
also shown , namely that this inequality can be strict. More precisely, the authors
exhibit a family of weights {wt} such that [wt]A∞ ≤ 4 log(t) and ‖wt‖A∞ ∼ t/ log(t)
for t ≫ 1.

It should be mentioned that this constant has also been used by Lerner [14,
Section 5.5] (see also [12]) where the term “A∞ constant” was coined.

Going back to Theorem 1.1, we can see that the result is, in the way that it is
stated, a qualitative result. It says that the maximal operator M acts as a “control
operator” for C–Z operators, but the dependence of the constant c on both w
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and p is not precise enough for some applications. For instance, let us mention
that a precise knowledge of the behavior of this constant was crucial in the proof
of the following theorems from [16] where the authors address a problem due to
Muckenhoupt and Wheeden.

Theorem 1.2. Let T be a C–Z operator and let 1 < p < ∞. Let w be a weight in
A1. Then

‖T ‖Lp(w) ≤ c pp′ [w]A1
,

where c = cn,T .

As an application of this result, the following sharp endpoint estimate can be
proven.

Theorem 1.3. Let T be a C–Z operator. Let w be a weight in A1. Then

‖T ‖L1,∞(w) ≤ c [w]A1
(1 + log[w]A1

),

where c = cn,T .

An important point in the proof of these theorems was the use of a special
instance of (1.1) with a gain in the constant cn,w,p. To be more precise the following
L1 estimate was needed:

(1.3) ‖Tf‖L1(w) ≤ cn,T [w]Aq
‖Mf‖L1(w) w ∈ Aq

where there is an improvement in the constant appearing in (1.1), because cn,T is
a structural constant.

The same kind of qualitative and quantitative Coifman–Fefferman type results
are known or can be proved for a variety of singular operators, namely commu-
tators of C-Z operators with BMO functions, vector valued extensions and square
functions. In addition, there are also weak type estimates. In that direction, there
is also a notion of singularity that can be assigned to these operators. Roughly,
these commutators are “more singular” than C–Z operators, and these are “more
singular” than, for example, square functions. This notion of singularity is re-
flected in the kind of maximal operators involved in the norm inequalities. For the
commutator, we have from [24] (see also [23]) that, for any weight w ∈ A∞,

‖[b, T ]f‖Lp(w) ≤ cn,w,p ‖b‖BMO‖M
2f‖Lp(w),

where M2 = M ◦M . This result is sharp on the BMO norm of b but not on the
weight w. More generally, for the iterated commutator T k

b , the control operator
is Mk+1. We will show that in this case the constant depends on a (k + 1)-th
power of [w]A∞ . Therefore, as our first main purpose, we will show how to obtain
the above mentioned Coifman–Fefferman type inequalities involving Wilson’s A∞

constant [w]A∞ , which is, in light of the chain of inequalities (1.2), the good one.
We will also address the problem of finding sharp operator bounds for a variety

of singular operators. The improvement here will be reflected in a mixed bound in
terms of the A1 and A∞ constant of the weight w ∈ A1. This approach is taken
from [10], where the authors prove a new sharp Reverse Hölder Inequality (RHI) for
A∞ weights with the novelty of involving Wilson’s constant. It is important to note
that this RHI for Aq weights, 1 ≤ q ≤ ∞, was already known. Moreover, the same
proof as in the case of A1, which can be found in [15] with minor modifications, also
works for A∞ weights but with the “older” ‖w‖A∞ constant. However, the proof
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of the same property for Wilson’s constant [w]A∞ is more difficult and requires a
different approach.

Recall that if w ∈ Ap there are constants r > 1 and c ≥ 1 such that for any cube
Q, the RHI holds:

(1.4)

(
1

|Q|

∫

Q

wrdx

)1/r

≤
c

|Q|

∫

Q

w.

In the standard proofs both constants c, r depend upon the Ap constant of the
weight. A more precise version of (1.4) is the following result that can be found,
for instance, in [21].

Lemma 1.4. Let w ∈ Ap, 1 < p < ∞ and let

rw = 1 +
1

22p+n+1[w]Ap

.

Then for any cube Q,
(

1

|Q|

∫

Q

wrwdx

)1/rw

≤
2

|Q|

∫

Q

w.

Here we present the new result of T. Hytönen and the second author (see [10]).
This sharper version of the RHI plays a central role in the proofs of all the results
presented in this article.

Theorem 1.5 (A new sharp reverse Hölder inequality). Define rw := 1+
1

τn [w]A∞

,

where τn is a dimensional constant that we may take to be τn = 211+n. Note that
r′w ≈ [w]A∞ .

a) If w ∈ A∞, then
(

1

|Q|

∫

Q

wrw

)1/rw

≤ 2
1

|Q|

∫

Q

w.

b) Furthermore, the result is optimal up to a dimensional factor: There exists a
dimensional constant c = cn such that, if a weight w satisfies the RHI, i.e., there
exists a constant K such that

(
1

|Q|

∫

Q

wr

)1/r

≤ K
1

|Q|

∫

Q

w,

for all cubes Q, then [w]A∞ ≤ cn K r′.

Among other important results, in [10] the authors derive mixed A1–A∞ type
results of A. Lerner, S. Ombrosi and the second author in [16] of the form:

‖Tf‖Lp(w) ≤ c pp′ [w]
1/p
A1

[w]
1/p′

A∞
, w ∈ A1, 1 < p < ∞,

which is an improvement of Theorem 1.2. They also derive weak type estimates
like

‖Tf‖L1,∞(w) ≤ c[w]A1
log(e+ [w]A∞)‖f‖L1(w).

As another main purpose in the present work, we will show how to extend this
results on mixed A1–A∞ bounds to the case of the commutator and its higher order
analogue. The analogues of Theorem 1.2 and Theorem 1.3 for the commutators we
consider were already proved by the first author in [18]:
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Theorem 1.6 (Quadratic A1 bound for commutators). Let T be a Calderón–
Zygmund operator and let b be in BMO. Also let 1 < p, r < ∞. Then there exists
a constant c = cn,T such that for any weight w, the following inequality holds

(1.5) ‖[b, T ]f‖Lp(w) ≤ c ‖b‖BMO (pp′)
2
(r′)

1+ 1

p′ ‖f‖Lp(Mrw).

In particular if w ∈ A1, we have

(1.6) ‖[b, T ]f‖Lp(w) ≤ c ‖b‖BMO(pp
′)2[w]2A1

‖f‖Lp(Mrw).

Furthermore this result is sharp in both p and the exponent of [w]A1
.

Theorem 1.7. Let T and b as above. Then there exists a constant c = cn,T such
that for any weight

(1.7)

w({x ∈ R
n : |[b, T ]f(x)| > λ}) ≤ c (pp′)2p(r′)2p−1

∫

Rn

Φ

(
‖b‖BMO

|f |

λ

)
Mrwdx,

where Φ(t) = t(1 + log+ t).
As a consequence, If w ∈ A1

(1.8) w({x ∈ R
n : |[b, T ]f(x)| > λ}) ≤ cΦ([w]A1

)2
∫

Rn

Φ

(
|f(x)|

λ

)
w(x) dx

where Φ(t) = t(1 + log+ t).

In this article we present an improvement of these theorems in terms of mixed
A1–A∞ norms for the commutator and for its iterations, proved by the first author
in her dissertation (2011). For any k ∈ N, the k-th iterated commutator T k

b of a
BMO function b and a C-Z operator T is defined by

T k
b := [b, T k−1

b ].

This paper is organized as follows. In Section 2 we formulate the precise state-
ments of the results announced in the introduction. In Section 3 we present some
background and auxiliary results for the proofs and finally, in Section 4, we describe
the main features of the proofs.

2. Main Results

In this section we will present the precise statements of the results discussed in
the introduction. First, we present several Coifman–Fefferman inequalities for a
variety of singular operators. Our purpose is to emphasize that there is a notion
of order of singularity that allows us to distinguish them. This higher or lower
singularity can be seen in the power of the maximal functions involved and also
in the dependence of the constant of the weight. Next, we present our results on
strong and weak norm inequalities for commutator and for its iterations. In this
latter case, we study in detail how the iterations affects on each part of the weight,
namely the A1 and the A∞ fractions of the constant.
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2.1. Coifman-Fefferman inequalities.

Theorem 2.1 (C-Z operators). Let T be a C–Z operator and let w ∈ A∞. Then
there is constant c = cn,T such that, for any 0 < p < ∞,

‖Tf‖Lp(w) ≤ c max{1, p}[w]A∞‖Mf‖Lp(w)

whenever f is a function satisfying the condition |{x : |Tf(x)| > t}| < ∞ for all
t > 0.

We need some additional notation for the following theorem. Let 1 < q < ∞

and define, for any sequence of functions f = {fj}j∈N, |f |q :=
(∑

j |fj |
q
) 1

q

. Also

define, for a C-Z oprator T , the vector valued extension Tf = {Tfj}j∈N.

Theorem 2.2 (C-Z operators - Vector valued extensions). Let T be a C–Z operator
and let w ∈ A∞. Then there is constant c = cn,T such that, for any 0 < p < ∞,
1 < q < ∞ and for any sequence of compactly supported functions {fj}j∈N,

∥∥|Tf |q
∥∥
Lp(w)

≤ cmax{1, p}[w]A∞ ‖M (|f |q)‖Lp(w) .

We also have the following result on multilinear C–Z operators. For the precise
definitions and properties, see [17]. Let T be an m-linear C–Z operator acting on a

vector ~f of m functions ~f = (f1, . . . , fm). Define also the maximal function M by

M(~f )(x) = sup
Q∋x

m∏

i=1

1

|Q|

∫

Q

|fi(yi)| dyi.

The following theorem is a refinement of [17, Corollary 3.8].

Theorem 2.3 (Multilinear C–Z operators). Let T be an m-linear C–Z operator,
let w ∈ A∞ and let p > 0. Then there exists a constant c = cn,m,T such that

‖T (~f )‖Lp(w) ≤ c max{1, p}[w]A∞‖M(~f )‖Lp(w),

whenever ~f is a vector of compactly supported functions.

Theorem 2.4 (Commutators). Let T be a C–Z operator, b ∈ BMO and let w ∈
A∞. Then there is a constant c = cn,T such that for 0 < p < ∞,

‖[b, T ]‖Lp(w) ≤ c ‖b‖BMO max{1, p2}[w]2A∞
‖M2f‖Lp(w)

More generally, we have the following result for the iterated commutator.

Theorem 2.5 (k-th Iterated Commutator). Let T be a C–Z operator, b ∈ BMO
and let w ∈ A∞. For the k-th (k ≥ 2) commutator T k

b , there is a constant c = cn,T
such that, for 0 < p < ∞,

‖T k
b f‖Lp(w) ≤ c 2k max{1, pk+1}[w]k+1

A∞
‖b‖kBMO‖M

k+1f‖Lp(w)

2.2. Mixed A1–A∞ strong and weak norm inequalities for commutators.

Theorem 2.6. Let T be a C–Z operator, b ∈ BMO and let 1 < p < ∞. Then
there is a constant c = cn,T such that, for any w ∈ A1,

‖[b, T ]‖Lp(w) ≤ c ‖b‖BMO(pp
′)2[w]

1/p
A1

[w]
1+1/p′

A∞
.
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Theorem 2.7. Let T and b as above. Then there exists a constant c = cn,T such
that for any weight w ∈ A1

w({x ∈ R
n : |[b, T ]f | > λ}) ≤ c β

∫

Rn

Φ

(
‖b‖BMO

|f |

λ

)
w(x)dx,

where β = [w]A1
[w]A∞(1 + log+[w]A∞)2 and Φ(t) = t(1 + log+ t).

More generally, we have the following generalization for the k-th iterated com-
mutator.

Theorem 2.8. Let T be a C–Z operator, b ∈ BMO and 1 < p, r < ∞. Consider
the higher order commutators T k

b , k = 1, 2, · · · ,. Then there exists a constant
c = cn,T such that for any weight w the following inequality holds

(2.1) ‖T k
b f‖Lp(w) ≤ c ‖b‖kBMO (pp′)

k+1
(r′)k+1/p′

‖f‖Lp(Mrw).

In particular if w ∈ A1, we have that

‖T k
b ‖Lp(w) ≤ c ‖b‖kBMO(pp

′)k+1[w]
1/p
A1

[w]
k+1/p′

A∞
.

Theorem 2.9. Let T and b as above, and let 1 < p, r < ∞. Then there exists a
constant c = cn,T such that for any w
(2.2)

w({x ∈ R
n : |T k

b f | > λ}) ≤ c (pp′)(k+1)p(r′)(k+1)p−1

∫

Rn

Φ

(
‖b‖BMO

|f |

λ

)
Mrw dx,

where Φ(t) = t(1 + log+ t)k.
If w ∈ A1 we obtain that

w({x ∈ R
n : |T k

b f(x)| > λ}) ≤ cn β

∫

Rn

Φ

(
‖b‖BMO

|f(x)|

λ

)
w(x)dx,

where β = [w]A1
[w]kA∞

(1 + log+[w]A∞)k+1 and Φ(t) = t(1 + log+ t)k.

3. Background and Preliminaries

3.1. Rearrangement type estimates. In this section we present an important
tool based on rearrangements of functions. The main lemma is the following about
the control of Lp norms by a sharp maximal function. We start by recalling some
standard definitions. Given a locally integrable function f on R

n, the Hardy–
Littlewood maximal operator M is defined by

Mf(x) = sup
Q∋x

1

|Q|

∫

Q

f(y), dy,

where the supremum is taken over all cubes Q containing the point x. We will also
use the following operator:

Mδf(x) = (M(|f |δ)(x))1/δ , 0 < δ < 1.

Recall that the Fefferman-Stein sharp maximal function is defined as

M#(f)(x) = sup
Q∋x

1

|Q|

∫

Q

|f(y)− fQ| dy,

where
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fQ =
1

|Q|

∫

Q

f(y) dy.

If we only consider dyadic cubes, we obtain the dyadic sharp maximal function,
denoted by M#,d.

Define also, for 0 < δ < 1,

M#
δ f(x) = M#(|f |δ)(x)1/δ .

and

M#,d
δ f(x) = M#,d(|f |δ)(x)1/δ .

Lemma 3.1. Let 0 < p < ∞, 0 < δ < 1 and let w ∈ A∞. Then

(3.1) ‖f‖Lp(w) ≤ cmax{1, p}[w]A∞ ‖M#,d
δ (f)‖Lp(w)

for any function f such that |{x : |f(x)| > t}| < ∞ for all t > 0.

The proof of Lemma 3.1 will follow from an analogous inequality for the non-

increasing rearrangements of f and M#,d
δ with respect to the weight w. Recall that

the non-increasing rearrangement f∗
w of a measurable function f with respect to a

weight w is defined by

f∗
w(t) = inf

{
λ > 0 : wf (λ) < t

}
, t > 0,

where

wf (λ) = w({x ∈ R
n : |f(x)| > λ}), λ > 0,

is the distribution function of f associated to w. An important fact is that
∫

Rn

|f |p wdx =

∫ ∞

0

f∗
w(t)

p dt.

The key rearrangement lemma is the following.

Lemma 3.2. Let and w ∈ A∞, 0 < δ < 1 and 0 < γ < 1. There is a constant
c = cn,γ,δ, such that for any measurable function:

(3.2) f∗
w(t) ≤ c[w]A∞

(
M#,d

δ f
)∗
w
(γ t) + f∗

w(2t) t > 0

These sort of estimates goes back to the work of R. Bagby and D. Kurtz in the
middle of the 80’s (see [2] and [3]). The proof of Lemma 3.2 can be found in [21] but
with Aq instead of A∞ weights. This improvement to A∞ weights and, moreover,
with the smaller [w]∞ constant, is a consequence of the sharp RHI for A∞ weights
from [10]. We will sketch the proof in the next section. With this lemma, we can
prove Lemma 3.1. If we iterate (3.2) we have:

f∗
w(t) ≤ c [w]A∞

∞∑

k=0

(M#
δ f)∗w(2

kγt) + f∗
w(+∞)

≤
[w]A∞

log 2

∫ ∞

tγ/2

(M#
δ f)∗w(s)

ds

s
+ f∗

w(+∞).

Hence if we assume that

f∗
w(+∞) = 0,
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the inequality we obtain is

f∗
w(t) ≤ c [w]A∞

∫ ∞

tγ/2

(M#
δ f)∗w(s)

ds

s
.

We continue using the Hardy operator. Recall that if f : (0,∞) → [0,∞)

Af(x) =
1

x

∫ x

0

f(t)dt, x > 0

is called the Hardy operator. The dual operator is given by

Sf(x) =

∫ ∞

x

f(s)
ds

s
.

Hence the above estimate can be expressed as:

f∗
w(t) ≤ c [w]A∞ S((M#

δ f)∗w)(tγ/2)

Finally since it is well known that these operators are bounded on Lp(0,∞) and
furthermore, it is known that if p ≥ 1, then ‖S‖Lp(0,∞) = p, we have that

‖f‖Lp(w) = ‖f∗
w‖Lp(0,∞)

≤ c [w]A∞ ‖S((M#
δ f)∗w)‖Lp(0,∞)

≤ c p [w]A∞ ‖(M#
δ f)∗w‖Lp(0,∞)

= c p [w]A∞ ‖M#
δ f‖Lp(w)

This concludes the strong estimate in the case p ≥ 1. For 0 < p < 1, use the
triangle inequality and L1 boundedness of the operator S (we get no p here, so we
just get max{1, p} for general p). This concludes the proof of Lemma 3.1.

3.2. Pointwise inequalities. Once we have the result of the previous subsection,

i.e. the Fefferman–Stein inequality involving M#,d
δ with a sharp dependence on the

weight, we can then deduce sharp Coifman–Fefferman weighted inequalities for any
pair of operators T and S satisfying a pointwise inequality like

M#
δ (Tf)(x) ≤ cδSf(x) a.e. x ∈ R

n.

We will elaborate on this in the next section. Here we want to collect those
inequalities that involve the operators under study (we refer the interested reader
to [7, Chapter 9] for a deeper treatment of this subject). The inequalities that are
going to be used are:

• For 0 < δ < 1 and T any C–Z operator (see [1]),

(3.3) M#
δ (Tf)(x) ≤ cδ Mf(x).

• We have the following vector valued extension from [25]: Let 1 < q < ∞
and 0 < δ < 1. Let T be a C-Z operator and consider the vector valued
extension T . There exists a constant cδ such that

M#
δ

(
|Tf |q

)
(x) ≤ cδ M(|f |q)(x).

• We also have a pointwise inequality for multilinear C–Z operators. Let T

be an m-linear C–Z operator. Then for all ~f in any product of Lqj (Rn)
spaces, with 1 ≤ qj < ∞,

M#
δ (T (~f ))(x) ≤ cδ M(~f )(x) for 0 < δ < 1/m.
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• The following result is from [18]. If 0 < δ < ε < 1, there is a constant
c = cε,δ such that

M#,d
δ (Md

ε (f))(x) ≤ cM#,d
ε f(x).

What we really need, for the proof of the Coifman–Fefferman inequality in
the case of the commutator, is a consequence of this inequality, which is a
subtle improvement of Lemma 3.1: for 0 < p < ∞ and 0 < δ < 1,

(3.4) ‖Md
δ f‖Lp(w) ≤ c max{1, p}[w]A∞ ‖M#,d

δ (f)‖Lp(w).

• Another related and very important pointwise inequality for iterated com-
mutators is the following result from [24]. For each b ∈ BMO, 0 < δ < ε <
1, there exists c = cδ,ε such that, for all smooth functions f , we have that

(3.5) M#
δ (T k

b f)(x) ≤ c ‖b‖BMO

k−1∑

j=0

Md
ε (T

j
b f)(x) + ‖b‖kBMOM

k+1f(x).

3.3. Building A1 weights from duality. The following lemma gives a way to
produce A1 weights with special control on the constant. It is based on the so
called Rubio de Francia iteration scheme or algorithm.

Lemma 3.3. [16] Let 1 < s < ∞, and let v be a weight. Then, there exists a non-
negative sublinear operator R bounded in Ls(v) satisfying the following properties:

(i) h ≤ R(h);
(ii) ‖Rh‖Ls(v) ≤ 2‖h‖Ls(v);

(iii) Rhv1/s ∈ A1 with

[Rhv1/s]A1
≤ cs′.

4. About the proofs

4.1. Coifman–Fefferman inequalities. We begin this section with a brief de-
scription of how to obtain Coifman-Fefferman inequalities for all the operators pre-
sented in the previous section. These inequalities will follow from a general scheme
involving pointwise control of the singular operator by an appropriate maximal
function and the key inequality from Lemma 3.1. Suppose that we have, for a pair
of operators T and S, a pointwise inequality like

M#
δ (Tf)(x) ≤ cδ Sf(x) a.e. x ∈ R

n.

Then, for any f such that |{x : |Tf(x)| > t}| < ∞ for all t > 0 and any w ∈ A∞,
we have that

‖T (f)‖Lp(w) ≤ c max{1, p}[w]A∞ ‖M#,d
δ (T (f))‖Lp(w)

≤ cδ max{1, p}[w]A∞ ‖S(f)‖Lp(w)

This argument completes the proof of Theorem 2.1, Theorem 2.2 and Theorem 2.3.
For the case of the commutator and its iterations, we need an extra step for each

iteration. More precisely, for the commutator we have the following estimate. Let
w be any A∞ weight and let p > 0. For 0 < ε < δ < 1, we have that

‖[b, T ]f‖Lp(w) ≤ c max{1, p}[w]A∞ ‖M#,d
ε ([b, T ]f)‖Lp(w)

≤ c max{1, p}[w]A∞‖b‖BMO

(
‖Md

δ (Tf)‖Lp(w) + ‖M2f‖Lp(w)

)
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We start with (3.1) applied to [b, T ]f , and then we use (3.5). Now we can combine
(3.4) with (3.3) to control the first term and therefore obtain that

‖[b, T ]f‖Lp(w) ≤ c ‖b‖BMO max{1, p2}[w]2A∞
‖b‖BMO‖M

2f‖Lp(w).

This final estimate follows from the fact that [w]A∞ ≥ 1 and by dominating M
by M2. For the iterated commutator, we proceed in the same way as before. The
relevant inequality, which can be easily proved by induction, is contained in the
following lemma.

Lemma 4.1. Let 0 < δ < 1. Then there exists η such that 0 < δ < η < 1 and a
universal constant c > 0 such that

‖M#,d
ε (T k

b f)‖Lp(w) ≤ 2k c max{1, p}‖b‖BMO‖M
k+1
η f‖Lp(w)

Following the preceding scheme and applying this lemma, we obtain the result
stated in Theorem 2.5. This will conclude the proofs of all the announced Coifman–
Fefferman inequalities, if we prove the essential inequality (3.2). In fact, it is in
this inequality where the improvement on the dependence on the weight appears.
We will present here a sketch of the proof from [21]. The idea is to show that the
key ingredient for the improvement is an exponential decay lemma and the new
Reverse Hölder Property for A∞ weights.

4.1.1. Proof of the key rearrangement estimate. Fix t > 0 and let A = [w]A∞ . By
definition of rearrangement, (3.2) will follow if we prove that for each t > 0,

w
{
x ∈ R

n : f(x) > cA
(
M#

δ f
)∗
w
(γ t) + f∗

w(2t)
}
≤ t

We split the left hand side L as follows:

L ≤ w{x ∈ R
n : cAM#

δ f(x) > cA
(
M#

δ f
)∗
w
(γ t)

+ w{x ∈ R
n : f(x) > cAM#

δ f(x) + f∗
w(2t)}

= I + II.

Observe that

I = w
{
x ∈ R

n : M#
δ f(x) >

(
M#

δ f
)∗
w
(γ t)

}
≤ γ t

by definition of rearrangement, and hence the heart of the matter is to prove that

II = w{x ∈ R
n : f(x) > cAM#

δ f(x) + f∗
w(2t)} ≤ (1 − γ) t

The set {x ∈ R
n : f(x) > cAM#

δ f(x)+f∗
w(2t)} is contained in the set E = {x ∈

R
n : f(x) > f∗

w(2t)} which has w–measure at most 2t by definition of rearrange-
ment. Now, by the regularity of the measure we can find an open set Ω containing
E such that w(Ω) < 3t. The remainder of the proof from [21] consists in proving
that there exists a constant c depending only on δ and the dimension such that

II = w{x ∈ Ω : f(x) > cAM#
δ f(x) + f∗

w(2t)} ≤ (1− γ) t.

By applying an appropriate Calderón-Zygmund decomposition of the set Ω into a
union of dyadic cubes {Qj}, it can be proved that, for c > 1 + 21/δ, we have the
following inclusion for any j. If we denote

(4.1) Ej = {x ∈ Qj : |f(x)−mf (Qj)| > cAM#
δ f(x)

}
,
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then

{x ∈ Qj : f(x) > cAM#
δ f(x) + f∗

w(2t)} ⊂ Ej ,

where mf (Q) is the median value of f over Q (see [13]). The key ingredient now is
an “exponential decay” Lemma from [21] adapted to Ej .

Lemma 4.2. Let f ∈ Lδ
loc. For t > 0 we define

ϕ(t) = sup
Q∈D

1

|Q|

∣∣∣{x ∈ Q : |f(x)−mf (Q)| > tM#
δ f(x)}

∣∣∣

There are dimensional constants c1, c2 such that ϕ(t) ≤
c1
ec2t

.

Applying this lemma to (4.1), we obtain that

|Ej |

|Qj |
≤ c1e

−c2 cA.

Now we apply Hölder’s inequality to obtain that

w(Ej) =
1

|Qj|

∫

Qj

χEj
(x)w(x) dx |Qj |

≤

(
|Ej |

|Qj|

)1/r′
(

1

|Qj |

∫

Qj

w(x)r dx

)1/r

|Qj|(4.2)

We conclude by choosing r = rw, the sharp reverse exponent for w, (see Theorem

1.5), rw = 1 +
1

211+d[w]A∞

. We obtain

(
1

|Qj |

∫

Qj

wrwdx

)1/rw

≤
2

|Qj |

∫

Qj

w

and therefore

w(Ej) ≤ 2

(
|Ej |

|Qj |

)1/r′

w(Qj) ≤ c1e
−c c2w(Qj)

since r′ ≈ [w]A∞ = A. Here c and c2 depend on the dimension and we still can

choose c as big as needed. If we finally we choose c such that c1e
−c2 c < 1−γ

3 , then
we have that

II ≤
∑

j

w(Ej) ≤
1− γ

3

∑

j

w(Qj) =
1− γ

3
w(Ω) < (1 − γ) t,

since w(Ω) < 3t.
As a final remark on Coifman-Fefferman type inequalities, we want to mention

that for the case of C-Z operators, Theorem 2.1 can be deduced from a combina-
tion of standard good-λ techniques together with the following local exponential
estimate from [20], which is an improvement of the classical result of Buckley [4]
(see also [11]).

Theorem 4.3. Let T be a Calderon-Zygmund operator. Let Q be a cube and let
f ∈ L∞

c (Rn) such that supp(f) = Q. Then there exist c > 0 and k > 0 such that

|{x ∈ Q : |Tf(x)| > tMf(x)}| ≤ ke−ct|Q|, t > 0.
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This theorem is essentially all we need for the proof of Theorem 2.1 since, by
standard truncation arguments, we can restrict ourselves to look at only the local
part. Now, if we put Ej := {x ∈ Qj : T (f) > λ,Mf < γλ}, we have that, for some
constant c1,

|Ej |

|Qj |
≤ c1e

−c2/γ , λ > 0, γ0 > γ > 0.

Here we are in the exact same setting as in (4.2), and therefore we can obtain that

w(Ej) ≤ 2

(
|Ej |

|Qj |

)1/r′

w(Qj) ≤ c1e
−c2/γr

′

w(Qj),

where r′ ≈ [w]A∞ . Now we sum over j to obtain for any constant B > 0 the
following good-λ inequality:

w

{
x ∈ R

n : T (f) > 3λ,Mf <
B

[w]∞
λ

}
≤ c1e

−c2/Bw {x ∈ R
n : T (f) > λ}

From this inequality, we can apply standard good-λ arguments to obtain a sharp
Coifman–Fefferman inequality with [w]∞ bound.

We also remark that in [20] a similar local subexponential decay is proved for the
commutator [b, T ] above. It is natural to ask if it is possible to prove a Coifman–
Fefferman inequality for [b, T ] via truncation, exponential decay and sharp RHI.
Unfortunately, we do not know how to control the part of the truncated operator
“away” from some fixed cube.

4.2. Mixed A1–A∞ strong and weak norm inequalities for commutators.

In this section we present the proofs of the results announced in Section 2.2. Those
results actually follow from the two weight bounds for commutators (1.5) proved
in [18] for k = 1, and similarly (2.1) (see[19]).

Let us briefly describe how to derive this inequality in the case k = 1. The aim
is to prove that

(4.3) ‖[b, T ]f‖Lp(w) ≤ c ‖b‖BMO (pp′)
2
(r′)

1+ 1

p′ ‖f‖Lp(Mrw).

By duality, it is equivalent to prove that
∥∥∥∥
([b, T ])∗f

Mrw

∥∥∥∥
Lp′(Mrw)

≤ c (pp′)2 (r′)
1+ 1

p′

∥∥∥∥
f

w

∥∥∥∥
Lp′(w)

,

for the adjoint operator [b, T ]∗. To prove this last inequality, we write the norm as
∥∥∥∥
([b, T ])∗f

Mrw

∥∥∥∥
Lp′(Mrw)

= sup
‖h‖Lp(Mrw) = 1

∣∣∣∣
∫

Rn

([b, T ])∗f(x)h(x) dx

∣∣∣∣ .

Now we use Rubio de Francia’s algorithm and Lemma 3.1 to obtain that
∣∣∣∣
∫

Rn

([b, T ])∗f(x)h(x) dx

∣∣∣∣ ≤ cδ [Rh]A3

∫

Rn

M#
δ (([b, T ])∗f)(x)Rh(x) dx

The key here is to use that [Rh]A3
≤ cn p

′. Also note that for our purposes here it
is sufficient to use (3.1) with the A3 constant of the weight. To handle the integral
we use the pointwise inequality (3.5), and therefore we obtain that
∣∣∣∣
∫

Rn

([b, T ])∗f(x)h(x) dx

∣∣∣∣ ≤ cδ,n,ε p
′‖b‖BMO

∫

Rn

Md
ε (T

∗f)(x) +M2f Rh(x) dx.
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For the second term we only need to use Hölder and the properties of the weight
Rh. For the first term, we use (3.4) and then (3.3). We obtain that

∣∣∣∣
∫

Rn

([b, T ])∗f(x)h(x) dx

∣∣∣∣ ≤ cδ,n,ε (p
′)2‖b‖BMO‖M

2f‖Lp′((Mrw)1−p′).

Finally, we use (see [18]) that

‖M2f‖Lp′((Mrw)1−p′) ≤ cp2(r′)1+1/p′

‖f‖Lp(w1−p′),

which implies the desired result.
The case k > 1 is technically more difficult, but the ideas are similar. The key

estimate is the pointwise inequality (3.5) and an induction argument (see [19] for
details).

Once we have proved (2.1), we can derive the announced mixed bound as follows.
First, note that it is easy to verify that for any r > 1,

Mrw(x) ≤ 2[w]A1
w(x),

which implies in a standard way a weighted estimate with sharp dependence on
[w]A1

. But we are able to obtain an improvement by choosing the best RHI at our
disposal. Choose then r = rw as the sharp exponent in the RHI for A∞ weights,

i.e. r = rw = 1 +
1

cn[w]A∞

. In this case we get a fraction of the weight from

the pointwise inequality (4.2) applied to the integrand and, in addition, now r′w is
comparable with [w]A∞ , and therefore from (2.1) we conclude that

‖T k
b f‖Lp(w) ≤ c ‖b‖kBMO (pp′)

k+1
[w]

1

p

A1
[w]

k+ 1

p′

A∞
‖f‖Lp(w).

Now we present the weak-type inequalities. In the same way as before, the mixed
bounds will follow from a two weight result (1.7) from [18] for k = 1 and the analog
(2.2) for k > 1 from [19].

Once again, we only sketch the proof for k = 1 and refer the reader to the original
paper [18] for the details. Let us assume (by homogeneity) that ‖b‖BMO = 1. For
any f ∈ C∞

0 (Rn) consider the Calderón–Zygmund decomposition of f at level λ.
We obtain a colection of pairwise disjoint dyadic cubes {Qj} = Qj(xQj

, rj) such
that

λ <
1

|Qj |

∫

Qj

|f(x)| dx ≤ 2nλ.

Define Ω =
⋃

j Qj and write f = g + b, where

g(x) =

{
f(x), x ∈ R

n \ Ω
fQj

, x ∈ Qj ,

Consider also h =
∑

j

hj with hj(x) = (f(x)− fQj
)χQj

(x) and define, for each j,

Q̃j = 3Qj, Ω̃ = ∪jQ̃j and wj(x) = w(x)χ
Rn\3Qj
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Therefore,

w({x ∈ R
n : |[b, T ]f(x)| > λ}) ≤ w({x ∈ R

n \ Ω̃ : |[b, T ]g(x)| > λ/2})

+ w(Ω̃)

+ w({x ∈ R
n \ Ω̃ : |[b, T ]h(x)| > λ/2})

= I + II + III.

Now define w̃(x) := w(x)χ
Rn\Ω̃. We can deal with the first term by using Chebyshev

and the strong result, obtaining that

I ≤
c

λ
(pp′)2p(r′)2p−1

(∫

Rn\Ω

|f(x)|Mrw̃(x) dx +

∫

Ω

|g(x)|Mrw̃(x) dx

)
.

Now, by definition of w̃, away from each Qj the maximal function Mrw̃ is almost
constant, and hence we obtain that

I ≤
c

λ
(pp′)2p(r′)2p−1

∫

Rn

|f(x)|Mrw(x) dx

The second term is the easy one. It is straightforward to show that

II = w(Ω̃) ≤
c

λ

∫

Rn

|f(x)|Mw(x) dx.

Finally, for the third term, we expand the commutator:

III ≤ w({y ∈ R
n \ Ω̃ : |

∑

j

(b(y)− bQj
)Thj(y)| >

λ

4
})

+w({y ∈ R
n \ Ω̃ : |

∑

j

T ((b− bQj
)hj)(y)| >

λ

4
})

= A+B.

The A term can be bounded by using the properties of the kernel, cancellation of
the hj’s and standard BMO estimates. We obtain that

A ≤
c

λ

∫

Rn

|f(x)|ML(logL)w(x)dx

≤ cr′
∫

Rn

|f(x)|

λ
Mrw(x)dx.

For the second inequality, we have used that ML(logL)w(x) ≤ cr′Mrw(x). Now, for
the B term, we can use the known results about weak type boundedness of T . It
can be proved then (see [18] for details) that

B ≤ c (pp′)p(r′)p−1

∫

Rn

Φ

(
|f(x)|

λ

)
Mrw(x)dx.

for the function Φ(t) = t(1 + log+ t). Combining all estimates together, we obtain
the desired result:

w(x ∈ R
n : |[b, T ]f(x)| > λ) ≤ c (pp′)2p(r′)2p−1

∫

Rn

Φ

(
|f(x)|

λ

)
Mrw(x)dx.

As in the strong case, we refer the reader to [19] for the details about the analogous
result for iterated commutators.
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Now we want to optimize inequality (2.2) by choosing p and r. In the same way

as in the strong case, we choose r = rw = 1 +
1

cn[w]A∞

. This is the best that

we can do to control the part with r′. In addition, take p = 1 +
1

log([w]A∞)
. We

finish using that pp′ ≈ log([w]A∞) and that A1/A is bounded for A > 1. Define
β = [w]A1

[w]kA∞
(1+log+[w]A∞)k+1 and recall that Φ(t) = t(1+log+ t)k. Inequality

(2.2) then becomes

w({x ∈ R
n : |T k

b f(x)| > λ}) ≤ cn β

∫

Rn

Φ

(
‖b‖BMO

|f(x)|

λ

)
w(x)dx.
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[25] C. Pérez and R. Trujillo-González, Sharp weighted estimates for vector-valued singular inte-

grals operators and commutators, Tohoku Math. J. 55 (2003), 109-129.
[26] J. M. Wilson, Weighted inequalities for the dyadic square function without dyadic A∞, Duke

Math. J., 55(1), 19–50, 1987.
[27] J. M. Wilson, Weighted inequalities for the continuous square function, Trans. Amer. Math.

Soc., 314(2), 661–692, 1989.
[28] J. M. Wilson, Weighted Littlewood-Paley theory and exponential-square integrability, volume

1924 of Lecture Notes in Mathematics. Springer, Berlin, 2008.
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