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Abstract

An optimal design problem governed by the wave equation is examined in
detail. Specifically, we seek the time-dependent optimal layout of two isotropic
materials on a 1-d domain by minimizing a functional depending quadratically
on the gradient of the state with coefficients that may depend on space, time
and design. As it is typical in this kind of problems, they are ill-posed in the
sense that there is not an optimal design. We therefore examine relaxation
by using the representation of two-dimensional ((x, t) ∈ IR2) divergence free
vector fields as rotated gradients. By means of gradient Young measures, we
transform the original optimal design problem into a non-convex vector varia-
tional problem, for which we can compute an explicit form of the “constrained
quasiconvexification ” of the cost density. Moreover, this quasiconvexification
is recovered by first or second-order laminates which give us the optimal mi-
crostructure at every point. Finally, we analyze the relaxed problem and some
numerical experiments are performed. The perspective is similar to the one de-
veloped in previous papers for linear elliptic state equations. The novelty here
lies in the state equation (the wave equation), and our contribution consists in
understanding the differences with respect to elliptic cases.

1 Introduction

Optimal design problems in conductivity and elasticity have been extensively stud-
ied from various perspectives. For the homogenization viewpoint, see [1]. For more
simulation-oriented approaches, see [4, 9]. For treatments based on variational re-
formulations, see [23]. In many of these examples, the state equation is assumed to
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be isotropic. There has also been attempts to understand non-isotropic situations
([20] and references therein).

Suppose we choose two diagonal, non-isotropic, 2× 2 matrices of the form

Aα =

(
1 0
0 α

)
, Aβ =

(
1 0
0 β

)
,

and consider the state equation

div ([χ(x)Aα + (1− χ(x))Aβ ]∇u) = 0 in Ω

where Ω ⊂ IR2 is a bounded, regular, simply-connected domain. It is easy to see
that we can also write

div

((
1 0
0 χ(x)α+ (1− χ(x))β

)
∇u

)
= 0 in Ω,

and even more so

div (ux1
, [χ(x)α + (1− χ(x))β]ux2

) = 0.

In the case where Ω = (0, T ) × (0, 1), and we take both α and β negative, we see
that we have a 1-d wave equation as state equation, and 2-d optimal designs can be
interpreted as 1-d time-dependent optimal designs. For this reason, we change the
notation and write x(= x2) for the spatial variable, t(= x1) for the time variable,
and replace α, β by −α,−β, respectively, so that we focus on such a wave equation.
We also change accordingly the domain, and consider initial and boundary condition
as is usual in hyperbolic problems. Yet notice that the non-isotropic elliptic example
is contained in our analysis too.

Optimal control problems in the coefficients are rather well-known in the elliptic
case. Homogenization has been the main tool to deal with these when cost function-
als do not depend on derivatives of the state. As indicated earlier [1] is still, as far as
we can tell, an up-to-date reference for the use of homogenization in optimal design
problems. Our interest in understanding optimal design problems for cost function-
als depending on gradients of the state led us to explore the use of gradient Young
measures in this kind of problems ([23], [24]). See [27] for a pioneering situation
that is quite instructive to better understand how different optimal design problems
with quadratic cost functionals in the gradient can be. Other references that have
treated similar situations from the perspective of homogenization are [11], [14]. Our
perspective does not require a full understanding of the G-closure problem (as in
homogenization) as the emphasis is n ot placed on the tensors that can be obtained
by mixtures (the G-closure), but rather on the set of pairs of vectors that can be
related through some tensor of the G-closure. Hence, although intimately connected
to homogenization, our approach focuses directly on pairs of fields that can occur
in relaxed state equations. In this way, we can treat cost functionals depending on
the gradient of the state directly without further ingredients.

2



Having succeeded, to some degree, in understanding the elliptic situation in
the conductivity setting (even producing numerical simulations as in [9] of optimal
microstructures), a next natural step is to examine the same optimal design problems
with quadratic cost functionals on the gradient of the state under a hyperbolic state
equation, so as to better understand the differences introduced on the analysis and
on the numerics because of this hyperbolic nature. One issue here is the phenomenon
of concentration of cost (energy). It is well-understood that Young measures cannot
capture concentration effects. We resolve easily this issue by demanding some extra
regularity on initial data. Notice that if designs were not allowed to vary with
time, the situation would be much simpler as it would not require “homogenization”
or the formation of microstructure on this time variable. Many of the standard
homogenization facts could be used and exploited. Indeed, one of our main goals is
to grasp this dependence of designs on time.

Except for the works of Lurie ([15], [16], [17]), this sort of problems have not
been addressed in the literature. In particular, he has been investigating over the
years the analogue of the G-closure for dynamic designs. Being motivated by real-
istic applications, one main concerned in his work is to understand the relationship
and interaction between the dynamic nature of the problem and the “dynamics” of
microstructure. In a sense, even in a static situation, microstructure (laminates) is
something dynamic as it is a never-ending refinement process. When this process
interacts with real time, some funny situations may occur (including the formation
of shocks). This is well-documented for instance in [17], where restrictions between
the velocity of formation of microstructure and the dynamics of the state equation
are explicitly given so that undesirable behavior is ruled out. We have avoided alto-
gether this issue as we model dynamic microstructure through families of probability
measures (Young measures) depending both on space and time so that there is only
one dynamic process associated with time. Even so, it is interesting to stress that
the laminates we get in our numerical simulations (Section 7) are of the kind that
satisfy these requirements in the best way possible as they are oriented parallel to
the time axis. This is the most favorable situation in Lurie’s work. See also the com-
ments after Conjecture 1. Another main difference of our work with that of Lurie is
that we are interested from the beginning on a cost functional which is quadratic in
the gradient of the state. Our methods allow to treat directly this sort of problems
without understanding first the G-closure set. A main concern in the work of Lurie
is to better understand the G-closure set corresponding to a dynamical situation,
and, in particular, to discover the differences with respect to its elliptic counterpart.

Other works dealing with optimal control problems under the wave equation
in greater dimensions can be found in [6], where the control is a time dependent
coefficient, and under other constraints on modes where there is vibration. In this
sense another work in which the authors examine time-harmonic solutions of the
wave equation is [3], where they prove a relaxation result for this problem and very
interesting results of existence of classical solutions for some particular cases. In
the wave equation literature, we can find a huge family of optimal control problems
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where the design variable is not in the highest derivative term. When the control
term acts on the first order derivative in time, the term is known as a ”damping”
term. These problems are of a different nature physically as well as mathematically.
Some relevant references in this topic are [5, 10, 12].

1.1 Problem Statement

We will thus study the following optimal design problem. We consider a design
domain Ω = (0, 1) ⊂ IR, a positive time T > 0, and a maximum amount of one
material at our disposal Vα ∈ (0, 1). The optimal design problem consists in deciding,
for each time 0 < t < T , the best distribution in Ω of the two materials in order to
minimize the time-dependent cost functional depending on the square of the gradient
(with respect to both variables (t, x)) of the underlying state. More precisely, let us
denote by (P ) the problem that consists in minimizing

(P ) I(χ) =

∫ T

0

∫

Ω

[
u2

t (t, x) + a(t, x, χ)u2
x(t, x)

]
dx dt

where u is the unique solution of

utt − div([αχ + β(1− χ)]ux) = 0 in (0, T ) × (0, 1),

u(0, x) = u0(x), ut(0, x) = u1(x) in Ω, (1)

u(t, 0) = 0, u(t, 1) = 0 in [0, T ], (2)

and the functions a, u0 and u1 are known. We have put vanishing boundary con-
ditions on both end-points and source term for simplicity. Functions of time f(t)
and g(t) on both points could be considered as well. The function χ ∈ L∞([0, T ] ×
Ω; {0, 1}) is the design variable, and it indicates where we place the α-material for
each time t. Since χ is a binary variable a(t, x, χ) ∈ {a(t, x, 0), a(t, x, 1)}, we can
write

a(t, x, χ) = χ(t, x)aα(t, x) + (1− χ(t, x))aβ(t, x),

where
aα(t, x) = a(t, x, 1), aβ(t, x) = a(t, x, 0).

In addition, we make the assumption 0 < α < β, and

aα(t, x) + α ≥ 0, aβ(t, x) + β ≥ 0.

The amount of the α-material is given, and therefore we have to enforce the volume
constraint ∫

Ω
χ(t, x)dx ≤ Vα|Ω|, ∀t ∈ [0, T ].

The lack of classical solutions for this sort of problems is well understood (see.
Theorem 11, [22]). In this sense we propose and analyze a relaxation of the problem.
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Our approach is based on an equivalent variational reformulation of the original
optimal design problem as a non-convex vector variational problem. As in other
situations examined under this perspective [2, 23], we change a scalar problem with
differential constraints by a vector variational problem with integral constraints
(where the state equation is implicit in the new cost function). It is well-known that
the non-existence of optimal solution for vector variational problem is intimately
associated with the lack of quasiconvexity of the cost functional, and in this sense
we propose to analyze the “constrained quasiconvexification” for this last problem
by using gradient Young measures as generalized solutions of variational problems.
We compute an explicit relaxation of the original optimal design problem in the
form of a relaxed (quasiconvexified) variational problem.

It is elementary to check (this is done with some detail in Section 2), the equiva-
lence of our dynamic optimal design problem with the following non-convex, vector
variational problem

(V P ) min
U

Î (U) =

∫ T

0

∫

Ω
W (t, x,∇U(t, x))dxdt

subject to

U = (U (1), U (2)) ∈ H1([0, T ] × Ω)2,

U (1)(0, x) = u0(x), U
(1)
t (0, x) = u1(x) in Ω,

U (1)(t, 0) = f(t), U (1)(t, 1) = g(t) in [0, T ],∫

Ω
V (t, x,∇U(t, x))dx ≤ Vα|Ω| ∀t ∈ [0, T ].

The two integrands involved are

W (t, x,A) =





a2
11 + aα(t, x)a2

12, if A ∈ Λα,
a2

11 + aβ(t, x)a2
12, if A ∈ Λβ \ Λα,

+∞, else,

V (t, x,A) =





1, if A ∈ Λα,
0, if A ∈ Λβ \ Λα,
+∞, else.

Here
Λγ = {A ∈M2×2 : M−γA

(1) −RA(2) = 0}, γ = α, β, (3)

where A(i) is the i-th row of the matrix

A =

(
a11 a12

a21 a22

)
,

and

M−γ =

(
1 0
0 −γ

)
, R =

(
0 −1
1 0

)
.
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1.2 Results Statement

To write down an explicit relaxation, put

h(t, x) = βaα(t, x)− αaβ(t, x)

and for

F =

(
F11 F12

F21 F22

)
, s ∈ IR,

set

ψ(F, s) = F12F21 +
α

s(β − α)2
(βF12 + F21)

2 +
β

(1− s)(β − α)2
(αF12 + F21)

2.

Consider the variational problem,

(RP ) min
U,s

∫ T

0

∫

Ω
ϕ(t, x,∇U(t, x), s(t, x))dxdt

subject to
U ∈ H1([0, T ]× Ω)2, tr(∇U(t, x)) = 0,

U (1)(0, x) = u0(x), U
(1)
t (0, x) = u1(x) in Ω,

U (1)(t, 1) = f(t), U (1)(t, 0) = g(t) in [0, T ],

0 ≤ s(t, x) ≤ 1,

∫

Ω
s(t, x) dx ≤ Vα|Ω| ∀t ∈ [0, T ],

where ϕ(t, x, F, s) is explicitly given by the surprising expression





h

sβ(β − α)2
(β2|F12|

2 + |F21|
2 + 2βF12F21) + |F11|

2 −
aβ

β
F12F21

if h(x, t) ≥ 0, ψ(F, s) ≤ 0,
−h

(1− s)α(β − α)2
(α2|F12|

2 + |F21|
2 + 2αF12F21) + |F11|

2 −
aα

α
F12F21,

if h(x, t) ≤ 0, ψ(F, s) ≤ 0,

−detF +
1

s(1− s)(β − α)2

((
(1− s)β2(α+ aα) + sα2(β + aβ)

)
|F12|

2

+
(
(1− s)(α+ aα) + s(β + aβ)

)
|F21|

2 + 2
(
(α+ aα)β − sh

)
F12F21

)

if ψ(F, s) ≥ 0.

tr stands above for the trace of a matrix. All that matters is that this integrand
ϕ is known in closed form.

Theorem 1 Suppose that the initial data u0 and u1 have the regularity

u0 ∈ H
2(0, 1) ∩H1

0 (0, 1), u1 ∈ H
1
0 (0, 1).
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Then the variational problem (RP ) is a relaxation of the initial optimization problem
(P ) in the sense that

a) the infima of both problems coincide;
b) there are optimal solutions for the relaxed problem (RP );
c) these solutions codify (in the sense of the Young measures) the optimal mi-

crostructures of the original optimal design problem.

For the interpretation of Young measure solutions in this statement, we refer
the reader to the already-mentioned contributions in the elliptic case. It is closely
related to relaxation in vector, non-convex variational problems ([8]). These optimal
Young measures carry the information of optimal microstructures, both on the local
distribution of materials, and on the geometry of optimal microarrangements. See
more on this interpretation in Section 7.

In addition, we can provide explicitly optimal microstructures.

Theorem 2 Optimal, dynamic microarrangements of the two materials leading to
the relaxed formulation are always laminates which can be given in a completely
explicit form.

The formulae for all of these laminates are given later at the end of Section 4,
where we compute these optimal microstructures corresponding to first and second
order laminates.

The main new contribution here is therefore to understand the character of the
hyperbolic state law, and the differences it introduces with respect to the better
known elliptic case. Some of these differences are related to the fact that the mani-
folds Λγ are two 2-dimensional subspaces whose intersection is another 1-dimensional
manifold. Moreover there are rank-one connections within those manifolds. An in-
teresting consequence is that the relaxed integrand is finite everywhere (except for
the condition involving the trace) in contrast with the elliptic case where the relaxed
integrand is finite only in a certain (quasi)convex subset. An important issue is that
optimal Young measures gives us the necessary information about the behavior of
minimizing sequences of the original optimal design problem.

A subsequent important step is to explore the relaxed problem (RP ) in some
particular cases, like the ones described in Section 5, with the objective of pro-
ducing numerical simulations of optimal time-dependent structures [18]. For some
particular situations in the (static) elliptic case, it has been shown that a simple re-
laxation consists in replacing the original discrete design variable χ ∈ L∞(Ω, {0, 1})
by its convex envelop s ∈ L∞(Ω, [0, 1]). For the (dynamic) hyperbolic case with
aα = aβ = 1, some numerical experiments (see Section 7) suggest that the above
assertion is true. In this regard, we establish the following conjecture (examined
briefly in Section 6).
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Conjecture 1 Suppose the coefficients aα = 1, aβ = 1. The optimization problem

(R̃P ) min
s
Ĩ(s) =

∫ T

0

∫

Ω
u2

t (t, x) + u2
x(t, x) dx dt

where u is the unique solution of

utt − div
(
[αs+ β(1 − s)]ux

)
= 0 in (0, T )× (0, 1),

u(0, x) = u0(x), ut(0, x) = u1(x) in Ω,

u(t, 0) = f(t), u(t, 1) = g(t) in [0, T ],∫

Ω
s(t, x)dx ≤ Vα|Ω|, ∀t ∈ [0, T ],

0 ≤ s(t, x) ≤ 1.

is equivalent to the original optimal design problem (P ) in the sense that

a) the infima of both problems coincide, i.e., inf(R̃P ) = inf(P );

b) the above optimal design problem (R̃P ) admits optimal solutions;
c) these solutions ( in the sense of Young measures) show that optimal mi-

crostructures are first order laminates with normal n = (0, 1) and volume fraction
s.

One can pass from (RP ) to (R̃P ) simply by minimizing the general relaxed in-
tegrand ϕ(t, x, F, s) on the auxiliary variable F (2), the second row of F , keeping all
other variables fixed (and taking aα = 1, aβ = 1). This is an elementary calculus
exercise (Section 6). This vector, the second row of F , was introduced as an auxil-
iary field to go from the original formulation (P ) to its variational form (V P ). After
relaxation, in which this auxiliary vector plays an important role, we eliminate it by
minimizing over it, so that we are back to a state law which is the result of this min-
imization process. More importantly, first-order laminates involved in this process
(the passage from (RP ) to (R̃P )) always correspond to normal direction n = (0, 1),
i.e., the optimal laminates have to be arranged in the perpendicular direction to the
space-axis with volume fraction s(t, x). These are, in particular, laminates of the
class considered by Lurie in the previously cited works. Our conjecture establishes
that this procedure should capture the optimal relaxed state law.

Notice how this process cannot produce a general relaxation theorem (this is in
fact our previous theorem for (RP )), as it is tailored and computed for the particular
choice of the coefficients aα = 1, aβ = 1. It asserts that among the many relaxed
wave-like equations that can be produced by mixing dynamically the two materials,
the one providing optimal microstructures for the particular choice of the coefficients
aα = 1, aβ = 1, is precisely the one obtained by replacing χ ∈ {0, 1} by s ∈ [0, 1] (as
in the situation in [27]). For other choices of the coefficients aα and aβ, the optimal
relaxed equation would eventually be different. One can see this phenomenon for the
elliptic situation in [9]. The importance of having this more “economic” relaxation
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(compared Conjecture 1 with Theorem 1) is that simulations can be performed for
these, while it is out of the question to use directly (RP ). We have written this in

the form of a conjecture because, even though the passage from (RP ) to (R̃P ) is
elementary, its formal rigorous proof requires a careful analysis. It has been shown
to be correct in a number of situations in the elliptic case ([26]). For our situation
here, showing the validity of the conjecture is in progress ([18]).

The paper is organized as follows. In Section 2, we describe in more detail the
equivalent variational reformulation as well as a general relaxation result when in-
tegrands are not continuous and may take on infinite values abruptly. As there is
nothing new here compared to other previous works in the elliptic case, our descrip-
tion is rather a remainder included here for the sake of completeness. Sections 3
and 4 are technical in nature but interesting, as we first compute a lower bound of
the constrained quasiconvexification (Section 3), by using in a fundamental way the
weak continuity of the determinant. Section 4 is concerned with the search for lami-
nates furnishing the precise value of the lower bound in an attempt to show equality
of the three convex hulls (poly-, quasi- and rank-one convex hulls), as it is standard
in this kind of calculation. In Section 5, we show some particular examples of this
relaxation for different and interesting choices of the coefficients aα, aβ. Finally, in
Section 6 we analyze the relaxed problem and propose a simpler relaxation, while
in Section 7 we numerically solve it by using a gradient descent method.

2 Reformulation and relaxation

The lack of classical solution of the original optimal design problem is well-established.
We propose to reformulate the problem as a vector variational problem to which we
apply suitable tools to study its relaxation. We follow a similar approach to the one
in [2, 23].

Under the hypothesis of simple-connectedness of Ω (an interval), there exists a
potential v ∈ H1((0, T ) × Ω) such that the state equation can be recast as

−div(ut(t, x),−[αχ(t, x) + β(1− χ(t, x))]ux(t, x)) = 0 in [0, T ]× Ω

where the div operator is consider now with respect to the variables t and x. The
state equation is equivalent to the pointwise constraint

(
ut(t, x)

−[αχ(t, x) + β(1 − χ(t, x))]ux(t, x)

)
= R∇v(t, x) a.e. (t, x) ∈ [0, T ] ×Ω

where R is the counterclockwise π/2-rotation in the space-time plane. If we let Λ−γ

be as in (3), this constraint reads

(
∇u(t, x)
∇v(t, x)

)
∈ Λ−α ∪ Λ−β a.e. (t, x) ∈ [0, T ]× Ω. (4)
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It is clear that we can identify the design variable χ with the vector field U = (u, v)
complying with (4); and conversely, a pair U = (u, v) which verifies (4) determines
a characteristic function χ, so that we can consider the new design variable U =
(U (1), U (2)) = (u, v), where U : IR2 → IR2 and ∇U(t, x) ∈ IR2×2, under the main
constraint (4).

Therefore, by using the above statement and the notation in the Introduction,
it is easy to check that the original optimal design problem (P ) is equivalent to the
variational problem (V P ).

We have so recast our optimal design problem as a typical variational problem.
We see that it is a non-convex vector problem that we are going to analyze by seeking
its relaxation. We use Young measures as a main tool in the computation of the
suitable density for the relaxed problem. In this sense, we can rely on the following
relaxation result [2] whose main idea has been a useful tool in other different places
[2, 23, 25].

We note the initial condition (1) by I.C., the boundary condition (2) by B.C.
and put

m = inf
{∫

Ω

∫ T

0
W (t, x,∇U(t, x))dtdx :

U ∈ H1((0, T ) × Ω)2, U (1) satisfies the B.C. and the I. C.,∫

Ω
V (t, x,∇U(t, x))dx ≤ Vα|Ω|,∀t ∈ [0, T ]

}
.

We know [2] that

m ≥ m̄ = inf
{∫

Ω

∫ T

0
CQW (t, x,∇U(t, x), s(t, x))dtdx :

U ∈ H1([0, T ] × Ω)2, U (1) satisfies the B.C. and the I. C.,

0 ≤ s(t, x) ≤ 1,

∫

Ω
s(t, x)dx ≤ Vα|Ω|,∀t ∈ [0, T ]

}
,

where CQW (t, x, F, s) is defined by,

CQW (t, x, F, s) = inf
{∫

M2×2

W (t, x,A)dν(A) : ν ∈ A(F, s)
}

with

A(F, s) =
{
ν : ν is a homogeneous H1-Young measure,

F =

∫

M2×2

Adν(A),

∫

M2×2

V (t, x,A)dν(A) = s
}
. (5)

Notice that the previous inequality will be an equality when W is a Carathéodory
function with appropriate growth constrains. However, in our situation it is still
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possible to prove this equality despite the fact thatW is not a Carathéodory function.
Let us consider the following minimization problem

m̃ = inf
{∫

Ω

∫ T

0

∫

M2×2

W (t, x,A)dνt,x(A)dtdx : ν ∈ B(B.C., I.C., t0)
}

where

B(B.C., I.C., Vα) =
{
ν : H1-Young meas., supp(νt,x) ⊂ Λα ∪ Λβ,

∃U ∈ H1([0, T ] × Ω)2, U (1) satisfies the I.C. and B.C.,

∇U(t, x) =

∫

M2×2

Adνt,x(A),

∫

Ω

∫

M2×2

V (t, x,A)dνt,x(A)dx ≤ Vα|Ω|,∀t ∈ [0, T ]
}
.

We have the following result, whose proof is essentially identical to the one in ([2]).

Theorem 3 ([2]) Suppose that the initial data u0 and u1 have the regularity

u0 ∈ H
2(0, 1) ∩H1

0 (0, 1), u1 ∈ H
1
0 (0, 1).

Then the equalities
m = m̄ = m̃

hold. Moreover, for each measure ν ∈ B(B.C., I.C., Vα) such that supp(νx,t) ⊂
Λα ∪ Λβ a.e. (t, x) ∈ [0, T ]× Ω, there exists a sequence {∇Uk} such that,

i) Uk ∈ (H1([0, T ] × Ω))2, U (1) satisfies the I.C. and B.C.,
{|∇Uk|

2} is equi-integrable,

ii) ∇Uk(t, x) ∈ Λα ∪ Λβ, a.e. (t, x) ∈ [0, T ]× Ω ∀k,∫
Ω V (t, x,∇Uk(t, x))dx ≤ Vα|Ω|, ∀t ∈ [0, T ]∀k

iii) limk→∞
∫ T

0

∫
ΩW (t, x,∇Uk(t, x))dxdt =∫ T

0

∫
Ω

∫
M2×2 W (t, x,A)dνt,x(A)dxdt

The only remark worth noticing refers to the regularity of initial data. The proof
of this theorem in the elliptic case in [2] relies in a fundamental way in the elliptic
character of the manifolds Λγ to discard concentrations of the sequence {|∇Uk|

2}.
For the hyperbolic case, this equiintegrability can also be shown, in a standard way,
based on the regularity of solutions for the wave equation (with uniformly elliptic
spatial part) coming from the regularity of initial conditions (see [13]).
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3 The lower bound: polyconvexification.

We would like to compute explicitly the constrained quasiconvexification defined as

CQW (t, x, F, s) = inf
{∫

M2×2

W (t, x,A)dν(A) : ν ∈ A(F, s)
}

where A(F, s) is given in (5). Since the variable (t, x) ∈ [0, T ] × Ω can be consider
as a parameter, we drop this dependence to simplify the notation. In this form, the
constrained quasiconvexification can be expressed as

inf
ν

{∫

M2×2

W (A)dν(A) : F =

∫

M2×2

Adν(A),

∫

M2×2

V (A)dν(A) = s, ∀t ∈ [0, T ]
}

(6)

with ν a homogeneous H1-Young measure with supp(ν) ⊂ Λα ∪ Λβ .
For (F, s) (and (t, x)) fixed, we are going to compute the value of (6), i.e.

CQW (t, x, F, s). The main difficulty here is that we do not know explicitly the
set of the admissible measures, which we note as A. We propose the following
strategy. Consider two classes of family of probability measures A∗,A

∗ such that

A∗ ⊂ A ⊂ A
∗.

We first calculate the minimum over the greater class of probability measures A∗,
and then we check that the optimal value is attained by at least one measure over
the narrower class A∗. This fact tells us that the optimal value so achieved is the
same in A, and hence we will have in fact computed the exact value CQW (t, x, F, s).

Following [23], we choose A∗ as the set of polyconvex measures, which are not
necessarily gradient Young measures, and therefore obtain a lower bound ( the (con-
strained) polyconvexification). The main property of these measures is that they
commute with the determinant. This constraint can be imposed in a more-or-less
manageable way. We also choose A∗ as the class of laminates which is a subclass of
the gradient Young measures. By working with this class, we would get an upper
bound (the (constrained) rank-one convexification).

The polyconvexification CPW (F, s) can be computed through the following op-
timization problem

min
ν

∫

M2×2

W (A)dν(A)

where,

ν ∈ A(F, s) =
{
ν : ν is a homogeneous Young measure,

which commutes with det, F =

∫

M2×2

Adν(A), (7)

∫

M2×2

V (A)dν(A) = s
}
. (8)

12



From (8) we have the following decomposition

ν = tνα + (1− t)νβ , supp(νγ) ⊂ Λγ , γ = α, β,

and therefore, from (7)

F = s

∫

Λα

Adνα(A) + (1− s)

∫

Λβ

Adνβ(A). (9)

If we put

Fγ =

∫

Λγ

Adνγ(A), γ = α, β,

we have Fγ ∈ Λγ for γ = α, β, so from this property and (9), we have a non-
compatible system on Fγ unless

F11 + F22 = 0, i.e. tr(F ) = 0.

Let us suppose henceforth that this compatibility condition holds. This condition
lets us simplify the problem from 2×2 matrices to 3-d vectors, using the identification

F =

(
x y

z −x

)
←→ (x,y, z).

Therefore the manifolds Λγ can be rewritten as

Λγ = {(x,y, z) ∈ IR3 : z + γy = 0}.

In this way, the above system does not uniquely determined its solution. Indeed

Fα = (λ, yα,−αyα), Fβ = (
x− sλ

1− s
, yβ,−βyβ)

where

yα =
1

s(β − α)
(βy + z), yβ =

−1

(1− s)(β − α)
(αy + z)

and λ ∈ IR. We can check that if A = (a1, a2, a3) ∈ Λγ with γ = α, β, then

detA = −a2
1 + γa2

2,

and by using the important constraint about the commutativity with det, we know
that

detF =

∫

IR3

detAdν(A)

=s

∫

IR3

detAdνα(A) + (1− s)

∫

IR3

detAdνβ(A)

=−

∫

IR
a2

1dν
(1)(A) + sα

∫

IR
a2

2dν
(2)
α (A) + (1− s)β

∫

IR
a2

2dν
(2)
β (A)

13



where νi
γ designates the projection of νγ onto the i-th component.

On the other hand, we can write the cost functional in the form

∫

IR3

W (A)dν(A) =

∫

IR3

a2
1dν(A) + saα

∫

IR3

a2
2dνα(A)

+(1− s)aβ

∫

IR3

a2
2dνβ(A)

so if we put

S1 =

∫

IR3

a2
1dν(A), Sγ =

∫

Λγ

a2
2dνγ(A), with γ = α, β,

and use Jensen’s inequality, we have the constraints

S1 ≥ x
2, Sγ ≥ y

2
γ γ = α, β.

By using the notation just introduced, the above inequalities and the constraint on
the determinant, the constrained polyconvexification is given by the following linear
programming problem

minimize
(S1,Sγ ,xγ)

S1 + saαSα + (1− s)aβSβ

subject to,

−detF = S1 − sαSα − (1− s)βSβ,

S1 ≥ x
2, Sγ ≥ y

2
γ , with γ = α, β,

We can eliminate S1, by replacing its value from the equality constraint in the cost
functional. By so doing, only the variables (Sα, Sβ) occur, with inequality constraints
(see Figure 1 for a geometrical interpretation of the progamming problem). It is easy
to solve this problem. Under the conditions aα ≥ −α and aβ ≥ −β, the optimal
value depends on the relative position of the oblique line and the P point. Namely,
the optimal solution can be attained on P, P1 or P2.

We put the function

ψ(F, s) = yz +
α

s(β − α)2
(βy + z)2 +

β

(1− s)(β − α)2
(αy + z)2,

the optimal value is

14
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Figure 1: New mathematical programming problem.

h

sβ(β − α)2
(β2

y
2 + z

2 + 2βyz) + x
2 −

aβ

β
yz

if h(x, t) ≥ 0, ψ(F, s) ≤ 0,
−h

(1− s)α(β − α)2
(α2

y
2 + z

2 + 2αyz) + x
2 −

aα

α
yz,

if h(x, t) ≤ 0, ψ(F, s) ≤ 0,

−detF +
1

s(1− s)(β − α)2

((
(1− s)β2(α+ aα) + sα2(β + aβ)

)
y

2

+
(
(1− s)(α+ aα) + s(β + aβ)

)
z

2 + 2
(
(α+ aα)β − sβ

)
yz

)

if ψ(F, s) ≥ 0.

In addition, the optimal value is attained on

P1 : Sα = y2
α and S1 = x

2 if h(x, t) ≥ 0, ψ(F, s) ≤ 0, (10)

P2 : Sβ = y2
β and S1 = x

2 if h(x, t) ≤ 0, ψ(F, s) ≤ 0, (11)

P : Sα = y2
α and Sβ = y2

β if ψ(F, s) ≥ 0. (12)

Therefore we have an explicit computation of the constrained polyconvexification
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given by

CPW (F, s) =





h

sβ(β − α)2
(β2y2 + z2 + 2βyz) + x

2 −
aβ

β
yz

if h(x, t) ≥ 0, ψ(s, F ) ≤ 0, tr(F ) = 0,
−h

(1− s)α(β − α)2
(α2

y
2 + z

2 + 2αyz) + x
2 −

aα

α
yz,

if h(x, t) ≤ 0, ψ(s, F ) ≤ 0, tr(F ) = 0,
1

s(1− s)(β − α)2

((
(1− s)β2(α+ aα) + sα2(β + aβ)

)
y

2

+
(
(1− s)(α+ aα) + s(β + aβ)

)
z

2

+2
(
(α+ aα)β − sβ

)
yz

)
− detF

if ψ(s, F ) ≥ 0, tr(F ) = 0,
+∞ if tr(F ) 6= 0

We claim that in fact this is an exact value. This amounts to finding laminates
which yield this same optimal value.

4 Optimal microstructures: laminates

We have the lower bound given by the polyconvexification, and we will show that
this bound is in fact attained. To this end, we seek an optimal microstructure (a
laminate) whose second moments recover the value of the bound.

We try to find ν = sνα + (1 − s)νβ, a laminate with supp(νγ) ⊂ Λγ , γ = α, β,
s ∈ (0, 1), and first moment F . We have different optimal conditions depending of
the sign of ψ and h, and we analyze different cases accordingly.

4.1 Case ψ ≥ 0

We start with the case when ψ(F, s) ≥ 0 holds. In this case the optimal conditions
(12) tell us that

Sα,2 = y2
α, Sβ,2 = y2

β

and therefore, by the strict convexity of the square function, we can deduce that

ν(2)
γ = δyγ , γ = α, β.

Hence

Fα = (λ, yα,−αyα), Fβ =

(
x− sλ

1− s
, yβ,−βyβ

)
, (13)

with λ ∈ IR arbitrary. This means that for every λ ∈ IR we can decompose F as a
convex combination of two matrices in Λα,Λβ respectively, and satisfying the volume
constraint, see Figure 2.
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Figure 2: Infinite decompositions of F .

The next step is to check that there exist some λ ∈ IR such that rank(Fα−Fβ) =
1. After some algebra, we can write

rank(Fα − Fβ) = 1⇔ CF,s(λ) = 0

where

CF,s(λ) = −detF − s(λ2 − αy2
α)− (1− s)(

F11 − sλ

1− s
)2 − βy2

β)

is a second degree polynomial on λ. It is easy to check that the discriminant of CF,s

is ψ(F, s), and so that their roots are

λi = x+ (−1)i

√
1− s

s
ψ(F, s) i = 1, 2.

Therefore for all pair (F, s) such that ψ(F, s) ≥ 0, there exist two first order laminate

ν = sδFα,i
+ (1− s)δFβ,i

i = 1, 2

where

Fα,i =

(
λi Fα,12

−αFα,12 −λi

)
, Fβ,i =

(
x−sλi

1−s
Fβ,12

−βFβ,12 −x−sλi

1−s

)

and they provide the optimal value of the polyconvexification.
Thanks to the spatial identification F = (x,y, z), we can observe the above

computations from a geometric point of view (see Figure 3). For any matrix F =
(x,y, z) the determinant is detF = −(x2 + yz), this means that for any matrix F
there exist a cone {x2 + yz = 0} of rank one directions through this matrix. From
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Figure 3: Two first order laminates

optimality conditions we obtain an explicit identification of Fγ γ = α, β, up to the
first component (13), which let us a degree of freedom in the search of the optimal
decomposition. Geometrically, we notice that the intersection between the manifolds
Λγ and the rank one cone are ellipses, whose intersection with the admissible Fγ are
two points Fγ,i, γ = α, β and i = 1, 2.

4.2 Case ψ ≤ 0

We study now the other case, ψ(F, s) < 0. In this situation, we have two different
optimal conditions depending of the sign of h. We treat the case h ≥ 0. The other
case is similar.

From the optimal condition for this case (10), we have

Sα,2 = y2
α, S1 = x

2

and by using similar arguments as above, we can deduce

ν(2)
α = δyα , ν(1) = δx

where

1. να = δFα with
Fα = (x, yα,−αyα), (14)

2. by using that F is the first moment of ν, there exists a unique decomposition

F = sFα + (1− s)Fβ

18



with Fγ ∈ Λγ , γ = α, β where Fα is of the form just indicated, and

Fβ = (x, yβ,−βyβ). (15)

Consider a pair (F, s) such that ψ(F, s) < 0. After an elementary manipulation,
we get

ψ(F, s) ≤ 0⇐⇒

−(β − α)2yzs2 +
(
αβ(α − β)y2 + (β − α)z2 + (β − α)2yz

)
s

+
(
αβ2

y
2 + αz

2 + 2αβyz

)
≤ 0.

Let PF (s) be this second degree polynomial in s for fixed F . The set where ψ(F, s) ≤
0 is the set where PF has solutions in [0, 1], and s lies between those two solutions.
There exist real solutions if the discriminant is non-negative, and, in addition, it is
easy to check that PF (0), PF (1) are positive1 if F /∈ Λα ∪ Λβ. Therefore there are
positive solutions if PF is decreasing at 0.

After some algebra the discriminant is

g(F ) = α2β2
y

4 + z
4 + (α2 + 4βα+ β2)yz

+2αβy
3
z + 2(α+ β)z3

y ≥ 0,

and the decreasing condition

h(F ) = (α+ β)yz + αβy
2 + z

2 ≤ 0.

Therefore the set of pairs (F, s) where ψ(F, s) ≤ 0 can be described as

{(F, s) ∈M 2×2 × IR : g(F ) ≥ 0, h(F ) ≤ 0, s ∈ (r1, r2)}

where

ri =
1

2
−

1

2(β − α)yz

(
αβy

2 − z
2 + (−1)i

√
g(F )

)
i = 1, 2.

We thus have a characterization of the set ψ(F, s) ≤ 0. We now look for rank-one
connections between both manifolds.

We would like to write
F = rBα + (1− r)Bβ

with r ∈ (0, 1), Bγ ∈ Λγ , (Bγ)1 = x, γ = α, β, and rank(Bα −Bβ) = 1.
On the one hand,

Bγ ∈ Λγ

(Bγ)1 = x

}
⇒ Bγ = (x, yγ ,−γyγ) γ = α, β.

1PF (0) = α|βy + z|2, PF (1) = β|αy + z|2
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Figure 4: Second order laminates.

The constraint on the vanishing determinant can be rewritten, after some manipu-
lation, as

PF (r) = 0,

whose roots are ri. We can therefore guarantee that there exist two rank-one direc-
tions between Λα and Λβ with barycenter F .

We are now in a position to find an optimal second order laminate which recovers
the lower bound given by the polyconvexification. We take να = δFα and νβ as a
convex combination of two Dirac masses supported in the β manifold (see Figure 4).

Put
Fβ,i = (x, yβ,i,−βyβ,i)

with

yβ,i =
−1

(1− ri)(β − α)
(αy + z), i = 1, 2.

Since r1 ≤ s ≤ r2, it is clear that yβ is a convex combination of Fβ,i, i = 1, 2.
If we consider F̄β,i = Fα + li(Fβ,i − Fα,i) with li such that F̄β,i ∈ Λβ , and take

li =
ri
s
, ρi,j =

(1− rj)(ri − s)

ri − rj
, τi,j =

(rj − s)(ri − 1)

rj(1 + ri) + s(1− rj)
, (16)

we can define the second-order laminate with support on Λα ∪ Λβ, barycenter F ,
and mass in Λα equal to s, by putting

νi,j = τi,jδFβ,i
+ (1− τi,j)(ρi,jδF̄β,j

+ (1− ρi,j)δFα)
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with i, j ∈ {1, 2}, i 6= j where,

det(F̄β,j − Fα) = 0

and
det(Fβ,i − (ρi,jF̄β,j + (1− ρi,j)Fα)) = 0.

Again, using the spatial identification we can interpret geometrically the above an-
alytical computations. We lost the degree of freedom of the first component of the
matrices Fα and Fβ, since these matrices are explicitly determined by (14) and (15),
and their first component is x in both cases. This fact lets us simplify the spatial
situation to a 2-d case in the plane determined by the first component equal to x.
The intersection between the manifolds Λγ - the cone of rank one directions - and
that reduces to two matrices in each manifold, which we noted by Fγ,i. From these
matrices connected by rank one directions we can obtain a second order laminate
with volume fraction s on Λα and (1− s) on Λβ. This construction is shown in the
Figure 4, where the spatial situation is reduced to the plane of the first component
equal to x. A similar result holds for the other point where the optimal value is
attained (h(x, s) ≤ 0).

We summarize all of these computations of optimal laminates leading to the
relaxed integrand ϕ.

When ψ(F, s) ≥ 0 there exist two optimal first-order laminates leading to the
value of the relaxed integrand ϕ

ν = sδFα,i
+ (1− s)δFβ,i

i = 1, 2 (17)

where,

Fα,i =

(
λi Fα,12

−αFα,12 −λi

)
, Fβ,i =

(
F11−sλi

1−s
Fβ,12

−βFβ,12 −F11−sλi

1−s

)

with

λi = F11 + (−1)i

√
1− s

s
ψ(F, s) i = 1, 2,

Fα,12 =
1

s(β − α)
(βF12 + F21), Fβ,12 =

−1

(1− s)(β − α)
(αF12 + F21).

When ψ(F, s) ≤ 0 and h(x, t) ≥ 0, there exist two optimal second-order laminates

νi,j = τi,jδFβ,i
+ (1− τi,j)(ρi,jδF̄β,j

+ (1− ρi,j)δFα) (18)

with i, j ∈ {1, 2}, i 6= j where the scalars are

ρi,j =
(1−rj)(ri−s)

ri−rj
, τi,j =

(rj−s)(ri−1)
rj(1+ri)+s(1−rj)
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and the matrices are

Fα =

(
F11 Fα,12

−αFα,12 −F11

)
, Fβ,i =

(
F11 Fβ,12,i

−βFβ,12,i −F11

)

with

Fβ,12,i =
−1

(1− ri)(β − α)
(αF12 + F21), i = 1, 2

ri
1

2
−

1

2(β − α)F12F21

(
αβ|F12|

2 − |F21|
2 + (−1)i

√
g(F )

)
i = 1, 2

F̄β,i = Fα + li(Fβ,i − Fα,i), li =
ri
s
.

Similarly, when ψ(F, s) ≤ 0 and h(x, t) ≤ 0, the optimal microstructure is another
second-order laminate given by

νi,j = τi,jδFα,i
+ (1− τi,j)(ρi,jδF̄α,j

+ (1− ρi,j)δFβ
)

with i, j ∈ {1, 2}, i 6= j where the scalars are

ρi,j =
rj(ri−s)
ri−rj

, τi,j =
(s−rj)ri

ri(rj−1)+rj(1−s) ,

and the matrices involved are

Fβ =

(
F11 Fβ,12

−βFβ,12 −F11

)
, Fα,i =

(
F11 Fα,12,i

−βFα,12,i −F11

)

with

Fα,12,i =
1

ri(β − α)
(βF12 + F21), i = 1, 2

F̄α,i = Fβ − li(Fβ,i − Fα,i), li =
1− ri
1− s

.

5 Some particular examples

In this section we would like to emphasize some particular examples where, by using
Theorem 1, we can compute explicitly the relaxed cost functional.

Example 1 - An interesting and academic example is the corresponding to aα(t, x) =
α, aβ(t, x) = β so that h ≡ 0, the cost functional can be written as

∫ T

0

∫

Ω

[
u2

t (t, x) + (αχ+ β(1− χ))u2
x(t, x)

]
dxdt,
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and the constrained quasiconvexification is

ϕ(F, s)





F 2
11 − F12F21 if ψ(s, F ) ≤ 0,

−detF +
1

s(1− s)(β − α)2

(
2αβ(sα + (1− s)β)

)
|F12|

2

+2
(
(1− s)α+ sβ

)
|F21|

2 + 4αβF12F21

)

if ψ(s, F ) ≥ 0.

Example 2 - Another interesting case occurs when we take a(t, x, χ) = 1, the most
simple quadratic cost function but very interesting from the mathematical point of
view. In this case the relaxed cost functional is

∫ T

0

∫

Ω

[
u2

t (t, x) + u2
x(t, x)

]
dxdt,

and therefore aα(t, x) = aβ(t, x) = 1. Hence

h(t, x) = β − α,

and the constrained quasiconvexification simplifies to ϕ(F, s) =





1

sβ(β − α)
(sβ(β − α)|F11|

2 + β2|F12|
2 + |F21|

2 + (sα+ β(2− s))F12F21)

if ψ(s, F ) ≤ 0,

−detF +
1

s(1− s)(β − α)2

(
(1− s)β2(α+ 1) + sα2(β + 1)

)
|F12|

2

+
(
(1− s)α+ sβ + 1

)
|F21|

2 + 2
(
β(1− s) + α(s+ β)

)
F12F21

)

if ψ(s, F ) ≥ 0.

(19)

Example 3 - The last case lies in the border line for our computations to be valid.
We take aα(t, x) = −α and aβ(t, x) = −β so that h identically vanishes. The cost
functional is ∫ T

0

∫

Ω

[
u2

t (t, x)− (αχ+ β(1− χ))u2
x(t, x)

]
dxdt,

and for this case the relaxed integrand surprisingly is -det (recall the restriction on
the trace)

ϕ(F, s) = F 2
11 + F12F21 = −detF.

Note that depending on the choice of the coefficients aα, aβ we obtain different
cost densities for the relaxed problem, yet this choice of the coefficients is indepen-
dent of the state equation. It is interesting to remark that for all these examples the
optimal laminates correspond to the ones computed in the last section (17) when
ψ ≥ 0 and (18) when ψ ≤ 0, which are independents of aα, aβ.
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6 Analysis of (RP ) in the quadratic case

In this section we would like to analyze the quadratic case which is Example 2 in
the preceding section, and thus focus on (RP ) where the cost density is given by
(19).

From the previous sections we know that this problem admits optimal solutions,
and moreover we know that such optimal solutions are first or second-order laminates
depending on the sign of the function ψ. An interesting fact is that all functions
involved are quadratic in the vector gradient variable and therefore regular, yet it
is the presence of gradients and the pointwise constraint that make the problem
difficult to examine.

One first attempt would lead us to look at optimality conditions introducing
several multipliers to keep track of the restrictions. This makes the problem more
difficult in the sense that we have to solve a system of partial differential equations.
Instead we follow a similar strategy as in [9]. The pointwise constraint given by
ψ depends only on the variables F12, F21 , therefore we try to find the “optimal”
relationship between these two variables. The next lemma is completely elementary.

Lemma 1 For fixed s, the optimal solution of the quadratic, mathematical program-
ming problem

Minimize in F(21) : ϕ(F, s)

occurs when
(αs+ β(1− s))F12 + F21 = 0.

In addition, the associated optimal microstructures are first-order laminates with
volume fraction s for the α-material and orientation of layers always vertical (along
the time axis):

s(t, x)δFα + (1− s(t, x))δFβ

with normal direction of lamination n = (0, 1). Having in mind the trace condition
F11 + F22 = 0 the optimal value of the cost function simplifies to

F 2
11 + F 2

12. (20)

The idea is then to replace the complicated cost function ϕ by the expression
(20) and then minimize under the constraints

(αs+ β(1− s))F12(t, x) + F21(t, x) = 0, F11(t, x) + F22(t, x) = 0

i.e.
(

F11(t, x)
−[αs(t, x) + β(1 − s(t, x))]F12(t, x)

)
= TF (2)(x, t), a.e.(t, x) ∈ [0, T ]× Ω,
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which is equivalent to

div

(
F11(t, x)

−[αs(t, x) + β(1− s(t, x))]F12(t, x)

)
= 0

Therefore we can write the minimization problem in terms of the original variable
U (1) = u leading to the new relaxed problem (stated in Conjecture 1):

(R̃P ) min
s

∫ T

0

∫

Ω
u2

t (t, x) + u2
x(t, x) dx dt

where u is the unique solution of

utt − div([αs + β(1− s)]ux) = 0 in (0, T )× (0, 1),

u(0, x) = u0(x), ut(0, x) = u1(x) in Ω,

u(t, 0) = 0, u(t, 1) = 0 in [0, T ], (21)

This new problem may be seen as the continuous version of the original design
problem in which the function χ(x, t) is replaced by the continuous function s(x, t).
We cannot prove directly that the above problem admits optimal solutions, though
we claim, by our conjecture, that it indeed does because of the particular form of
the problem and not as a consequence of general results. A deeper and exhaustive
analysis of this problem is still in progress (see [18]). Hopefully, the existence of
solutions of these problems will be proved. We support numerically our conclusion
in the next section. All we can say at this point is contained in the following
assertion.

Lemma 2 The equalities

inf(P ) = inf(R̃P ) = min(RP )

hold.

Proof. It is easy to see that

inf(P ) ≥ inf(R̃P )

and
inf(R̃P ) ≥ min(RP )

and using the relaxation Theorem 3

inf(P ) = min(RP )

holds, therefore we have all equalities. �
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7 Numerical simulations

We address in this section the numerical resolution of the problem (R̃P ) in according
with the Conjecture 1 for aα(t, x) = 1 and aβ(t, x) = 1. We first describe the
algorithm of minimization and then present some numerical experiments.

7.1 Algorithm of minimization

We briefly present the resolution of the relaxed problem (R̃P ) using a gradient
descent method. In this respect, we compute the first variation of the cost function.

For any η ∈ R
+, η << 1, and any s1 ∈ L

∞((0, T ) × Ω), we associate with the
perturbation sη = s+ ηs1 of s the derivative of Ĩ with respect to s in the direction
s1 as follows :

∂Ĩ(s)

∂s
· s1 = lim

η→0

Ĩ(s+ ηs1)− Ĩ(s)

η
.

We obtain the following result.

Theorem 4 If (u0, u1) ∈ (H2(Ω) ∩H1
0 (Ω)) ×H1

0 (Ω), then the derivative of Ĩ with
respect to s in any direction s1 exists and takes the form

∂Ĩ(s)

∂s
· s1 =

∫ T

0

∫

Ω
s1

(
(aα − aβ)u2

x + (α− β)uxpx

)
dxdt (22)

where u is the solution of (21) and p is the solution in C 1([0, T ];H1
0 (Ω))∩C1([0, T ];L2(Ω))

of the adjoint problem





div(pt,−[sα+ (1− s)β]px) = div(ut, a(t, x, s)ux) in (0, T )× Ω,

p = 0 on (0, T ) × ∂Ω,

p(T, x) = 0, pt(T, x) = ut(T, x) in Ω.

(23)

Sketch of the proof. Let us explain briefly how we obtain the expression (22). We
introduce the lagrangian

L(s, φ, ψ) =

∫ T

0

∫

Ω
(φ2

t + a(t, x, s)φ2
x) dxdt

+

∫ T

0

∫

Ω

[
φtt − div([αs+ β(1 − s)]φx)

]
ψ dxdt

for any s ∈ L∞((0, T ) × Ω), φ ∈ C([0, T ];H2(Ω) ∩ H1
0 (Ω)) ∩ C1([0, T ];H1

0 (Ω)) and
ψ ∈ C([0, T ];H1

0 (Ω)) ∩C1([0, T ];L2(Ω)) and then write formally that

dL

ds
· s1 =

∂

∂s
L(s, φ, ψ) · s1+ <

∂

∂φ
L(s, φ, ψ),

∂φ

∂s
· s1 >

+ <
∂

∂ψ
L(s, φ, ψ),

∂ψ

∂s
· s1 > .
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The first term is

∂

∂s
L(s, φ, ψ) · s1 =

∫ T

0

∫

Ω
s1

(
(aα − aβ)φ2

x + (α− β)φxψx

)
dxdt (24)

for any s, φ, ψ whereas the third term is equal to zero if φ = u solution of (21).
We then determine the solution p so that, for all φ ∈ C([0, T ];H 2(Ω) ∩ H1

0 (Ω)) ∩
C1([0, T ];H1

0 (Ω)), we have

<
∂

∂φ
L(s, φ, p),

∂φ

∂s
· s1 >= 0,

which leads to the formulation of the adjoint problem (23). Next, writing that
Ĩ(s) = L(s, u, p), we obtain (22) from (24). �

In order to take into account the volume constraint on s, we introduce the
Lagrange multiplier function γ ∈ L∞((0, T ); R) and the functional

Ĩγ(s) = Ĩ(s) +

∫ T

0
γ(t)

∫

Ω
s(t, x)dxdt.

Using Theorem 4, we obtain that the derivative of Ĩγ is

∂Ĩγ(s)

∂s
· s1 =

∫ T

0

∫

Ω
s1((aα − aβ)u2

x + (α− β)uxpx) dxdt+

∫ T

0
γ(t)

∫

Ω
s1dxdt

which permits to define the following descent direction :

s1(x, t) = −((aα − aβ)u2
x + (α− β)uxpx + γ(t)), ∀x ∈ Ω,∀t ∈ (0, T ). (25)

Consequently, for any function η ∈ L∞(Ω × (0, T ),R+) with ||η||L∞(Ω×(0,T )) small

enough, we have Ĩγ(s+ηs1) ≤ Ĩγ(s). The multiplier function γ is then determined in
order that, for any function η ∈ L∞(Ω× (0, T ),R+), ||s+ ηs1||L1(Ω) = Vα|Ω| leading
to

γ(t) =

(
∫
Ω s(t, x)dx− Vα|Ω|)−

∫
Ω η(t, x)

(
(aα − aβ)u2

x + (α− β)uxpx

)
dx

∫
Ω η(t, x)dx

(26)

, for all t ∈ (0, T ). At last, the function η is chosen so that s+ηs1 ∈ [0, 1], for all x ∈ Ω
and t ∈ (0, T ). A simple and efficient choice consists in taking η(t, x) = εs(t, x)(1−
s(t, x)) for all x ∈ Ω and t ∈ (0, T ) with ε small real positive. Consequently, the

descent algorithm to solve numerically the relaxed problem (R̃P ) may be structured
as follows :

Let Ω ⊂ R
N , (u0, u1) ∈ (H2(Ω)∩H1

0 (Ω))×H1
0 (Ω), L ∈ (0, 1), T > 0, and ε < 1,

ε1 << 1 be given.
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• Initialization of the density function s0 ∈ L∞(Ω; ]0, 1[);

• For k ≥ 0, iteration until convergence (i.e. |Ĩ(sk+1) − Ĩ(sk)| ≤ ε1|Ĩ(s
0)|) as

follows :

– Computation of the solution usk of (21) and then the solution psk of (23),
both corresponding to s = sk.

– Computation of the descent direction sk
1 defined by (25) where the mul-

tiplier γk is defined by (26).

– Update the density function in Ω:

sk+1 = sk + εsk(1− sk)sk
1

with ε ∈ R
+ small enough in order to ensure the decrease of the cost

function and sk+1 ∈ L∞(Ω× (0, T ), [0, 1]).

7.2 Numerical experiments in the quadratic case

In this section, we present some numerical simulations for Ω = (0, 1) in the quadratic
case, i.e, (aα, aβ) = (1, 1). On a numerical viewpoint, we highlight that the numerical
resolution of the descent algorithm is a priori difficult because the descent direction
(25) depends on the derivative of u and p, both solution of a wave equation with
space and time coefficients only in L∞((0, T ) × Ω; R?

+). To the knowledge of the
authors, there does not exist any numerical analysis for this kind of equation. We
use a C0-finite element approximation for u and p with respect to x and a finite
difference centered approximation with respect to t. Moreover, we add a vanishing
viscosity and dispersive term of the type ε2div([sα + (1 − s)β]uxtt) with ε of order
of h - the space discretization parameter. This term has the effect to regularize the
descent term (25) and to lead to a convergent algorithm. At last, this provides an
implicit and unconditionally stable scheme, consistent with (21) and (23), and of
order two in time and space.

In the sequel, we treat the following two simple and smooth initial conditions on
Ω = (0, 1):

• Case 1 : u0(x) = sin(πx), u1(x) = 0 ;

• Case 2 : u0(x) = exp−80(x−0.5)2 , u1(x) = 0,

and we discuss the results with respect to the value of α, β and Vα. Results are
obtained with h = dt = 10−2, ε1 = 10−5, s0(t, x) = Vα on [0, T ] × Ω and ε = 10−2

(see the algorithm).
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Figure 5: Case 1 - T = 2, (α, β) = (1, 1.1) - Iso-values of the limit density - Top :
Vα = 0.3 - Ĩ(slim) ≈ 9.7451 - Bottom: Vα = 0.5 - Ĩ(slim) ≈ 9.5613.

7.2.1 Case 1

We first consider the case 1, with T = 2 and (α, β) = (1, 1.1). Figure 5 depicts
the iso-values of the optimal limit density slim (obtained at the convergence of
the descent algorithm) for Vα = 0.3 (top of the figure) and Vα = 0.5 (bottom of
the figure) respectively. For these values of α and β, we observe that the limit
densities are characteristics functions taking either the value 0 or the value 1. As
a consequence the relaxed problem (R̃P ) coincides with the original one (P ) which
is well-posed in the class of characteristics function. This validates Conjecture 1
in this case. Moreover, we observe that the limit densities are independent of the
choice of the initialization s0. This suggests that Ĩ admits a unique minimum.

Figure 6 represents the corresponding evolution of the energy E(t) = 1/2
∫
Ω(y2

t +
[sα+(1−s)β]y2

x)dx with respect to t. Due to the time dependence of the coefficients
of the state equation, the system is not conservative nor necessarily dissipative.

29



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

t
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

t

Figure 6: Case 1 - T = 2, (α, β) = (1, 1.1) - E(t) vs. t - Left : Vα = 0.3 -
Ĩ(slim) ≈ 9.7451 - Right : Vα = 0.5 - Ĩ(slim) ≈ 9.5613.

Results are qualitatively different if we now consider a larger gap β−α. Figures
7 and 8 represent the result obtained with (α, β) = (1, 6). We observe that the limit
density are no more characteristic functions and take values in (0, 1). This clearly
indicates that the original problem may be no well-posed and justify the search of a
relaxed formulation. We also observe that this property depends also on the value
of Vα: for Vα or 1 − Vα arbitrarily small, numerical simulation leads to bi-valued
limit densities for all α and β.

We have also observed that as soon as the gap is large enough, the limit of the
density depends on the initialization s0 highlighting the existence of several infima
for Ĩ. We found that the choice s0 constant on (0, T )×Ω - which have the advantage
to not favor any distribution between α and β - leads to the lowest value of Ĩ(slim).
Moreover, for this choice, the algorithm appears robust, stable and convergent with
respect to the discretization parameters h and ∆t. Under theses circumstances, we
suspect that the infimum of (R̃P ) (see Lemma 2) is in fact a minimum.

Remark that the relaxation analysis and the results presented in the previous
sections are unchanged if we consider the weaker volume constraint:

∫ T

0

∫

Ω
s(t, x)dxdt ≤ Vα|Ω|T. (27)

Figure 9 depict the limit densities for Vα = 0.5 for (α, β) = (1, 1.1) (Top) and
(α, β) = (1, 6) (Bottom) respectively. Furthermore, as expected, these densities
leads to a better distribution of materials: we obtain Ĩ(slim) ≈ 9.2147 and Ĩ(slim) ≈
3.4709 respectively (to be compared with Ĩ(slim) ≈ 9.5613 and Ĩ(slim) ≈ 6.1439 for
the initial volume constraint

∫
Ω s(t, x)dx ≤ Vα|Ω|, for all t).

7.2.2 Case 2

We now present some results for the second case. Similarly to the first case, the
optimal density takes value in (0, 1) if and only if the gap β − α is large enough.
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Figure 7: Case 1 - T = 2, (α, β) = (1, 6) - Iso-values of the limit density - Top :
Vα = 0.3 - Ĩ(slim) ≈ 7.9567 - Bottom: Vα = 0.5 - Ĩ(slim) ≈ 6.1439.

The pictures also clearly highlight that the optimal distribution is related to the
propagation of the components of the solution on the cylinder (0, T ) × (0, 1). For
this case, we observe that the two volume constraint give similar results on the
density and the optimal cost (see Figures 10 and 12). Furthermore, in the case
(α, β) = (1, 10), we observe Figure 13 the strong damping mechanism of the optimal
distribution and explain why, for t sufficiently large, the value of the cost function
is less sensitive to the density s (i.e. for t large, the variations of s with respect to
x and t are low).

7.2.3 Construction of a characteristic density associated to slim

In the case where the optimal density slim is not in L∞((0, T )×Ω; {0, 1}), one may
associate with slim a characteristic function spen ∈ L∞((0, T ) × Ω; {0, 1}) whose
cost Ĩ(spen) is arbitrarily near from Ĩ(slim). Following [21], one may proceed as
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follows: we first decompose the cylinder (0, T ) × Ω into M × N cells such that
(0, T ) × Ω = ∪i=1,M [ti, ti+1] × ∪j=1,N [xj , xj+1]. Then, we associate with each cell
the mean value mi,j ∈ [0, 1] defined by

mi,j =
1

(ti+1 − ti)(xj+1 − xj)

∫ ti+1

ti

∫ xj+1

xj

slim(t, x)dx dt. (28)

At last, we define the function spen
M,N in L∞([0, T ]× Ω) by

spen
M,N(t, x) =

M∑

i=1

N∑

j=1

χ[ti,(1−
√

mi,j )ti+
√

mi,j ti+1]×[xj ,(1−√
mi,j )xj+

√
mi,jxj+1](t, x). (29)

We easily check that ||spen
M,N ||L1((0,T )×Ω) = ||slim||L1((0,T )×Ω), for all M,N > 0. Thus,

the bi-valued function spen
M,N takes advantage of the information codified in the den-

sity slim.
In order to illustrate this, we consider the case 1 with T = 1, (α, β) = (1, 2)

and Vα = 0.5. Figure 14 depicts the corresponding optimal density slim and the
associated function spen

M,N for M = N = 30. We obtain Ĩ(spen
30,30) = 5.62 and Ĩ(slim) =

4.7584 respectively. By letting M and N go to infinity, we expect to converge to the
value Ĩ(slim) and then construct a minimizing sequence of domains ωM,N such that
χω∞,∞ be the infimum for I (see Table 1). We refer to [19] for more example.

M = N 10 20 30 40 50

Ĩ(spen
M,N) 7.45 6.21 5.62 5.09 4.93

Table 1: Case 1 - T = 1 - (α, β) = (1, 3) - Vα = 0.5 - Values of the cost function
Ĩ(spen

M,N )
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Figure 9: Case 1 with the volume constraint (27) - T = 2, Vα = 0.5 - Iso-value of
the limit density - Top : (α, β) = (1, 1.1) Ĩ(slim) ≈ 9.2147 - Bottom : (α, β) = (1, 6)
- Ĩ(slim) ≈ 4.3109.
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